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General experimental information

Keto ester 2a was purchased from Sigma Aldrich. All reagents and solvents were purchased from commercial sources, 

and used without further purifications. All solvents were dried prior to use according to standard literature protocols. 

Flash chromatography was performed on SiO2 (0.018–0.032 mm). Thin-layer chromatography (TLC) was carried out on 

precoated silica gel 60 F254 plates. IR spectra (ATR) were recorded on a Perkin-Elmer-FT-IR 1725X spectrophotometer; ν 

values are given in cm–1. 1H and 13C NMR spectra were recorded on a Bruker Ultrashield Avance III (1H at 500 MHz, 13C at 

125 MHz) and Bruker Ascend 400 (400 MHz) (1H at 400 MHz, 13C at 100 MHz) spectrometers using CS2/CDCl3 or CDCl3 as 

a solvent and TMS as an internal standard. Chemical shifts (δ) are expressed in parts-per million (ppm) and coupling 

constants (J) in Hz. The following abbreviations were used for signal multiplicities (s = singlet, d = doublet, t = triplet, q = 

quartet, quin = quintet, sex = sextet, m = multiplet, etc.). Homonuclear 2D (DQF-COSY and NOESY) and heteronuclear 

2D 1H-13C spectra (HSQC, HMBC) were recorded with the usual settings. UV spectra were recorded with a COLO 

NOVEL4S UV–Vis spectrophotometer. The high-resolution MS spectra were taken with Agilent 6210 LC ESI-MS TOF 

spectrometer. Cyclic Voltammetry and Linear sweep voltammetry measurements were recorded with METROHM 

Autolab PGSTAT128N, using Glassy carbon electrode as a working electrode, Ag/AgCl as a reference electrode and 

Platinum sheet electrode as a counter electrode. Tetrabutylammonium hexafluorophosphate (0.01 M) (98%, Sigma-

Aldrich) was used as a supporting electrolyte.
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Experimental procedures 

Preparation of β-keto esters (2b-d)
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Scheme SI 1. Synthesis of ethyl 3-hydroxyalcanoate (5b-d) and ethyl 3-oxoalcanoate (2b-d)

Preparation of β-hydroxy esters 5b-d by Reformatsky reaction[1] 

Into a refluxing suspension of activated zinc dust (1.37 g, 21mmol) and anhydrous benzene (7 mL), a mixture 

of aldehyde (20 mmol) and ethyl bromoacetate (3.51 g, 21 mmol) in benzene (40 mL) was added during 1 

hour (oil bath at 80°C). The mixture was stirred for an additional 1 hour at 80°C, and then the mixture was 

cooled to 0°C. Then, a solution of 1 M HCl (1 mL) was added, and the reaction mixture was extracted with 

diethyl ether (3 × 25 mL). The combined organic solutions were dried over anhydrous Na2SO4, and the solvent 

was removed under reduced pressure. The crude product was purified under reduced pressure on a silica gel 

column, with mixture of petroleum ether and ethyl acetate from 95/5 to 9/1 as eluent, to give the desired 

β‐hydroxy ester.

Ethyl 3-hydroxyoctanoate (5b): 2.41 g (64%); colourless oil; 1H NMR (500 MHz, CDCl3): δ 4.17 (q, J = 7.1 

Hz, 2H), 4.03 ─ 3.97 (m, 1H), 2.97 (bs, 1H), 2.50 (dd, J1 = 16.4 Hz, J2 = 3.1 Hz, 1H), 2.40 (dd, J1 = 16.4 Hz, J2 

= 9.1 Hz, 1H), 1.56 ─ 1.25 (m, 11H), 0.89 (t, J = 6,9 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ 172.8, 67.7, 

60.3, 41.0, 36.1, 31.3, 24.8, 22.2, 13.8, 13.6 ppm. The obtained spectra were in accordance with the reported 

in literature.[2],[3]

Ethyl 3-hydroxydecanoate (5c): 2.47 g (57%); colourless oil; 1H NMR (500 MHz, CDCl3): δ 4.17 (q, J = 7.2 

Hz, 2H), 4.02 ─ 3.97 (m, 1H), 2.50 (dd, J1 = 16.4 Hz, J2 = 3.1 Hz, 1H), 2.40 (dd, J1 = 16.4 Hz, J2 = 9.1 Hz, 1H), 

1.56 ─ 1.23 (m, 15H), 0.88 (t, J = 7.0 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ 172.8, 67.7, 60.3, 41.0, 

36.1, 31.4, 29.1, 28.8, 25.1, 22.3, 13.8, 13.7 ppm. The obtained spectra were in accordance with the reported 

in literature.[2],[3] 

Ethyl 3-hydroxydodecanoate (5d): 2.69 g (55%); colourless oil; 1H NMR (500 MHz, CDCl3): δ 4.17 (q, J = 

7.1 Hz, 2H), 4.03 ─ 3.96 (m, 1H), 2.95 (bs, 1H), 2.50 (dd, J1 = 16.4 Hz, J2 = 3.1 Hz, 1H), 2.40 (dd, J1 = 16.4 

Hz, J2 = 9.1 Hz, 1H), 1.55 ─ 1.22 (m, 19H), 0.88 (t, J = 6.9 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ 173.1, 

68.0, 60.6, 41.3, 36.5, 31.9, 29.5, 29.3, 25.4, 22.6, 14.2, 14.1 ppm. The obtained spectra were in accordance 

with reported in literature.[2],[3] 

Preparation of β-keto esters 2b-d by Collins oxidation of β-hydroxy esters[4]

Collins reagent was prepared by adding a pyridine (12 mmol) to the suspension of chromium (VI) oxide (6 

mmol) in dichlorometane (DCM) (15 mL). The mixture was stirred for 30 min at room temperature, under 

argon atmosphere, and than the solution of β-hydroxy ester 5b-d (1 mmol) in DCM (1.5 mL) was added. After 



S5

that the reaction mixture was left to stir for 24 h at room temperature. Reaction mixture was than diluted with 

ether (10 mL), filtrated through a silica gel pad and the residue of chromium reagent was washed with ether (3 

x 10 mL). Solvents were removed under reduced pressure, and the residue was chromatographed on a silica 

gel column with mixture of petroleum ether/ethyl acetate (8:2 v/v) to give a desired β-keto esters 2b-d.

Ethyl 3-oxooctanoate (2b): 150.8 mg (81%); colourless oil; 1H NMR (500 MHz, CDCl3): δ 12.09 (enol) (bs, 

1H), 4.96 (enol) (s, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.42 (keto) (s, 2H), 2.52 (keto) (t, J = 7.4 Hz, 2H), 2.18 (enol) 

(t, J = 7.6 Hz, 2H), 1.62 – 1.56 (m, 2H), 1.33 – 1.26 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H) 

ppm; 13C NMR (125 MHz, CDCl3): δ 203.1 (keto) and 181.4 (enol), 171.2 (enol) and 167.4 (keto), 89.1 (enol), 

61.4 (keto) and 60.0 (enol), 49.5 (keto), 43.1 (keto) and 35.2 (enol), 31.3 (keto) and  27.6 (enol), 26.0 (enol) 

and 23.3 (keto), 22.7 (enol) and 22.5 (keto), 14.4 (enol) and 14.2 (keto), 14.0 ppm. The obtained spectra were 

in accordance with the reported in literature.[5] 

Ethyl 3-oxodecanoate (2c): 154.3 mg (80%); colourless oil; 1H NMR (400 MHz, CDCl3): δ 12.10 (enol) (bs, 

1H), 4.97 (enol) (s, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.43 (keto) (s, 2H), 2.53 (keto) (t, J = 7.4 Hz, 2H), 2.18 (enol) 

(t, J = 7.6 Hz, 2H), 1.64 – 1.54 (m, 2H), 1.36 – 1.19 (m, 11H), 0.87 (t, J = 6.8 Hz, 3H) ppm; 13C NMR (100 

MHz, CDCl3): δ 203.2 (keto) and 183.5 (enol), 167.4, 61.5, 49.5, 43.2, 31.8, 29.2, 29.1, 26.4 (enol) and 23.6 

(keto), 22.7, 14.3, 14.2 ppm. The obtained spectra were in accordance with the reported in literature.[6],[7]

Ethyl 3-oxododecanoate (2d): 163.4 mg (84%); colourless oil; 1H NMR (500 MHz, CDCl3): δ 4.96 (enol) (bs, 

1H), 4.19 (q, J = 7.1 Hz, 2H), 3.42 (s, 2H), 2.52 (keto) (t, J = 7.4 Hz, 2H), 2.18 (enol) (t, J = 7.6 Hz, 2H), 1.63 – 

1.53 (m, 2H), 1.33 – 1.20 (m, 15H), 0.87 (t, J = 6.7 Hz, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ 203.1 (keto) 

and 179.2 (enol), 170.6 (enol) and 167.4 (keto), 89.10 (enol), 61.5 (keto) and 60.03 (enol), 49.5 (keto), 43.2 

(keto) and 35.2 (enol), 32.0, 29.5 (2C), 29.4, 29.2, 26.4 (enol) and 23.6 (keto), 22.8, 14.4, 14.2 ppm. The 

obtained spectra were in accordance with the reported in literature.[6],[7] 
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Cyclic Voltammetry measurments

Figure SI 1. (left) CV, (right) Linear sweep voltammetry (LSV) of 4d (1 mg/mL) recorded in ODCB/DMF 10/1, 

at 50 mVs-1, at room temperature, under Argon. Potentials are shown versus Fc/Fc+.
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Figure SI 2. (left) CV, (right) Linear sweep voltammetry (LSV) of 3d (1 mg/mL) recorded in ODCB/DMF 10/1, 

at 50 mVs-1, at room temperature, under Argon. Potentials are shown versus Fc/Fc+.

Figure SI 3. (left) CV, (right) Linear sweep voltammetry (LSV) of 3b (1 mg/mL) recorded in ODCB/DMF 10/1, 

at 50 mVs-1, at room temperature, under Argon. Potentials are shown versus Fc/Fc+.
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Figure SI 4. (left) CV 4b (1 mg/mL) recorded in ODCB/DMF 10/1, at 50 mVs-1, at room temperature, under 

Argon. Potentials are shown versus Fc/Fc+. (right) Stacked CV graphs of starting compounds C60, 2b and the 

product 4b.
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Figure SI 5. Cyclic Voltammograms of a) C60, b) 2b, c) ferrocene. Compounds were measured in a 

concentration of 1 mg/mL in ODCB/DMF 10/1, at 50 mVs-1, at room temperature, under Argon. Potentials are 

shown versus Fc/Fc+ except for the c).
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Determination of solubility for 3b and 4b in chloroform

The solubility was determined by UV-vis spectroscopy in a following way: standard series of four or six 

different concentrations and saturated solution were prepared. For all simples the UV-vis spectra were 

recovered and elaborated data were presented as a graph A vs μ (mg/mL). Standard solutions should have 

absorbance in the interval 0.3-1.0 while saturated solution must be appropriately diluted to have the 

absorbance in the mentioned region. 

Compound 3b:

Preparation of initial solution μ0: 2.6 mg of 3b was measured and transferred to a volumetric flask and 

dissolved by the addition of chloroform to 5 mL. The absorbance of initial solution μ0 was out of mentioned 

region (0.3-1.0). 

Preparation of standard series: The solution μ1 was prepared by diluting 4 mL of μ0 to 5 mL in volumetric 

flask (5 mL) and every second solution was prepared on the same way by diluting of previous one solution. 

Standard 
solution

μ (mg/mL) A429nm

1 0.4160 0.975
2 0.3328 0.814
3 0.2662 0.683
4 0.2130 0.566
5 0.1704 0.466
6 0.1363 0.388

Graph of dependence of absorbance on mass concentration (mg/mL):

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A

 (mg/mL)

Equation y = a + b*x
Weight No Weighting
Residual Sum 
of Squares

4.28442E-4

Pearson's r 0.99912
Adj. R-Square 0.9978

Value Standard Error

B
Intercept 0.11185 0.01204
Slope 2.09874 0.04409

Preparation of saturated solution: saturated solution was centrifuged and supernatant was taken out and 

diluted. 200 μL supernatant was measured and diluted to 2 mL in volumetric flask (2 mL) and 1.5 mL of that 

solution was transferred to a volumetric flask (5 mL) and diluted by addition of chloroform to 5 mL to get 
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saturated solution that has the absorbance in the mentioned region. The solution thus obtained had 

absorbance 0.625 and his mass concentration was 0.2445 mg/mL.

The solubility of compound 3b in chloroform was 8.15 mg/mL.

Compound 4b:

Preparation of initial solution μ0: 2.6 mg of 4b was measured and transferred to a volumetric flask and 

dissolved by the addition of chloroform to 5 mL. The absorbance of initial solution μ0 was out of mentioned 

region (0.3-1.0). 

Preparation of standard series: The solution μ1 was prepared by diluting 3.5 mL of μ0 to 5 mL in volumetric 

flask (5 mL) and every second solution was prepared on the same way by diluting of previous one solution. 

Standard solution μ (mg/mL) A426nm

1 0.3640 1.014
2 0.2548 0.731
3 0.1784 0.531
4 0.1249 0.376

Graph of dependence of absorbance on mass concentration (mg/mL):

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A

 (mg/mL)

Equation y = a + b*x
Weight No Weighting
Residual Sum 
of Squares

1.07963E-4

Pearson's r 0.99976
Adj. R-Square 0.99929

Value Standard Error

B
Intercept 0.05099 0.01012
Slope 2.65487 0.04089

Preparation of saturated solution: saturated solution was centrifuged and supernatant was taken out and 

diluted. 200 μL supernatant was measured and diluted to 2 mL in volumetric flask (2 mL) and 500 μL of that 

solution was transferred to a volumetric flask and diluted to 5 mL. Then, 4 mL of resulting solution was 

transferred to a volumetric flask (5 mL) and diluted by addition of chloroform to 5 mL to get saturated solution 

that has the absorbance in the mentioned region. The solution thus obtained had absorbance 0.725 and mass 

concentration was 0.2539 mg/mL.

The solubility of compound 4b in chloroform was 31.74 mg/mL.
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Electronic structure calculations

Following the verified procedure when dealing with fullerene derivates computationally[8-10] the geometries of 

all synthesized methanofullerenes (4a-d) and furanofullerenes (3a-d) were fully optimized with Perdew, 

Burke, and Ernzerhoff (PBE)[11] exchange-correlation functional using 6-311G(d,p) basis set. To save 

computational time the geometry of alky chains were set to most stabile zig-zag conformation and no further 

conformational search for possible alky chain conformations were done. All DFT calculations were 

performed in Gaussian 09 quantum-chemistry program[12]. The electronic properties of investigated 

compounds, including Becke orbital composition analysis[13] and Mayer bond order analysis[14], were 

analyzed on calculated PBEPBE/6-311G(d,p) wavefunctions using MultiWfn (version 3.6) software.[15]

Table S1. Absolute and relative energies of furano- and methanofullerenes 

Compound Absolute energy (a.u.)a Relative energy 
(kcal/mol)

3a -2821.255063 0.00
4a -2821.242162 8.10
3b -2899.788036 0.00
4b -2899.775084 8.13
3c -2978.320892 0.00
4c -2978.307885 8.16
3d -3056.853742 0.00
4d -3056.840681 8.20

aElectronic energies calculated with PBEPBE/6-311G(d,p) method
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Figure SI 6. (a) Mayer bond orders and (b) π-electron densities for compounds 3a and 4a. 
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Spectral data of furanofullerenes
Spectral data of 3a

O

CO2Et

C3H7

3a

Figure SI 7. Positive HRMS of compound 3a.
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Figure SI 8. 1H NMR spectrum (500 MHz) of 3a recorded in CS2/CDCl3.

Figure SI 9. 13C NMR spectrum (100 MHz) of 3a recorded in CS2/CDCl3.
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Figure SI 10. COSY NMR spectrum of 3a in CS2/CDCl3.

Figure SI 11. HSQC NMR spectrum of 3a in CS2/CDCl3.
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Figure SI 12. HMBC NMR spectrum of 3a in CS2/CDCl3.
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Figure SI 13. UV-Vis absorption spectrum of compound 3a in CHCl3.



S18

Spectral data of 3b

O
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C5H11
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Figure SI 14. Positive HRMS of compound 3b.
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Figure SI 15. 1H NMR spectrum (500 MHz) of 3b recorded in CS2/CDCl3.

Figure SI 16. 13C NMR spectrum (100 MHz) of 3b recorded in CS2/CDCl3.
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Figure SI 17. COSY NMR spectrum of 3b in CS2/CDCl3.

Figure SI 18. HSQC NMR spectrum of 3b in CS2/CDCl3.
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Figure SI 19. HMBC NMR spectrum of 3b in CS2/CDCl3.
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Figure SI 20. UV-Vis absorption spectrum of compound 3b in CHCl3.
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Spectral data of 3c

O
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Figure SI 21. Positive HRMS of compound 3c.
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Figure SI 22. 1H NMR spectrum (500 MHz) of 3c recorded in CS2/CDCl3.

Figure SI 23. 13C NMR spectrum (100 MHz) of 3c recorded in CS2/CDCl3.
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Figure SI 24. COSY NMR spectrum of 3c in CS2/CDCl3.

Figure SI 25. HSQC NMR spectrum of 3c in CS2/CDCl3.
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Figure SI 26. HMBC NMR spectrum of 3c in CS2/CDCl3.
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Figure SI 27. UV-Vis absorption spectrum of compound 3c in CHCl3.
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Spectral data of 3d

O
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Figure SI 28. Positive HRMS of compound 3d.
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Figure SI 29. 1H NMR spectrum (500 MHz) of 3d recorded in CS2/CDCl3.

Figure SI 30. 13C NMR spectrum (100 MHz) of 3d recorded in CS2/CDCl3.
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Figure SI 31. COSY NMR spectrum of 3d in CS2/CDCl3.

Figure SI 32. HSQC NMR spectrum of 3d in CS2/CDCl3.
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Figure SI 33. HMBC NMR spectrum of 3d in CS2/CDCl3.
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Figure SI 34. UV-Vis absorption spectrum of compound 3d in CHCl3.
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Spectral data of methanofullerenes
Spectral data of 4a

4a
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Figure SI 35. Positive HRMS of compound 4a.
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Figure SI 36. 1H NMR spectrum (500 MHz) of 4a recorded in CDCl3.

Figure SI 37. 13C NMR spectrum (125 MHz) of 4a recorded in CDCl3.
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Figure SI 38. COSY NMR spectrum of 4a in CDCl3.

Figure SI 39. HSQC NMR spectrum of 4a in CDCl3.
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Figure SI 40. HMBC NMR spectrum of 4a in CDCl3.
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Figure SI 41. UV-Vis absorption spectrum of compound 4a in CHCl3.
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Figure SI 42. Positive HRMS of compound 4b.
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Figure SI 43. 1H NMR spectrum (500 MHz) of 4b recorded in CDCl3.

Figure SI 44. 13C NMR spectrum (125 MHz) of 4b recorded in CDCl3.
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Figure SI 45. COSY NMR spectrum of 4b in CDCl3.

Figure SI 46. HSQC NMR spectrum of 4b in CDCl3.
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Figure SI 47. HMBC NMR spectrum of 4b in CDCl3.
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Figure SI 48. UV-Vis absorption spectrum of compound 4b in CHCl3.
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Figure SI 49. Positive HRMS of compound 4c.
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Figure SI 50. 1H NMR spectrum (500 MHz) of 4c recorded in CDCl3.

Figure SI 51. 13C NMR spectrum (125 MHz) of 4c recorded in CDCl3.
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Figure SI 52. COSY NMR spectrum of 4c in CDCl3.

Figure SI 53. HSQC NMR spectrum of 4c in CDCl3.
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Figure SI 54. HMBC NMR spectrum of 4c in CDCl3.
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Figure SI 55. UV-Vis absorption spectrum of compound 4c in CHCl3.
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Figure SI 56. Positive HRMS of compound 4d.
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Figure SI 57. 1H NMR spectrum (500 MHz) of 4d recorded in CDCl3.

Figure SI 58. 13C NMR spectrum (125 MHz) of 4d recorded in CDCl3.
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Figure SI 59. COSY NMR spectrum of 4d in CDCl3.

Figure SI 60. HSQC NMR spectrum of 4d in CDCl3.
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Figure SI 61. HMBC NMR spectrum of 4d in CDCl3.
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Figure SI 62. UV-Vis absorption spectrum of compound 4d in CHCl3.


