Electronic Supplementary Information (ESI)

Structural diversity in coordination compounds of cobalt, nickel and copper with *N*-alkylglycinates: crystallographic and ESR study in solid state

Darko Vušak,^a Neven Smrečki,^a Senada Muratović,^b Dijana Žilić,^b Biserka Prugovečki*^a and Dubravka Matković-Čalogović^a

a. Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia.

^{b.} Laboratory for Magnetic Resonances, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.

*Corresponding author: biserka@chem.pmf.hr

Scheme S1. Prepration of *N*-ethylglycine-hydrochloride and *N*-propylglycine-hydrochloride by the aminolysis of chloroacetic acid.⁴⁰

Figure S1. Experimental (red line) and calculated (blue line) powder pattern of the prepared compounds. Two parts of powder patterns separated with broken lines are not on the same intensity scale.

Figure S2. Experimental (red lines) powder patterns of crystals obtained after recrystallization of 2 and 8α from different solutions compared with calculated powder patterns (blue and green lines).

Figure S3. Molecular structures of coordination compounds 2α , 3, 6 and 8β , and 5p. Displacement ellipsoids of non-hydrogen atoms are drawn at the 50 % probability level.

Figure S4. Hydrogen bond motifs in 2α .

Figure S5. Overlapped complex molecules of compound $[Cu(MeGly)_2(H_2O)_2]$ from monoclinic polymorph (2 β), (CSD refcode POBDIT) and two symmetrically independent complexes in triclinic polymorph (2 α). Molecules are overlapped over copper atoms and coordinated oxygen and nitrogen atoms.

Figure S6. Hirshfeld fingerprint plot with decomposition of the dominant types of intermolecular contacts in monoclinic (**2** β) and triclinic (**2** α) polymorph of [Cu(MeGly)₂(H₂O)₂]. Two symmetrically independent complexes in **2** α are also decomposed. Intermolecular contacts: H–H (51.0% in **2** β ; 48.1% in **2** α – complex 1; 49.1% in **2** α – complex 2), O–H (45.0% in **2** β ; 47.9% in **2** α – complex 1; 47.3% in **2** α – complex 2), C–H (3.9% in **2** β ; 4.0% in **2** α – complex 1; 3.6% in **2** α – complex 2).

Figure S7. Overlapped coordination compounds of 8α (dark blue) and 8β (red). Molecules are overlapped over copper atoms and coordinated oxygen and nitrogen atoms.

Figure S8. Two coordination compounds molecules interconnected through hydrogen bonds in 8α and 8β , with graph-set notation. Hydrogen bonds are shown as light blue lines.

Figure S9. C–O···C_{carboxylate} close contact (green dashed line) between two coordination compounds species in 8β .

Figure S10. Intramolecular N–H \cdots O hydrogen bonds within the polymeric network in **5p**. Hydrogen bonds are shown as light blue lines.

Figure S11. Distances between hydrogen-bonded 2D layers in compounds 1, 3 and 6 in perspective view along crystallographic *b*-axis.

Compound	1	1d	2α	2p	
	a.u. a.u. a				
Formula	$C_6H_{16}CoN_2O_6$	$C_{12}H_{30}Co_2N_4O_{12}$	$C_6H_{16}CuN_2O_6$	$C_6H_{12}CuN_2O_4$	
Formula weight	271.14	540.26	275.76	239.72	
Space group	C 2/c	P bca	p 1	$P 2_1/c$	
a/Å	16.8488(8)	15.5085(8)	7.0311(10)	7.9367(1)	
b/Å	9.3909(4)	14.6844(6)	7.4825(11)	5.9953(1)	
c/Å	6.8017(3)	18.0637(9)	10.6021(10)	9.0214(2)	
$\alpha/^{\circ}$	90	90	78.541(10)	90	
β°	97.788(5)	90	89.938(10)	90.522(2)	
$\gamma^{\prime \circ}$	90	90	78.408(13)	90	
$V/Å^3$	1066.28(8)	4113.7(3)	535.07(12)	429.247(13)	
$D_{ m calc}/ m g~cm^{-3}$	1.689	1.745	1.712	1.855	
μ/mm^{-1}	1.622	1.681	2.053	3.531	
<i>F</i> (000)	564	2240	286	246	
θ range/°	4.3-27.0	2.3-26.0	4.4-27.0	5.4-74.9	
<i>T</i> /K	295	295	295	295	
Radiation wavelength	0.71073	0.71073	0.71073	1.54184	
Dance of $h = h = 1$	-21-21, -11-11,	-19–19, -18–12,	-8-8, -9-9,	-9-9, -7-7,	
Range of n, κ, l	-8-8	-11-22	-7-13	-10-11	
Reflections collected	3485	18569	4095	10596	
Independent reflections	3485	4042	2321	876	
Observed reflections	2000	20(1	2000	926	
$(I \ge 2\sigma)$	2600	2901	2089	820	
R _{int}	0.033	0.074	0.020	0.034	
R^a , $wR^b[I \ge 2\sigma(I)]$	0.0264, 0.0780	0.0424, 0.0909	0.0292, 0.0825	0.0303, 0.0907	
Goodness-of-fit, S ^c	0.96	1.02	1.09	1.09	
No. of parameters	80	296	157	61	
$\Delta \rho_{\min}, \Delta \rho_{\max}$ (e Å ⁻³)	-0.23, 0.39	-0.49, 0.48	-0.36, 0.36	-0.49, 0.57	
CCDC no.	2069284	2069285	2069291	2084505	
$ a R = \Sigma F_{o} - F_{o} /\Sigma F_{o} ; b WR = [\Sigma(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma W(F_{o}^{2})^{2}]^{1/2}; c S = \Sigma[W(F_{o}^{2} - F_{c}^{2})^{2}/(N_{obs} - N_{param})]^{1/2} $					

Table S1. Crystallographic data for coordination compounds $[Co(MeGly)_2(H_2O)_2]$ (1), $[{Co(MeGly)_2}_2(\mu-OH)_2] \cdot 2H_2O$ (1d), $[Cu(MeGly)_2(H_2O)_2]$ (2 α) and $[Cu(\mu-MeGly)_2]_n$ (2p).

Compound	3		4		
Formula	$C_8H_{20}CoN_2O_6$	$C_8H_{20}CoN_2O_6$	$C_8H_{20}N_2NiO_6$	$C_8H_{20}N_2NiO_6$	
Formula weight	299.19	299.19	298.95	298.95	
Space group	рĪ	<i>p</i> 1	<i>p</i> 1	<i>p</i> 1	
a/Å	5.4524(2)	5.4717(3)	5.4231(3)	5.44882(8)	
b/Å	7.1733(3)	7.1941(4)	7.1382(4)	7.15455(10)	
c/Å	8.7708(3)	8.8468(4)	8.7608(4)	8.83552(11)	
$\alpha/^{\circ}$	113.139(4)	113.095(4)	113.806(5)	113.6920(12)	
$\beta^{\prime \circ}$	91.989(3)	92.008(4)	91.508(4)	91.6006(11)	
$\gamma^{\prime \circ}$	106.635(3)	106.385(5)	106.771(5)	106.5605(12)	
<i>V</i> /Å ³	298.00(2)	303.11(3)	293.12(3)	298.320(8)	
$D_{ m calc}/ m g~cm^{-3}$	1.667	1.639	1.694	1.664	
μ/mm^{-1}	1.459	11.317	1.675	2.568	
<i>F</i> (000)	157	157	158	158	
θ range/°	4.2-27.0	5.5-72.4	4.3-27.0	5.5-79.6	
<i>T</i> /K	150	295	150	295	
Radiation wavelength	0.71073	1.54184	0.71073	1.54184	
Danga of h k 1	-6-6, -9-9,	-6-6, -8-8,	-6-6, -9-9,	-6-6, -9-8,	
Kange of n, k, l	-11-11	-10-10	-11-11	-11-11	
Reflections collected	4798	3012	4697	7113	
Independent reflections	1298	1186	1272	1268	
Observed reflections $(I \ge 2\sigma)$	1267	1186	1255	1249	
R _{int}	0.030	0.051	0.022	0.023	
R^a , $wR^b[I \ge 2\sigma(I)]$	0.0230, 0.0583	0.0484, 0.1261	0.0175, 0.0430	0.0221, 0.0599	
Goodness-of-fit, S ^c	1.07	1.06	1.09	1.11	
No. of parameters	88	87	88	87	
$\Delta \rho_{\min}, \Delta \rho_{\max}$ (e Å ⁻³)	-0.31, 0.40	-0.77, 0.98	-0.30, 0.37	-0.36, 0.26	
CCDC no.	2069290	2084504	2069289	2084506	

Table S2. Crystallographic data for coordination compounds $[Co(EtGly)_2(H_2O)_2]$ (3) and $[Ni(EtGly)_2(H_2O)_2]$ (4).

Compound	5p	6	8α	8β
Formula	C ₈ H ₁₆ CuN ₂ O ₄	$C_{10}H_{24}CoN_2O_6$	C ₁₀ H ₂₄ CuN ₂ O ₆	C10H24CuN2O6
Formula weight	267.77	327.24	331.85	331.85
Space group	$P 2_1 / c$	$P 2_1 / c$	I 2/a	$P 2_1/c$
<i>a</i> / Å	10.0467(8)	10.4296(13)	9.3725(4)	11.5413(6)
b / Å	6.3568(5)	7.2609(9)	7.3714(4)	11.2713(5)
<i>c</i> / Å	9.0286(9)	10.0987(10)	21.2849(7)	5.8447(2)
lpha / °	90	90	90	90
eta / °	114.398(10)	107.734(13)	90.496(3)	93.037(4)
γ/°	90	90	90	90
$V/Å^3$	525.12(9)	728.42(16)	1470.49(11)	759.24(6)
$D_{\rm calc}$ / g cm ⁻³	1.694	1.492	1.499	1.452
μ / mm ⁻¹	2.076	1.201	1.508	1.460
F(000)	278	346	700	350
θ range / °	4.5-26.5	4.1-26.0	4.3-27.0	4.2-29.0
T/K	295	293	295	295
Radiation wavelength	0.71073	0.71073	0.71073	0.71073
Range of <i>h</i> , <i>k</i> , <i>l</i>	-11-12, -7-7,	-12-12, -8-8,	-10–11, -9–4,	-15-15, -15-15,
	-11-10	-12-12	-16-27	-7–4
Reflections collected	4536	2294	2865	7331
Independent reflections	1074	2294	1597	2003
Observed reflections	968	1435	1275	1714
$(I \ge 2\sigma)$				
R _{int}	0.024	0.051	0.023	0.027
R^a , $wR^b[I \ge 2\sigma(I)]$	0.0277, 0.0703	0.0379, 0.0823	0.0379, 0.0809	0.0298, 0.0835
Goodness-of-fit, S ^c	1.05	0.86	1.07	1.07
No. of parameters	71	98	97	97
$\Delta ho_{ m min}, \Delta ho_{ m max}$	-0.20, 0.47	-0.33, 0.49	-0.31, 0.37	-0.94, 0.77
(e Å ⁻³)				
CCDC no.	2069288	2069287	2069286	2069292

Table S3. Crystallographic data for coordination compounds $[Cu(\mu-EtGly)_2]_n$ (**5p**), $[Co(PrGly)_2(H_2O)_2]$ (6), and $[Cu(PrGly)_2(H_2O)_2]$ (8 α and 8 β).

 ${}^{a}R = \sum \left| \left| F_{o} \right| - \left| F_{o} \right| \right| / \sum \left| F_{o} \right| ; {}^{b}WR = \left[\sum (F_{o}^{2} - F_{c}^{2})^{2} / \sum W(F_{o}^{2})^{2} \right]^{1/2}; {}^{c}S = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2} / (N_{obs} - N_{param}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2} / (N_{obs} - N_{obs}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - F_{c}^{2} / (N_{obs} - N_{obs}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - N_{obs}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - W(F_{o}^{2} - N_{obs}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - W(F_{o}^{2} - N_{obs}) \right]^{1/2} = \sum \left[W(F_{o}^{2} - W(F_{o}^{2} - N_{obs}) \right]^{1/2}$

Compound	Water loss			Starting temperature of
Compound	<i>T</i> / °C	<i>w</i> (theor.) / %	<i>w</i> (exp.) / %	complex decomposition / °C
$[Co(MeGly)_2(H_2O)_2](1)$	110	13.29	13.37	300
$[Ni(MeGly)_2(H_2O)_2]$ (1c)	140	13.31	13.56	320
$[Cu(MeGly)_2(H_2O)_2] (\mathbf{2\alpha})$	90	13.07	13.51	210
$[Co(EtGly)_2(H_2O)_2]$ (3)	110	12.04	12.06	310
$[Ni(EtGly)_2(H_2O)_2]$ (4)	120	12.05	12.16	315
$[Cu(\mu-EtGly)_2]_n(\mathbf{5p})$	/	/	/	220
$[Co(PrGly)_2(H_2O)_2]$ (6)	90	11.01	11.07	310
$[Ni(EtGly)_2(H_2O)_2]$ (7)	110	11.02	10.75	280
$[Cu(PrGly)_2(H_2O)_2] (8\alpha)$	90	10.86	10.85	205
$[Cu(PrGly)_2(H_2O)_2] (\mathbf{8\beta})$	95	10.86	10.69	195

 Table S4. Thermogravimetric analyses data.

Table S5. Selected bond lengths (Å) and angles (°) for monomeric compounds 1, 2 α , 3, 4, 6, 8 α and 8 β . * M = Co in compounds 1, 3 and 6; M = Ni in compounds 4 and 7, M = Cu in compounds 2 α , 8 α and 8 β ; [#] There are two independent halves of the copper complex molecules in 2 α and corresponding labels are M11, O11, N11, O21, O11W and M12, O12, N12, O22, O12W

	1	2α [#]	3	4	6	8α	8β	
M-O1 and	21001(17)	1.9497(15)	2.0770(11)	2.0503(10)	2.060(2)	1.9788(16)	1.0645(12)	
$M-O1^i$	2.1091(17)	1.9637(16)	2.0779(11)	2.0505(10)	2.009(2)		1.9045(12)	
M–N1 and	2 125(2)	2.0151(15)	2.1721(12)	21108(11)	2175(3)	2.0202(17)	2.0101(14)	
$M-N1^i$	2.123(2)	2.0043(15)	2.1731(12)	2.1190(11)	2.175(5)	2.0203(17)	2.0191(14)	
M-O1W and	2.108(2)	2.6008(17)	21407(11)	2 0085(10)	21(2)	2.445(2)	25426(12)	
$M-O1W^i$	2.100(2)	2.6008(17)	2.140/(11)	2.0905(10)	2.102(5)	2.443(2)	2.5420(15)	
O1-M-O1W and	03 65(8)	91.14(6)	8/1 36(1)	84 67(4)	88 12(10)	85 11(8)	92.24(4)	
$O1^i$ – M – $O1W^i$	93.03(8)	91.61(7)	84.30(4)	84.36(4) 84.67(4)		85.44(8)	03.24(4)	
O1-M-N1 and	100 20(7)	95.59(6)	80.64(4)	82 12(4)	00.82(10)	83.60(7)	95.91(5)	
$O1^{i}-M-N1^{i}$	100.29(7)	96.16(6)	80.04(4) 8	02.12(4)	<i>))</i> .02(10)			
O1 M O1i	180	180	180	180	180	180	180	
	100	180	100					
$O1-M-O1W^i$ and	86 35(8)	88.86(6)	95 64(4)	95 33(4)	91 88(10)	94.59(9)	96.76(4)	
O1 ^{<i>i</i>} -M-O1W	00.22(0)	88.39(7)	ye.e (()	<i>yu</i> . <i>uu</i> (1)				
O1–M–N1 i and	79 71(7)	95.59(6)	99 36(4)	97 88(4)	80 18(10)	96 47(7)	84 10(5)	
O1 ^{<i>i</i>} -M-N1	/)./1(/)	96.16(6)	JJ.30(4)	97.00(4)	00.10(10)	JU.47(7)	07.10(3)	
O1W-M-N1 and	90.81(8)	89.96(6)	92 75(4)	92 19(4)	86 22(12)	86.77(8)	93 27(5)	
$O1W^{i}-M-N1^{i}$	90.01(8)	89.07(7)	<i>J</i> 2.75(4))2.1)(1)	00.22(12)		<i>JJJI</i> (<i>J</i>)	
O1W M O1Wi	180	180	180	180	180	180	180	
	100	180	100	100			100	
$N1-M-N1^i$	180	180	180	180	180) 180	180	
1 V 1 1V 1 V 1	100	180	100	~ ~	100			

i = 1/2 - x, 3/2 - y, -z in 1; i = 1 - x, 1 - y, 1 - z in the first independent molecule and i = -x, -y, -z in the second independent molecule in 2α ; i = 2 - x, 2 - y, 1 - z in 3; i = 1 - x, -y, -z in 4; i = -x, -y, -z in 6; i = 3/2 - x, 1/2 - y, 1/2 - z in 7; i = 1/2 - x, 1/2 - y, 1/2 - z in 8 α ; i = -x, -y, -z in 8 β .

Bond lengths (Å)		Bond angles (°)			
Co1–O1H	1.886(2)	O1H–Co1–O2H	82.29(10)	О1Н-Со2-О2Н	81.36(10)
Со1–О2Н	1.898(2)	O1H-Co1-O11	173.56(9)	O1H-Co2-O13	90.51(9)
Co1-011	1.904(3)	O1H-Co1-O12	92.78(10)	O1H-Co2-O14	90.64(10)
Co1012	1.896(2)	O1H-Co1-N11	90.89(11)	O1H-Co2-N13	173.13(12)
Col-N11	1.951(3)	O1H-Co1-N12	93.96(11)	O1H-Co2-N14	92.21(11)
Co1-N12	1.973(2)	O2H-Co1-O11	92.74(10)	O2H-Co2-O13	91.03(10)
Со2–О1Н	1.904(2)	O2H-Co1-O12	173.76(10)	O2H-Co2-O14	91.45(11)
Со2–О2Н	1.916(3)	O2H-Co1-N11	95.80(10)	O2H-Co2-N13	92.81(12)
Co2-O13	1.897(2)	O2H-Co1-N12	90.82(10)	O2H-Co2-N14	172.95(11)
Co2–O14	1.893(2)	O11-Co1-O12	92.44(10)	O13-Co2-O14	177.41(12)
Co2-N13	1.967(3)	O11-Co1-N11	85.52(12)	O13-Co2-N13	85.94(11)
Co2-N14	1.964(3)	O11-Co1-N12	90.20(11)	O13-Co2-N14	91.92(12)
		O12-Co1-N11	88.07(10)	O14-Co2-N13	93.16(11)
		O12-Co1-N12	85.69(9)	O14-Co2-N14	85.71(12)
		N11-Co1-N12	172.27(12)	N13-Co2-N14	93.79(13)

Table S6. Selected bond lengths (Å) and angles (°) for dimeric compound 1d.

Bond lengths (Å)	
Cu–O1 and Cu–O1 ⁱ	1.9724(17)
Cu–O2 and Cu–O2 ⁱ	2.5228(18)
Cu-N1 and Cu-N1 ⁱ	2.004(2)
Bond angles (°)	
01–Cu–O2	91.85(6)
O1–Cu–N1	96.70(7)
O1–Cu–O1 ⁱ	180
O1–Cu–O2 ⁱ	88.15(6)
O1–Cu–N1 ⁱ	83.30(7)
O2–Cu–N1	92.55(7)
O1 ⁱ –Cu–O2	88.15(6)
O2–Cu–O2 ⁱ	180
O1–Cu–N1 ⁱ	87.45(7)
O1 ⁱ –Cu–N1	83.30(7)
O2 ⁱ -Cu-N1	87.45(7)
N1-Cu-N1 ⁱ	180
O1 ⁱ -Cu-N2 ⁱ	91.85(6)
O1 ⁱ –Cu–N1 ⁱ	96.70(7)
O2 ⁱ -Cu-N1 ⁱ	92.55(7)

Table S7. Selected bond lengths (Å) and angles (°) for coordination polymer 5p.

	D–H…A	D-H (Å)	H…A (Å)	D…A (Å)	D-H···A(°)
	N1–H1···O2ª	0.98	2.06	2.970(3)	154
1	O1W-H1WA…O1 ^a	0.84(3)	1.93(3)	2.762(3)	172(3)
	O1W-H1WB····O2 ^b	0.83(3)	1.90(3)	2.721(3)	170(3)
	O1W-H1WA…O21°	0.846(16)	1.914(16)	2.736(2)	163(3)
	$O1W-H1WB\cdots O12^d$	0.85(3)	2.44(3)	3.159(2)	143(3)
	O1W−H1WB…O22 ^d	0.85(3)	2.15(3)	2.955(2)	159(3)
2α	O2W−H2WA…O22 ^e	0.846(17)	2.013(17)	2.854(3)	173(3)
	O2W-H2WB···O21	0.844(17)	1.938(16)	2.781(3)	176.9(17)
	N11-H11O22 ^d	0.98	2.10	3.066(2)	169
	$N12\text{-}H12\cdots O1W^{\rm f}$	0.98	2.19	3.063(2)	147
	$N1-H1\cdots O2^{g}$	1.00	2.20	3.0688(17)	145
3	O1W−H1WA…O2 ^a	0.838(18)	1.900(18)	2.7366(17)	177(2)
	O1W-H1WB…O1 ^b	0.841(15)	1.969(15)	2.8082(15)	176(2)
	$N1-H1\cdots O2^{g}$	1.00	2.21	3.0749(16)	144
4	O1W−H1WA…O2 ^a	0.835(16)	1.905(16)	2.7388(15)	176.9(17)
	O1W-H1WB…O1 ^b	0.841(13)	1.978(13)	2.8172(14)	176.0(14)
	$N1-H1\cdots O2^{j}$	0.98	2.03	3.003(4)	175
6	$O1W\text{-}H1WA\cdots O2^j$	0.84(3)	2.02(3)	2.799(4)	155(3)
	$O1W\text{-}H1WB^{\dots}O1^h$	0.83(3)	1.93(2)	2.749(4)	170(4)
	$N1-H1\cdots O2^k$	0.98	2.12	3.052(3)	158
8α	$O1W\text{-}H1WA\cdots O2^l$	0.74(3)	2.17(3)	2.899(3)	173(3)
	$O1W\text{-}H1WB^{\dots}O1^m$	0.72(3)	2.15(3)	2.862(3)	174(3)
	$N1-H1\cdots O2^{j}$	0.98	2.58	3.223(2)	123
	$N1-H1\cdots O2^n$	0.98	2.19	3.0722(18)	148
8β	$O1W\text{-}H1WA\cdots O1^j$	0.838(13)	2.102(15)	2.9164(18)	164(2)
	O1W-H1WB…O1 ⁿ	0.84(2)	2.197(19)	3.0149(17)	164.9(19)
	$O1W\text{-}H1WB^{\dots}O2^n$	0.84(2)	2.54(2)	3.142(2)	129.5(19)

Table S8. Geometry of intermolecular hydrogen bonds (Å, °) for monomeric compounds 1, 2α , 3, 4, 6, 8α and 8β .

 $\frac{1}{2-x,1/2+y,1/2-z; bx,1-y,1/2+z; c_{1-x,-y,1-z; d_{x,y},1+z; e_{-x,1-y,-z; f_{-}1+x,y,-1+z; g_{-}1+x,y,z; bx,1+y,z; i_{2-x,1-y,1-z; j_{-}x,-y,1-z; f_{-}1+x,y,z; h_{2-x,1-y,1-z; g_{-}x,-y,1-z; f_{-}x,-y,1-z; f_{-}x,$

Table S9. Geometry of intra and intermolecular hydrogen bonds (Å, °) for dimeric compound **1d** and coordination polymer **5p.**

	D–H···A	D-H (Å)	H…A (Å)	D…A (Å)	D–H…A(°)
	O1W-H1WB···O24	0.84(5)	1.98(5)	2.812(6)	170(5)
	O1H−H1H····O23 ^a	0.85(5)	1.89(2)	2.725(3)	167(3)
	$O1W-H1WA\cdots O12^{b}$	0.85(5)	2.36(3)	3.169(5)	161(4)
	O1W−H1WA…O22 ^b	0.845(5)	2.36(2)	3.069(5)	141(4)
	O2H−H2H····O22 ^c	0.84(5)	2.30(3)	3.088(3)	157(3)
	O2W-H2WA…O11	0.86(4)	2.14(5)	2.951(5)	159(3)
	O2W-H2WA···O21	0.86(4)	2.45(6)	3.041(5)	126(4)
1d	O2W-H2WB…O1W	0.85	2.02	2.824(6)	158
	N11-H11…O13	0.98	2.56	3.120(4)	116
	N11-H11O22 ^c	0.98	2.01	2.856(3)	144
	N12-H12… O14	0.98	2.35	2.968(4)	120
	N12-H12…O23 ^a	0.98	2.16	2.897(4)	131
	N13-H13····O2W ^d	0.98	2.29	3.223(5)	159
	N13-H13O21d	0.98	2.48	3.109(4)	121
	N14-H14O21d	0.98	2.24	3.039(4)	138
5p	N1-H1…O1 ^e	0.98	2.09	3.002(2)	153

^a1/2-*x*,-1/2+*y*,*z*; ^b-1/2+*x*,*y*,1/2-*z*; ^c1/2-*x*,1/2+*y*,*z*; ^d*x*,3/2-*y*,1/2+*z*; ^e*x*,1/2-*y*,1/2+*z*;

Compound	Packing index / %
1	72.9
1 d	72.6
1c	72.0
2α	72.2
2β	68.7
2p	74.9
3	75.0
4	74.9
5p	72.8
6	70.7
8α	69.2
8β	67.4

Table S10. Packing index of *N*-alkylglycinate complexes with hydrogen-bonded 2D layers. All

 data were calculated from room temperature data.