Construction of a lysosome-targetable ratiometric fluorescent probe for H₂O₂ tracing and imaging in living cells and inflamed model

Rongrong Zhou^{b,f,#}, Qiyao Peng^{a,#}, Dan Wan^{b,#}, Chao Yu^a, Yuan Zhang^a, Yi Hou^a, Quan Luo^d, Xiong Li^e, Shuihan Zhang^b, Lin Xie^{a,*}, Pinghua Ou^{c,*}, Yongbo Peng^{a,b,*}

[#]These authors contributed equally to this work.

Ou); pengyongbo2000@126.com (Y. Peng)

^{*}Corresponding author: 992934546@qq.com (L. Xie); myhuahua07@163.com (P.

Materials and instruments

All chemical reagents were obtained from commercial suppliers and used without further purification. In all experiments, double distilled water was obtained from a Millipore Milli-Q system (USA). LCQ advantage ion trap mass spectrometer (Thermo Finnigan) was used to record the mass spectra. All chemical reactions were uniform stirred by a magnetic stirrer and monitored by thin-layer chromatography (TLC). Flash column chromatography was carried out using silica gel (200-300 mesh). A Bruker DRX-400 spectrometer using TMS as an internal standard to give NMR spectra. A Hitachi U-4100 UV-vis spectrophotometer (Japan) with 1.0 cm path length quartz cuvette was used to collect UV-vis absorption spectra. A PHS-3C pH meter was used to measure pH values. All fluorescence measurements with a G9800A fluorescence spectrometer with both excitation and emission slits fixed at 2.5 nm, respectively. Fluorescence imaging experiment was conducted on a confocal laser scanning microscope (Olympus, Japan) with 405, and 553 nm excitation.

Fig.S1. Time-dependent fluorescence intensity ratios (I_{550}/I_{425}) of **NPT-H₂O₂** upon addition of H₂O₂ (60.0 μ M).

Fig. S2. Viability of HeLa cells treated with various concentrations (0-20.0) μ M of NPT-H₂O₂ for 24 h. Error bars represent mean values ± SD. (n= 3)

Fig.S3. Fluorescence spectra of 5.0 μ M NPT-H₂O₂ after adding different amount of

 H_2O_2 (0-60.0) µM in 10 mM PBS solution (pH 7.4), λ_{ex} =375 nm.

Table S1. The details of fluorescent quantum yields

$pH 5.0 + 0 \ \mu M \ H_2O_2$		рН 5.0+60 µМ Н ₂ О ₂	
0.51 (425 nm)	0.032 (550 nm)	0.051 (425 nm)	0.23 (550 nm)

The quantum yields of **NPT-H₂O₂** was calculated by comparison with rhodamine 6G (R=0.95 in ethanol) as a reference using the following equation: $\Phi_F = IA_R(n/n_R)^2 \Phi_{FR}/I_RA$. Where F is the quantum yield, I is the integrated area under the fluorescence spectra, A is the absorbance, n is the refractive index of the solvent, and R refers to the reference rhodamine 6G.

Fig. S4. The response mechanism of 5.0 μ M NPT-H₂O₂ and 60.0 μ M hydrogen peroxide in 10 mM PBS.

