Supplementary Information:

Structurally diverse diterpenoid alkaloids from the lateral roots of *Aconitum carmichaelii* Debx. and their anti-tumor activities based on *in vitro* systematic evaluation and network pharmacology analysis

Yang Yu,^{ab} Shifei Wu,^a Jianqing Zhang,^a Jiayuan Li,^a Changliang Yao,^a Wenyong Wu,^{ac} Yingying Wang,^{ac} Hongjian Ji,^{ac} Wenlong Wei,^a Min Gao,^{ab} Yun Li,^{ad} Shuai Yao,^a Yong Huang,^a Qirui Bi,^a Hua Qu^{ac} and De-an Guo^{*ab}

^{a.} Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. E-mail: daguo@simm.ac.cn

^{b.} University of Chinese Academy of Sciences, Beijing 100049, China

^{c.} School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China

^{d.} School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China

Table of Contents

No.	Contents	Page
Table S1	The 1D and 2D NMR data of compound 26 in CDCl ₃	4
Table S2	The 1D and 2D NMR data of compound 37 in $CDCl_3$	5
Table S3	Top 21 target genes with degree values not less than 45	6
		_
Table S4	Enrichment analysis results of 1/3 target genes	7
Figure S1	The ¹ H NMR spectrum of compound 1 in DMSO- a_6 (500 MHz)	10
Figure S2	The 13 C NMR spectrum of compound 1 in DMSO- a_6 (125 MHz)	11
Figure S3	The HSQC spectrum of compound 1 in DMSO- d_6	12
Figure S4	The $^{+}H^{-+}H$ COSY spectrum of compound 1 in DMSO-d ₆	13
Figure S5	The HMBC spectrum of compound 1 in DMSO-d ₆	14
Figure S6	The NOESY spectrum of compound 1 in DMSO-d ₆	15
Figure S7	The IR spectrum of compound 1	16
Figure S8	The HK-ESI-MS data of compound 1	16
Figure S9	The UHPLC-MIS single ion recording (SIR) chromatograms for sugar configuration	17
- : 040	confirmation of compound 1.	40
Figure S10	The ¹ H NMR spectrum of compound 14a in CDCl ₃ (500 MHz)	18
Figure S11	The HSC NMR spectrum of compound 14a in CDCI ₃ (125 MHz)	19
Figure S12	The HSQC spectrum of compound 14a in CDCI ₃ $=$	20
Figure S13	The H-H COSY spectrum of compound 14a in CDCl ₃	21
Figure S14	The HMBC spectrum of compound 14a in CDCl ₃	22
Figure S15	The NOESY spectrum of compound 14a in $CDCI_3$	23
Figure S16	The ¹ H NMR spectrum of compound 14 in $CDCl_3$ (600 MHz)	24
Figure S17	The ¹³ C NMR spectrum of compound 14 in CDCl ₃ (150 MHz)	25
Figure S18	The IR spectrum of compound 14	25
Figure S19	The HR-ESI-MS data of compound 14a	26
Figure S20	The HK-ESI-MS data of compound 14	26
Figure S21	The ¹ H NMR spectrum of compound 17 in CDCl ₃ (600 MHz)	27
Figure S22	The 13 C NMR spectrum of compound 17 in CDCl ₃ (150 MHz)	28
Figure S23	The HSQC spectrum of compound 17 in $CDCI_3$	29
Figure S24	The $^{+}H^{-+}H$ COSY spectrum of compound 17 in CDCl ₃	30
Figure S25	The HMBC spectrum of compound 17 in CDCl ₃	31
Figure S26	The NOESY spectrum of compound 17 in CDCI ₃	32
Figure S27	The IR spectrum of compound 17	33
Figure S28	The HR-ESI-MS data of compound 17	33
Figure S29	The ¹ H NMR spectrum of compound 25 in $CDCl_3$ (500 MHz)	34
Figure S30	The ¹³ C NMR spectrum of compound 25 in CDCl ₃ (125 MHz)	35
Figure S31	The HSQC spectrum of compound 25 in CDCl ₃	36
Figure S32	The ¹ H- ¹ H COSY spectrum of compound 25 in CDCl ₃	37
Figure S33	The HMBC spectrum of compound 25 in CDCl ₃	38
Figure S34	The NOESY spectrum of compound 25 in CDCI ₃	39
Figure S35	The IR spectrum of compound 25	40
Figure S36	The HR-ESI-MS data of compound 25	40
Figure S37	The ⁴ H NMR spectrum of compound 26 in $CDCl_3$ (600 MHz)	41
Figure S38	The ¹³ C NMR spectrum of compound 26 in CDCl ₃ (150 MHz)	42
Figure S39	The HSQC spectrum of compound 26 in CDCl ₃	43
Figure S40	The H-H COSY spectrum of compound 26 in CDCl ₃	44
Figure S41	The HMBC spectrum of compound 26 in CDCl ₃	45
Figure S42	The NOESY spectrum of compound 26 in CDCl ₃	46
Figure S43	The IR spectrum of compound 26	47
Figure S44	The HR-ESI-MS data of compound 26	47

Figure S45	The ¹ H NMR spectrum of compound 37 in CDCl ₃ (600 MHz)	48
Figure S46	The ¹³ C NMR spectrum of compound 37 in CDCl ₃ (150 MHz)	49
Figure S47	The HSQC spectrum of compound 37 in CDCl₃	50
Figure S48	The ¹ H- ¹ H COSY spectrum of compound 37 in CDCl ₃	51
Figure S49	The HMBC spectrum of compound 37 in CDCl ₃	52
Figure S50	The NOESY spectrum of compound 37 in CDCl ₃	53
Figure S51	The IR spectrum of compound 37	54
Figure S52	The HR-ESI-MS data of compound 37	54
Figure S53	The representative IC ₅₀ curves of compounds 1-20	55
Figure S54	The representative IC ₅₀ curves of compounds 21-37	56

Table S1 The 1D and 2D NMR data of compound 26 in CD
--

No.	δ _н (ppm) (<i>J</i> in Hz)	$\delta_{\rm c}$ (ppm)	¹ H- ¹ H COSY	НМВС	NOESY
1	3.35-3.38 (1H, m)	81.5	H-2a; H-2b	C-10	H-10
2a	1.96-2.09 (1H, m)	23.1	H-1; H-2b; H-3	-	H-2b
2b	1.39-1.51 (1H, m)		H-1; H-2a; H-3	-	H-2a; H-5; H-12b
3	1.80-1.93 (2H, m)	28.9	H-2a; H-2b	-	-
4	-	38.4	-	-	-
5	2.31 (1H, d, J=6.6 Hz)	42.1	H-6	C-4; C-7; C-11; C-17; C-18; C-19) H-2b; H-6; H-18a
6	4.10 (1H, d, J=6.6 Hz)	82.2	H-5	C-4; C-7; C-8; C-17; 6-OMe	H-5; H-9; 6-OMe
7	2.82-2.91 (1H, m)	43.5	-	C-8; C-9; C-11; C-17	8-OCH ₂ CH ₃
8	-	82.5	-	-	-
9	2.63 (1H, t, <i>J</i> =6.2 Hz)	44.3	H-10; H-14	C-8; C-10; C-12; C-13	H-6; H-10; H-14
10	2.14-2.22 (1H, m)	40.7	H-9	-	H-1; H-9
11	-	50.9	-	-	-
12a	2.22-2.29 (1H, m)	35.9	H-12b	C-10; C-13; C-16	H-14
12b	1.96-2.09 (1H, m)		H-12a	-	H-2b
13	-	74.7	-	-	-
14	4.83 (1H, d, J=5.1 Hz)	79.1	H-9	C-8; C-13; C-16; 14-OCOPh	H-9; H-12a
15	4.59 (1H, d, <i>J</i> =4.7 Hz)	77.5	H-16	C-8; C-16	8-O <u>CH₂CH₃; 8-OCH₂CH₃; H- 2'. 6'</u>
16	3.48-3.50 (1H, m)	92.4	H-15	-	-
17	3.25-3.30 (1H, m)	65.6	-	-	-
18a	3.55 (1H, d, J=8.0 Hz)	78.5	H-18b	C-3; C-4; C-19	H-18b
18b	3.11 (1H, d, J=8.0 Hz)		H-18a	C-3; C-4; C-5; 18-OMe	H-18a
19a	3.13-3.19 (1H, m)	57.9	-	-	-
19b	3.02-3.09 (1H, m)		-	-	-
NCH ₃	2.97 (3H, s)	43.0	-	-	-
1-OMe	3.35 (3H, s)	56.2	-	C-1	-
6-OMe	3.28 (3H, s)	59.0	-	C-6	H-6
8-OCH ₂ CH ₃	3.38-3.50 (2H. m)	57.6	8-OCH ₂ CH ₃	8-OCH ₂ CH ₃	H-7: H-15: 8-OCH ₂ CH ₃
8-OCH ₂ CH ₃	0.56 (3H. t. J=6.9 Hz)	15.3	8-OCH ₂ CH ₂	8-OCH ₂ CH ₂	H-15: 8-OCH ₂ CH ₃
16-0Me	3.82 (3H, s)	62.0	<u>- 2</u> - J	C-16	-, <u></u> - 3
18-0Me	3.32 (3H, s)	59.3	-	C-18	H-5
14-OCOC ₆ H	; -	166.3	-	-	-
1'	-	130.1	-	-	-
2'	8.05 (1H. d. <i>J</i> =7.7 Hz)	129.8	H-3'. H-5'	14-OCOC₅H₅: C-4': C-2': H-6'	H-15: H-3': H-5'
3′	7.45 (1H, t. <i>J</i> =7.6 Hz)	128.6	H-2'; H-6': H-4'	C-2'; C-6'	H-2'; H-6'
4'	7.56 (1H. t. J=7.4 Hz)	133.2	H-3': H-5'	C-2' C-6'	-
5′	7.45 (1H, t, J=7.6 Hz)	128.6	H-2': H-6': H-4'	C-2': C-6'	H-2': H-6'
6'	8.05 (1H, d, J=7.7 Hz)	129.8	H-3'; H-5'	14-OCOC ₆ H ₅ ; C-4'; C-2'; C-6'	H-15; H-3'; H-5'

NMR spectra were acquired on a Bruker Avance III HD 600 MHz spectrometer.

No.	$\delta_{ extsf{H}}$ (ppm) (J in Hz)	$\delta_{\rm c}$ (ppm)	НМВС	¹ H- ¹ H COSY	NOESY
1	2.96 (1H, dd, J = 10.2, 6.2 Hz) 86.3	1-OMe, C-10, C-11, C-17	H-2a, H-2b	H-10
2a	2.10-2.17 (1H, m)	25.8	-	H-1, H-2b	H-2b
2b	1.85-1.94 (1H, m)		-	H-1, H-2a	H-2a
3a	1.61-1.70 (1H, m)	34.7	-	H-3b	H-3b
3b	1.48-1.57 (1H, m)		-	H-2a, H-3a	H-3a
4	-	39.8	-	-	-
5	2.04-2.06 (1H, m)	48.8	C-7, C-10, C-11, C-17, C-18, C-19	H-6	H-16
6	3.87-3.90 (1H, m)	84.2	6-OMe, C-4, C-8	H-5	H-9
7	2.83 (1H, d, J = 5.7 Hz)	40.8	C-6, C-9, C-17	-	-
8	2.79-2.80 (1H, m)	48.9	C-7, C-9, C-10, C-15, C-17	H-9	H-16, H-9
9	2.50 (1H, q, J = 5.6 Hz)	40.8	C-12, C-13, C-14, C-15	H-14, H-8, H-10	H-6, H-8, H-14
10	2.06-2.11 (1H, m)	45.3	-	H-9, H-12a, H-12b	H-1, H-14
11	-	51.4	-	-	-
12a	2.74-2.78 (1H, m)	33.4	C-11, C-13, C-14, C-16	H-10	H-12b
12b	1.69-1.74 (1H <i>,</i> m)		C-10, C-13	H-10	H-12a
13	-	78.6	-	-	-
14	4.24 (1H, d, J = 5.0 Hz)	76.6	C-8, C-13, C-16	H-9	H-9, H-10
15	-	212.4	-	-	-
16	3.89-3.92 (1H, m)	86.0	16-OMe, C-12, C-13, C-15	-	H-5, H-8
17	2.89(1H, s)	63.6	C-6, C-8, C-10, C-11, C-19, NCH ₃	-	NCH ₃
18a	3.67 (1H, d, J = 8.4 Hz)	80.4	18-OMe, C-3, C-4, C-19	H-18b	H-18b
18b	3.21(1H, d, J = 8.4 Hz)		18-OMe, C-3, C-4, C-5	H-18a	H-18a
19a	2.72 (1H, d, J = 10.8 Hz)	56.6	C-3, C-7, C-18	H-19b	H-19b
19b	2.43(1H, d, J = 10.8 Hz)		C-17	H-19a	H-19a
NCH_3	2.32 (3H, s)	42.4	C-17, C-19	-	H-17
1-OMe	3.23(3H, s)	56.6	C-1	-	-
6-OMe	3.27 (3H, s)	58.0	C-6	-	-
16-OMe	3.74 (3H, s)	62.2	C-16	-	-
18-OMe	3.28 (3H, s)	59.4	C-18	-	-

Table S2 The 1D and 2D NMR data of compound 37 in CDCl₃

NMR spectra were acquired on a Bruker Avance III HD 600 MHz spectrometer.

Target genes	Name	Degree value
AKT1	RAC-alpha serine/threonine-protein kinase	100
VEGFA	Vascular endothelial growth factor A	82
EGFR	Epidermal growth factor receptor	81
STAT3	Signal transducer and activator of transcription 3	73
SRC	Proto-oncogene tyrosine-protein kinase Src	73
ESR1	Estrogen receptor	72
TNF	Tumor necrosis factor	71
MAPK1	Mitogen-activated protein kinase 1	68
JUN	Transcription factor AP-1	67
HSP90AA1	Heat shock protein HSP 90-alpha	66
MTOR	Serine/threonine-protein kinase mTOR	65
CXCL8	Interleukin-8	64
PTGS2	Prostaglandin G/H synthase 2	56
AR	Androgen receptor	48
PIK3CA	Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform	48
MAPK14	Mitogen-activated protein kinase 14	46
NFKB1	Nuclear factor NF-kappa-B p105 subunit	46
IL2	Interleukin-2	46
HIF1A	Hypoxia-inducible factor 1-alpha	46
ATM	Serine-protein kinase ATM	45
KDR	Vascular endothelial growth factor receptor 2	45

Table S3 Top 21 target genes with degree values not less than 45

Table S4 Enrichment analysis results of 173 target genes

SampleGroup	GeneRatio	Qvalue	Count	Description	Target genes
KEGG Pathway	44/576	-34.63	44	Pathways in cancer	AKT1, ALK, BIRC2, XIAP, AR, BCL2L1, EGFR, EPAS1, ESR1, ESR2, FGF2, FLT3, MTOR, GNAS, GSK3B, HDAC1, HDAC2, HIF1A, HSP90AA1, IKBKB, IL2, CXCL8, JUN, SMAD3, MMP2, NFKB1, NOS2, PDGFRA, PIK3CA, PIK3CB, PIM1, PIK3CD, PPARG, PRKCA, PRKCB, MAPK1, PTGS2, RAF1, SLC2A1, STAT3, TERT, TGFBR1, VEGFA, NCOA3, ATM, CYP24A1, DNMT1, MCL1, ABCC1, ABCB1, MAPK7
Reactome Gene Sets	38/461	-30.97	38	Signaling by Interleukins	AKT1, BCL2L1, CA1, CCR1, MAPK14, PTK2B, FGF2, HIF1A, HSP90AA1, IKBKB, IL2, CXCL8, JUN, LCK, LGALS9, SMAD3, MAOA, MCL1, MMP2, MTAP, NFKB1, NOS2, OPRM1, PIK3CA, PIK3CB, PIM1, PIK3CD, MAPK1, MAPK7, PTAFR, PTGS2, RORA, RORC, STAT3, SYK, TNF, VEGFA, CCR2, BIRC2, EIF4A1, FLT3, PIN1, PRKCD, PTPN1
GO Biological Processes	44/740	-30.00	44	regulation of MAPK cascade	ADRA1A, ADRA2B, AKT1, ALK, AR, CASR, CDK1, CCR1, MAPK14, DRD2, EGFR, ELANE, PTK2B, FGF2, FLT3, GPER1, IGFBP3, IGFBP4, KDR, LGALS9, OPRM1, PAK1, PDGFRA, PIK3CB, PIK3CG, PIN1, PLA2G1B, PLA2G2A, PRKCA, PRKCD, MAPK1, PTPN1, RAF1, REN, RGS4, SRC, SYK, TGFBR1, TNF, VEGFA, HDAC3, TLR9, HRH4, GPBAR1, ACE, MTOR, HSP90AA1, IL2, MAPT, PDPK1, PIK3CA, PLK1, STK11, MERTK, IKBKB, NFKB1
WikiPathways	23/114	-27.86	23	Gastrin Signaling Pathway	AKT1, BIRC2, BCL2L1, MAPK14, EGFR, MTOR, GSK3B, IKBKB, IL2, CXCL8, JUN, NFKB1, PAK1, PIK3CA, PPARG, PRKCA, PRKCD, MAPK1, PTGS2, RAF1, SRC, STAT3, VEGFA, FGF2, KDR, PDGFRA, PDPK1, PIK3CB, PIK3CD, PRKCB, MYLK, PIK3CG, PLA2G2A, MAPK7, TNF, CCR1, PTK2B, GNAS, NCOA3, SMAD3, MMP2, PIM1, TGFBR1, CYP2D6, ESR1, ESR2, GPER1, HIF1A, SYK, ACE, NOS2, TLR9, HDAC1, HDAC2, SLC2A1, HDAC3, HSP90AA1, OPRM1, PGR, CXCR1, CCR2, PPARA, PTPN1, NR1H2, NR1H3, XBP1, NOS1, ERG, IGFBP3, FLT3, LCK, MCL1, STK11, EPAS1, PPP5C, XIAP, ATM, ATR, TERT, CDK1, KCNA5, G6PD, CYP19A1, AR, SLC22A1, CYP17A1, PLA2G1B, PARP1, DRD2, MERTK, CYP3A4, CNR1, PLK1, BTK, ALK, PIN1, ALDH1A1, NR5A2, PLG, ABCC1, PTGS1, GHSR, PDE10A, PTAFR, ABCB1, IGFBP1, HSD11B2, ACHE, CHRM3, CHRNA4, MAPT, AURKA
GO Biological Processes	41/701	-27.59	41	response to wounding	ADRA2B, KLF5, CCR1, DRD2, EGFR, FAP, FGF2, MTOR, GNAS, HDAC1, HDAC2, HIF1A, IGFBP1, KDR, LCK, LGALS1, SMAD3, MYLK, OPRM1, PAK1, PDGFRA, PDPK1, PIK3CA, PIK3CB, PIK3CG, PLG, PPARA, PRKCA, PRKCB, PRKCD, MAPK1, RAF1, SRC, AURKA, SYK, TGFBR1, TNF, VEGFA, XBP1, MERTK, CCR2, CHRM3, HSD11B2, OPRK1, SLC6A3, UGCG, NR1H2, NR1H3, AKT1, MAPK14, KIF11, NOS1, NOS2, PTPN1, PDE5A, PDE10A
GO Biological Processes	37/565	-26.54	37	cellular response to	PARP1, AKT1, AR, ATM, CASR, MAPK14, CYP24A1, EGFR, ESR1, ESR2, PTK2B, FLT3, GHSR, GPER1, NR3C1,

				lipid	HDAC1, HDAC2, CXCL8, NFKB1, NOS2, PAK1, PGR, PIM1, PPARA, PPARG, PPP5C, PRKCA, MAPK1, PTAFR, RORA, RORC, SRC, TNF, XBP1, NCOA3, NR1H3, GPBAR1, KLF5, LGALS1, OPRM1, PIK3CG, AGL, HSD11B2, NR5A2, REN
GO Biological Processes	35/538	-24.97	35	regulation of hormone levels	ACHE, ADRA2B, ALDH1A1, BTK, CASR, CNR1, CYP1A2, CYP2C9, CYP2D6, CYP3A4, CYP17A1, CYP19A1, ACE, DPP4, DRD2, EGFR, ESR1, GHSR, GNAS, GPER1, HIF1A, HSD11B2, HSD17B1, KCNA5, MME, NFKB1, NOS2, PDGFRA, PRKCA, RAF1, REN, SLC2A1, SLC22A1, TNF, TARDBP, STS, CYP2C19, CYP24A1, NR5A2, G6PD, RORA, RORC, SOAT1, NR1I2, PPARA, SLC10A2, SLC01B1, SLC01B3, PTGS2
WikiPathways	29/317	-24.81	29	Nuclear Receptors Meta- Pathway	BIRC2, CDK1, CYP1A2, CYP2C19, CYP2C9, CYP3A4, EGFR, ESR1, G6PD, NR3C1, HSP90AA1, IGFBP1, IL2, JUN, ABCB1, PPARA, PTGS2, SLC2A1, SLC5A1, SLC5A2, SLC6A2, SLC6A3, SRC, STAT3, TNF, NCOA3, NR1I2, NR1H3, SLC01B1
GO Biological Processes	36/597	-24.57	36	positive regulation of cellular component movement	AKT1, ATM, CCR1, MAPK14, EGFR, ELANE, PTK2B, FGF2, MTOR, GPER1, HIF1A, CXCL8, KDR, LGALS3, LGALS9, SMAD3, MYLK, PAK1, PDGFRA, PDPK1, PIK3CB, PIK3CD, PIK3CG, PRKCA, MAPK1, PTAFR, PTGS2, SRC, STAT3, STK11, TERT, TGFBR1, TNF, VEGFA, XBP1, CCR2, CASR, KLF5, DNMT1, EPAS1, FAP, GHSR, JUN, MMP2, PIK3CA, PPARG, PRKCB, MAPK7, RORA, SYK, ALK, AR, FLT3, GSK3B, HSP90AA1, IGFBP1, IGFBP3, IGFBP4, LCK, PRKCD, PTPN1, RAF1, MERTK, ESR1, PGR, PLG, TLR9, GPBAR1, DPP4
WikiPathways	18/66	-24.47	18	AGE/RAGE pathway	AKT1, MAPK14, EGFR, HIF1A, IKBKB, JUN, LGALS3, SMAD3, MMP2, NFKB1, NOS2, PRKCA, PRKCB, PRKCD, MAPK1, RAF1, SRC, STAT3, PARP1, ATM, ATR, CDK1, DYRK1A, MTOR, GSK3B, HSP90AA1, NOS1, PAK1, PDPK1, PIK3CA, PLK1, MAPK7, AURKA, SYK, TGFBR1, TNF, VEGFA, PTK2B, NCOA3, CNR1, MAPT, BTK, LCK, PIK3CG, FGF2, FLT3, KDR, PDGFRA, PPP5C, GNAS, IL2, CXCL8, OPRM1, CYP19A1, PIN1, PPARG, BCI 211, PIM1, AR, MYLK, HDAC1, TERT, PTGS2
GO Biological Processes	36/623	-23.93	36	regulation of secretion	ACHE, ADRA1A, ADRA2B, CASR, CHRNA4, CNR1, CYP19A1, DPP4, DRD2, EGFR, GHSR, GNAS, GPER1, GSK3B, HIF1A, KCNA5, LGALS9, NOS2, OPRK1, OPRM1, PDPK1, PLA2G1B, PRKCA, PRKCB, PTAFR, REN, SLC2A1, SYK, TNF, NR1H2, XBP1, PTGES, NR1H3, TARDBP, BACE1, CCR2, MAPK14, SMAD3, MAPT, PAK1, PRKCD, MAPK1, PTPN1, SRC, HDAC3, BTK, RAF1. SLC22A1
GO Biological Processes	30/385	-23.62	30	response to oxygen levels	AKT1, BIRC2, ATM, CA9, CASR, CHRNA4, DPP4, DRD2, EPAS1, PTK2B, MTOR, HDAC2, HIF1A, HSD11B2, KCNA5, SMAD3, MMP2, NOS1, NOS2, PAK1, PIN1, PPARA, PPARG, PTGS2, RAF1, RORA, SLC2A1, SRC, TERT, VEGFA, IGFBP1, JUN, MCL1, ABCB1, BCL2L1, IGFBP3
GO Biological Processes	35/597	-23.46	35	regulation of system process	PARP1, ADRA1A, ADRA2B, AKT1, CASR, CHRM3, ACE, DRD2, EGFR, EPAS1, PTK2B, MTOR, G6PD, GHSR, GLRA1, GNAS, GPER1, GPR35, IL2, KCNA5, SMAD3, NOS1, OPRK1, OPRM1, PAK1, PIK3CG, PIN1, PPARA,

GO Biological Processes	36/665	-22.97	36	cellular response to hormone stimulus	PRKCA, PTAFR, REN, RGS4, SRC, NR1H2, NR1H3, AR, CNR1, HSD11B2, MME, NOS2, PIK3CA, PPARG, PTGS1, PTGS2, VEGFA, HDAC2, MYLK, GSK3B, MAPT, PRKCD, BTK, MAPK1, MAPK7, HRH4 ACHE, PARP1, AKT1, AR, CHRM3, EGFR, ESR1, ESR2, FLT3, NR5A2, GHSR, GPER1, NR3C1, GSK3B, HDAC1, IGFBP1, NFKB1, OPRM1, PAK1, PDPK1, PGR, PIK3CA, PLA2G1B, PPARA, PPARG, PPP5C, PRKCB, PRKCD, PTPN1, REN, SRC, STAT3, UGCG, XBP1, NCOA3, HRH4, KLF5, CASR, MTOR, GLRA1, HDAC2, MMP2, ABCC1, PDGFRA, PIK3CG, MAPK1, PTAFR, TNF, BACE1, MAPK14, HSD11B2, SLC2A1
GO Biological Processes	29/444	-20.68	29	second- messenger- mediated signaling	ADRA1A, ADRA2B, BTK, CHRM3, CCR1, CNR1, DRD2, EGFR, PTK2B, MTOR, NR5A2, GNAS, GPER1, GSK3B, CXCL8, CXCR1, KDR, MAPT, NOS1, NOS2, OPRM1, PDPK1, PRKCA, MAPK7, SYK, TNF, VEGFA, PDE10A, CCR2
GO Biological Processes	26/331	-20.54	26	positive regulation of response to external stimulus	BTK, CASR, CCR1, CNR1, EGFR, PTK2B, FGF2, GHSR, IL2, CXCL8, KDR, LGALS9, SMAD3, ABCC1, OPRM1, PIK3CG, PLA2G2A, PLG, PRKCA, MAPK1, PTGS2, STAT3, TNF, VEGFA, TLR9, CCR2, CDK1, LGALS3, NOS1, NOS2
GO Biological Processes	35/736	-20.49	35	response to growth factor	PARP1, AKT1, XIAP, CASR, MAPK14, EGFR, FGF2, FLT3, NR3C1, HDAC2, HIF1A, CXCL8, JUN, KDR, SMAD3, MAPT, NOS1, OPRM1, PDGFRA, PDPK1, PIK3CA, PIK3CB, PIK3CD, PIN1, PPARA, PPARG, PRKCB, MAPK1, MAPK7, PTPN1, RAF1, SRC, STK11, TGFBR1, VEGFA
GO Biological Processes	23/236	-20.31	23	protein autophosp horylation	AKT1, ALK, ATM, ATR, BTK, ACE, DYRK1A, EGFR, PTK2B, FLT3, MTOR, GSK3B, KDR, LCK, PAK1, PDGFRA, PDPK1, PIM1, SRC, AURKA, STK11, SYK, VEGFA, PARP1, BCL2L1, HIF1A, HSP90AA1, LGALS9, MAPT, MCL1, MGMT, OPRM1, PRKCD, MAPK1, MAPK7, PTPN1, TERT, TNF, NR1H2, USP1, XBP1, HDAC3, NR1H3, TLR9, ESR1, JUN, LGALS3, BIRC2, RAF1, SMAD3, PIK3CA, PRKCA, TGFBR1, DNMT1, GPER1, KMT2A, NOS1, PLK1
GO Biological Processes	24/277	-19.97	24	intracellula r receptor signaling pathway	PARP1, BIRC2, XIAP, AR, CYP24A1, ESR1, ESR2, NR5A2, GPER1, NR3C1, HDAC1, PAK1, PGR, PIM1, PPARA, PPARG, PPP5C, RORA, RORC, SRC, STAT3, NR1H2, NR1I2, NR1H3, DNMT1, HDAC2, AURKA, CDK1, JUN, CYP3A4
GO Biological Processes	30/526	-19.72	30	leukocyte differentiat ion	PARP1, ATM, BTK, CCR1, MAPK14, PTK2B, FLT3, MTOR, GNAS, IL2, JUN, LCK, LGALS1, LGALS3, LGALS9, PIK3CD, PPARG, PRKCA, RORA, RORC, SRC, STAT3, STK11, SYK, TNF, VEGFA, XBP1, MERTK, TLR9, CCR2, AKT1, DPP4, ELANE, GSK3B, CXCL8, KDR, SMAD3, PAK1, PDPK1, PIK3CA, PIK3CB, PIK3CG, PLG, PPARA, PRKCD, MAPK7, PTAFR, CHRNA4, PRKCB, CNR1, GPER1, PDGFRA, PLA2G2A, NR1H3, DRD2, NR1H2, ACE, MAPK1

Figure S1 The ¹H NMR spectrum of compound 1 in DMSO-d₆ (500 MHz)

Figure S2 The ¹³C NMR spectrum of compound 1 in DMSO-d₆ (125 MHz)

Figure S3 The HSQC spectrum of compound 1 in DMSO-d₆

Figure S4 The ${}^{1}H{}^{-1}H$ COSY spectrum of compound 1 in DMSO-d₆

Figure S5 The HMBC spectrum of compound 1 in DMSO-d₆

Figure S6 The NOESY spectrum of compound 1 in DMSO-d₆

Figure S9 The UHPLC-MS single ion recording (SIR) chromatograms of m/z 447.2 for sugar configuration confirmation of compound 1

Figure S10 The ¹H NMR spectrum of compound 14a in CDCl₃ (500 MHz)

Figure S11 The ¹³C NMR spectrum of compound 14a in CDCl₃ (125 MHz)

Figure S12 The HSQC spectrum of compound 14a in CDCl₃

Figure S13 The ¹H-¹H COSY spectrum of compound 14a in CDCl₃

Figure S14 The HMBC spectrum of compound 14a in CDCl₃

Figure S15 The NOESY spectrum of compound 14a in CDCl₃

Figure S16 The ¹H NMR spectrum of compound 14 in CDCl₃ (600 MHz)

Figure S17 The ¹³C NMR spectrum of compound 14 in CDCl₃ (150 MHz)

Figure S18 The IR spectrum of compound 14

Figure S20 The HR-ESI-MS data of compound 14

Figure S21 The ¹H NMR spectrum of compound 17 in CDCl₃ (600 MHz)

Figure S22 The ¹³C NMR spectrum of compound **17** in CDCl₃ (150 MHz)

Figure S23 The HSQC spectrum of compound 17 in CDCl₃

Figure S24 The ¹H-¹H COSY spectrum of compound **17** in CDCl₃

Figure S25 The HMBC spectrum of compound 17 in CDCl₃

Figure S26 The NOESY spectrum of compound 17 in CDCl₃

Figure S28 The HR-ESI-MS data of compound 17

Figure S29 The ¹H NMR spectrum of compound 25 in CDCl₃ (500 MHz)

Figure S30 The ¹³C NMR spectrum of compound 25 in CDCl₃ (125 MHz)

Figure S31 The HSQC spectrum of compound 25 in $CDCI_3$

Figure S32 The ¹H-¹H COSY spectrum of compound 25 in CDCl₃

Figure S33 The HMBC spectrum of compound 25 in CDCl₃

Figure S34 The NOESY spectrum of compound 25 in CDCl₃

Figure S37 The ¹H NMR spectrum of compound 26 in CDCl₃ (600 MHz)

Figure S38 The ¹³C NMR spectrum of compound 26 in CDCl₃ (150 MHz)

Figure S39 The HSQC spectrum of compound 26 in CDCl₃

Figure S40 The ¹H-¹H COSY spectrum of compound 26 in CDCl₃

Figure S41 The HMBC spectrum of compound 26 in CDCl₃

Figure S42 The NOESY spectrum of compound 26 in CDCl₃

Figure S45 The ¹H NMR spectrum of compound 37 in CDCl₃ (600 MHz)

Figure S46 The ¹³C NMR spectrum of compound 37 in CDCl₃ (150 MHz)

Figure S47 The HSQC spectrum of compound 37 in CDCl₃

Figure S48 The ¹H-¹H COSY spectrum of compound **37** in CDCl₃

Figure S49 The HMBC spectrum of compound 37 in CDCl₃

Figure S50 The NOESY spectrum of compound 37 in CDCl₃

Figure S53 The representative IC₅₀ curves of compounds 1-20

Figure S54 The representative IC₅₀ curves of compounds 21-37