Synthesis and photobiological applications of naphthalimide-benzothiazole

conjugates: Cytotoxicity and topoisomerase IIa inhibition

Iqubal Singh, Vijay Luxami, Diptiman Choudhury and Kamaldeep Paul*

School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001,

India

Email: kpaul@thapar.edu

Table of Contents

	Contents	Page No
Figures S1-S55	¹ H, ¹³ C NMR, and mass spectra of compounds	S2-S29
Figures S56	Agarose gel stained with ethidium bromide for inhibitoty activity towards Topo II α relaxation by compounds 12 and 13	S29
Figure S57	Benesi-Hildebrand plot of HSA for absorption spectra on incremental addition of compounds 12 and 13	S30
Figure S58	Effect of incremental addition of compound 12 on emission spectra of HSA at 308 K and 318 K	S30
Figure 859	Effect of incremental addition of compound 13 on emission spectra of HSA at 308 K and 318 K	S31
Figure S60	Stern-Volmer plots of compound 12 with HSA	S31
Figure S61	Stern-Volmer plots of compound 12 with HSA	S32
Figure S62	Modified Stern-Volmer plots of compound 12 with HSA	S33
Figure S63	Modified Stern-Volmer plots of compound 13 with HSA	S34
Figure S64	Van't Hoff plots for interaction of compounds 12 and 13 with HSA	S35
Figure S65	Fluorescence lifetime spectra of HSA in free form and the presence of compounds 12 (a) and 13 (b)	S35
Figure S66	Synchronous fluorescence spectra of the HSA with increasing	S36
	concentration of compound 13	
Table S1	Binding energy of compounds 8-11 based upon docking studies	S36
Table S2	Binding energy of compounds 12-15 based upon docking studies	S37
Table S3	Binding energy of compounds 16-19 based upon docking studies	S37
Table S4	Binding energy of compounds 20-22 and etoposide based upon docking studies	S38

Figure S1: ¹H NMR spectrum of 5-bromo-1*H*-indole-3-carbaldehyde (2)

73	8 8 9	22223342	N # 2	
ào	1- 00	2499998	888	4 10 6 1 8
6.1	E. C. S.		8 3 8	82338
ak .	66	888822	<u> </u>	99996
-				4440,00
	52	V2 112	\checkmark	

Figure S2: ¹³C NMR spectrum of 5-bromo-1*H*-indole-3-carbaldehyde (2)

100 90 f1 (ppm)

Figure S5: Mass spectrum of 1-allyl-5-bromo-1*H*-indole-3-carbaldehyde (3)

- 8.6291 - 8.6245	8.0562 8.0357 7.8654 7.8588 7.8588 7.3989 7.3989 7.3415 7.3415 7.2657 7.2657 7.2657	-6.0617 6.0489 -6.0489 -6.01932 -6.0193 -6.0103 -6.0103 -6.0103 -5.3021 -5.3021 -5.5.1673 -4.7915 -4.7905 -4.7905 -4.7768 -4.7768	-1.6313	- 1.2520
$\mathbf{\mathbf{\nabla}}$			1	1

Figure S6: ¹H NMR spectrum of 2-(1-allyl-5-bromo-1*H*-indol-3-yl)benzo[*d*]thiazole (4)

Figure S7: ¹³C NMR spectrum of 2-(1-allyl-5-bromo-1*H*-indol-3-yl)benzo[*d*]thiazole (4)

Figure S8: Mass spectrum of 2-(1-allyl-5-bromo-1*H*-indol-3-yl)benzo[*d*]thiazole (4)

8.87230 8.867230 8.86730 8.866730 8.866730 8.866730 8.866730 8.866730 8.866730 8.866730 8.866730 8.866730 8.866730 8.866499 8.864990 9.864970 9.961779 9.96190 7.79819 7.79819 7.79819 7.79819 7.79819 7.79819 7.79819 7.79819 7.79819 7.79819 7.79819 7.75919 7.75919

Figure S9: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[d]thiazol-2-yl)-1H-indol-5-yl)-1H,3H-benzo[de]isochromene-1,3-dione (7)

Figure S10: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*,3*H*-benzo[*de*]isochromene-1,3-dione (7)

Figure S11: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*,3*H*-benzo[*de*]isochromene-1,3-dione (7)

Fgure S13: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-butyl-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**8**)

Figure S15: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-aminoethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**9**)

Figure S17: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(dimethylamino)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**10**)

Figure S18: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(dimethylamino)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**10**)

Figure S19: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(dimethylamino)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**10**)

Figure S20: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(diethylamino)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**11**)

Figure S21: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(diethylamino)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**11**)

Figure S22: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(diethylamino)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**11**)

Figure S23: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[d]thiazol-2-yl)-1H-indol-5-yl)-2-(2-hydroxyethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (12)

Figure S24: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-hydroxyethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**12**)

Figure S25: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-hydroxyethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**12**)

Figure S27: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(prop-2-yn-1-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**13**)

Figure S28: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(prop-2-yn-1-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**13**)

Figure S29: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[d]thiazol-2-yl)-1H-indol-5-yl)-2-(2-morpholinoethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (14)

Figure S30: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-morpholinoethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (14)

Figure S31: Mass spectrum of 6-(1-allyl-3-(benzo[d]thiazol-2-yl)-1H-indol-5-yl)-2-(2-morpholinoethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (14)

Figure S32: ¹H NMR spectrum of 2-allyl-6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**15**)

Figure S33: ¹³C NMR spectrum of 2-allyl-6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**15**)

Figure S34: Mass spectrum of 2-allyl-6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**15**)

Figure S35: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**16**)

Figure S36: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**16**)

Figure S37: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**16**)

Figure S38: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-benzyl-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**17**)

Figure S39: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-benzyl-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**17**)

Figure S40: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-benzyl-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**17**)

Figure S42: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2- (phenylamino)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**18**)

Figure S43: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2- (phenylamino)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**18**)

$\begin{array}{c} 8.6488 \\ 8.66068 \\ 8.5875 \\ 8.5875 \\ 8.5875 \\ 8.53309 \\ 8.35015 \\ 8.35310 \\ 8.35310 \\ 8.35310 \\ 7.97540 \\ 7.97540 \\ 7.97533 \\ 7.97333 \\ 7.97333 \\ 7.78119 \\ 7.$

Figure S44: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[d]thiazol-2-yl)-1H-indol-5-yl)-2-cyclohexyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (19)

Figure S45: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[d]thiazol-2-yl)-1H-indol-5-yl)-2-cyclohexyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (19)

Figure S46: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-cyclohexyl-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**19**)

Figure S47: ¹H NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(piperazin-1-yl)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**20**)

Figure S48: ¹³C NMR spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(piperazin-1-yl)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**20**)

Figure S49: Mass spectrum of 6-(1-allyl-3-(benzo[*d*]thiazol-2-yl)-1*H*-indol-5-yl)-2-(2-(piperazin-1-yl)ethyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**20**)

Figure S51: ¹³C NMR spectrum of 6-(3-(benzo[*d*]thiazol-2-yl)-1-propyl-1*H*-indol-5-yl)-2-(4-fluorophenyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**21**)

Figure S52: Mass spectrum of 6-(3-(benzo[*d*]thiazol-2-yl)-1-propyl-1*H*-indol-5-yl)-2-(4-fluorophenyl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (**21**)

Figure S53: ¹H NMR spectrum of 2-amino-6-(3-(benzo[*d*]thiazol-2-yl)-1-propyl-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione **(22)**

Figure S54: ¹³C NMR spectrum of 2-amino-6-(3-(benzo[*d*]thiazol-2-yl)-1-propyl-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione **(22)**

Figure S55: Mass spectrum of 2-amino-6-(3-(benzo[*d*]thiazol-2-yl)-1-propyl-1*H*-indol-5-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione **(22)**

Figure S56. Agarose gel stained with ethidium bromide for inhibitoty activity towards Topo II α relaxation by compounds **12** and **13**. Lane 1: pHOT1 plasmid DNA, lane 2: pHOT1 plasmid DNA + TOPO II, lane 3: plasmid DNA + TOPO II + etoposide (25 μ M as positive control), lane 4-7 (compound **12**) and lane 8-11 (compound **13**): inhibition of relaxation of plasmid DNA by Topo II α in the presence of 1, 5, 10, and 50 μ M compound.

Figure S57. Benesi-Hildebrand plot $\{A_o/(A-A_o) \text{ vs. } 1/[\text{compound}]\}\$ of absorption spectra of HSA in the absence and presence of compound **12** (a) and compound **13** (b)

Figure S58. Emission spectra of HSA (10 μ M) ($\lambda_{ex} = 280$ nm) in presence of increasing concentrations of compound **12** in phosphate buffer (*p*H 7.4) at 308 K (a) and 318 K (b)

Figure S59. Emission spectra of HSA (10 μ M) ($\lambda_{ex} = 280$ nm) in presence of increasing concentrations of compound **13** in phosphate buffer (*p*H 7.4) at 308 K (a) and 318 K (b)

Figure S60. Stern-Volmer plots {F₀/F vs. [compound]} of emission spectra of HSA in the absence and presence of compound **12** at 298 K (a), 308 K (b) and 318 K (c)

Figure S61. Stern-Volmer plots { F_0/F vs. [compound]} of emission spectra of HSA in the absence and presence of compound 13 at 298 K (a), 308 K (b) and 318 K (c)

Figure S62. Modified Stern-Volmer plots {log $[(F_0-F)/F]$ vs. log [compound]} of emission spectra of HSA in the absence and presence of compound 12 at 298 K (a), 308 K (b) and 318 K (c)

Figure S63. Modified Stern-Volmer plots {log $[(F_0-F)/F]$ vs. log [compound]} of emission spectra of HSA in the absence and presence of compound 13 at 298 K (a), 308 K (b) and 318 K (c)

Figure S64. Van't Hoff plots {log K_b vs. 1/T} of emission spectra of HSA in the absence and presence of compound 12 (a) and compound 13 (b) at three different temperatures (298 K, 308 K and 318 K)

Figure S65. Fluorescence lifetime spectra of HSA in free form and the presence of compounds 12 (a) and 13 (b)

Figure S66. Synchronous fluorescence spectra of the HSA with increasing concentration of compound 13 using $\Delta \lambda = 15$ nm (a) and $\Delta \lambda = 60$ nm (b)

Mode	Compound 8		Compound 9		Compound 10		Compound 11	
	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD
	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)
1	-10.5	0.000	-8.9	0.000	-8.1	0.000	-8.4	0.000
2	-10.3	3.700	-8.8	27.376	-8.1	14.138	-8.4	35.106
3	-9.4	13.964	-8.8	23.727	-7.7	14.371	-8.2	51.236
4	-9.4	39.779	-8.7	22.685	-7.4	15.323	-8.2	44.156
5	-9.4	19.027	-8.5	13.220	-7.4	18.185	-8.1	51.493
6	-9.4	15.661	-8.4	16.892	-7.4	42.265	-8.1	27.896
7	-8.9	40.360	-8.3	15.842	-7.4	45.203	-7.9	3.751
8	-8.9	9.746	-8.2	28.981	-7.2	34.006	-7.8	21.224
9	-8.8	39.715	-8.1	27.167	-7.2	33.641	-7.7	3.447

Table S1: The docking results based on the binding free energies (kcal/mol) of compounds 8-11docked into 1ZXM and RMSD from the co-crystallized ligand

Mode	Compound 12		Compound 13		Compound 14		Compound 15	
	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD
	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)
1	-10.7	0.000	-11.0	0.000	-10.1	0.000	-9.9	0.000
2	-10.5	21.980	-10.3	4.945	-9.9	4.532	8.4	4.345
3	-9.3	17.171	-10.0	8.868	-9.7	4.301	8.2	5.418
4	-9.3	18.866	-9.9	9.085	-9.6	15.277	8.1	14.247
5	-9.2	42.321	-9.9	9.185	-9.2	12.078	-7.9	10.880
6	-9.1	15.462	-9.8	9.647	-8.9	12.387	-7.6	40.227
7	-9.0	13.639	-9.8	17.299	-8.9	4.892	-7.	21.833
8	-8.7	12.118	-9.5	9.229	-8.8	36.393	-7.6	34.614
9	-8.7	34.149	-9.3	9.677	-8.7	12.558	-7.5	14.186

Table S2: The docking results based on the binding free energies (kcal/mol) of compounds 12-15 docked into 1ZXM and RMSD from the co-crystallized ligand

Table S3: The docking results based on the binding free energies (kcal/mol) of compounds 16-19 docked into 1ZXM and RMSD from the co-crystallized ligand

Mode	Compound 16		Compound 17		Compound 18		Compound 19	
	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD
	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)
1	-9.1	0.000	-10.7	0.000	-10.4	0.000	-9.5	0.000
2	-8.9	3.532	-9.9	1.454	-10.4	4.066	-8.7	1.252
3	-8.7	21.972	-9.5	1.663	-10.2	36.770	-8.5	33.618
4	-8.7	5.184	-9.4	39.768	-10.1	36.700	-8.5	52.839
5	-8.5	13.130	-9.3	4.964	-9.9	11.192	-8.4	36.960
6	-8.5	3.147	-9.1	4.483	-9.6	9.370	-8.3	54.265
7	-8.4	7.289	-9.0	40.216	-9.6	11.971	-8.3	3.814
8	-8.4	32.823	-8.9	41.039	-9.5	3.604	-8.3	14.055
9	-8.4	35.526	-8.6	22.312	-9.5	23.684	-7.8	33.297

Mode	Compound 20		Compound 21		Compound 22		Etoposide	
	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD	Affinity	RMSD
	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)	(kcal/mol)	(Å)
1	-10.1	0.000	-10.2	0.000	-10.4	0.000	-11.2	0.000
2	-10.0	2.678	-10.0	16.868	-10.1	1.791	-10.8	4.577
3	-9.8	2.524	-9.7	4.024	-10.1	20.786	-10.6	2.206
4	-9.7	18.370	-9.5	27.913	-10.0	40.968	-9.8	12.535
5	-9.4	17.976	-9.5	16.263	-9.9	42.036	-9.6	12.619
6	-9.4	17.452	-9.4	16.542	-9.6	12.895	-9.3	45.489
7	-9.3	3.297	-9.4	30.416	-9.6	7.715	-9.3	24.083
8	-9.1	2.598	-9.3	19.851	-9.5	41.847	-9.3	20.267
9	-9.1	3.514	-9.2	7.819	-9.4	7.431	-9.3	34.636

Table S4: The docking results based on the binding free energies (kcal/mol) of compounds 20-22 and etoposide docked into 1ZXM and RMSD from the co-crystallized ligand