Supporting information

One-dimensional lead iodide hybrid stabilized by inorganic

hexarhenium cluster cations as new broad band emitter

Giang Thi Ly[†], Jun Choi[†], Youngmee Kim, Yuna Kim, Sujin Kim, Sohyeon Yang, and Sung-Jin Kim^{*}

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea

[†] These authors contributed equally.

Element	Atomic %	Ratio
S	44.02	6.4
Cl	14.17	2.1
Re	41.04	6.0

Fig. S1. EDS determination of [Re₆S₈(PzH)₆]Cl₂ (I)

25µm

_____25μm

25µm

Element	Atomic %	Ratio
S	33.13	8.3
Ι	29.90	7.5
Re	24.08	6.0
Pb	12.89	3.2

Fig. S2. EDS analysis confirms the presence of the constituent elements in the $\{[Re_6S_8(PzH)_6][Pb_3I_8(DMF)_2]\} \cdot 6(DMF) (II).$

Fig. S3. LC-MS (negative mode) of **II** contains a few sets of intense peaks in the area m/z 818-819. The most intense peak can be attributed to the $[Pb_3I_8]^{2-}$ anion (m/z = 818.42).

Fig. S4. SEM images of [Re₆S₈(PzH)₆]Cl₂ (I).

Fig. S5. Absorption, excitation and emission of I in DMF solution.

Fig. S6. Emission spectra of I and II in solid state and in DMF solution.

Table S1. Selected bond lengths of I.

Re(1)-N(1)	2.144(12)
Re(1)-S(1)	2.422(3)
Re(1)-S(8)	2.422(3)
Re(1)-S(2)	2.429(3)
Re(1)-S(7)	2.433(3)
Re(1)-Re(4)	2.5815(7)
Re(1)-Re(6)	2.5818(7)
Re(1)-Re(5)	2.5829(7)
Re(1)-Re(2)	2.5919(8)
Re(2)-N(3)	2.192(12)
Re(2)-S(4)	2.423(3)
Re(2)-S(2)	2.428(3)
Re(2)-S(1)	2.428(3)
Re(2)-S(3)	2.436(3)
Re(2)-Re(3)	2.5813(7)
Re(2)-Re(6)	2.5884(7)
Re(2)-Re(5)	2.5896(7)
Re(3)-N(5)	2.158(11)
Re(3)-S(6)	2.422(3)
Re(3)-S(3)	2.427(3)
Re(3)-S(5)	2.430(3)

Re(3)-S(4)	2.431(3)
Re(3)-Re(5)	2.5882(7)
Re(3)-Re(4)	2.5908(7)
Re(3)-Re(6)	2.5948(7)
Re(4)-N(7)	2.157(12)
Re(4)-S(8)	2.424(3)
Re(4)-S(6)	2.424(3)
Re(4)-S(5)	2.427(3)
Re(4)-S(7)	2.435(3)
Re(4)-Re(6)	2.5821(7)
$\operatorname{Re}(4)$ - $\operatorname{Re}(5)$	2.5885(7)
Re(5)-N(9)	2.146(11)
Re(5)-S(1)	2.422(3)
Re(5)-S(6)	2.423(3)
Re(5)-S(7)	2.428(3)
Re(5)-S(4)	2.431(3)
Re(6)-N(11)	2.169(11)
Re(6)-S(5)	2.411(3)
Re(6)-S(8)	2.416(3)
Re(6)-S(3)	2.424(3)
Re(6)-S(2)	2.426(3)

Table S2. Selected bond lengths of **II**.

Re(1)-N(11)	2.159(8)
Re(1)-S(1)	2.408(2)
Re(1)-S(2)	2.413(2)
Re(1)-S(4)	2.414(2)
Re(1)-S(3)	2.414(2)
Re(1)-Re(2)#1	2.5856(5)
Re(1)-Re(3)#1	2.5875(5)
Re(1)-Re(2)	2.5899(5)
Re(1)-Re(3)	2.5916(5)
Re(2)-N(21)	2.150(8)
Re(2)-S(3)#1	2.406(2)
Re(2)-S(4)#1	2.410(2)
Re(2)-S(1)	2.410(2)
Re(2)-S(2)	2.421(2)
Re(2)-Re(1)#1	2.5856(5)
Re(2)-Re(3)	2.5871(5)
Re(2)-Re(3)#1	2.5875(5)
Re(3)-N(31)	2.144(9)
Re(3)-S(1)#1	2.403(2)
Re(3)-S(3)	2.404(2)
Re(3)-S(4)#1	2.412(2)

2.412(2)
2.5876(5)
2.5876(5)
2.403(2)
2.406(2)
2.409(2)
2.412(2)
2.9281(11)
3.1232(12)
3.1345(12)
3.2389(10)
3.3101(9)
2.577(9)
2.577(9)
3.2085(8)
3.2086(8)
3.2540(9)
3.2540(9)
3.1345(12)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1 #2 -x+2,-y,-z #3 -x+2,-y+1,-z