Methionine epimerization in cyclic peptides

Pramodkumar D. Jadhav^{a,*}, Jianheng Shen^a, Peta-Gaye Burnett^a, Jian Yang^b, Ramaswami

Sammynaiken^c, Martin J.T. Reaney^{a,d,e,*}

^a Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada

^b Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada

^cSaskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon,

SK S7N 5C9, Canada

^dPrairie Tide Diversified Inc., 102 Melville Street, Saskatoon, Saskatchewan S7J 0R1, Canada

^eGuangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, 601, Huangpu Avenue West, Guangzhou, Guangdong 510632, China

*Corresponding authors: Tel.: +1 306 966 5027; Fax: +1 306 966 5015.

E-mail address: pramodkumar.jadhav@usask.ca; martin.reaney@usask.ca

600

800

1000

m/z

489,2464

342.1779

400

0.5-

0.0-

200

Fig. S1: UV chromatogram of KOH treated LO **2**, MS/MS chromatogram of peak 1 (6.7 min) and peak 2 (6.9 min).

Fig. S2: UV chromatogram of KOH treated LO **5**, MS/MS chromatogram of peak 1 (7.2 min), peak 2 (7.5 min) and peak 3 (7.7 min).

Fig. S3 % cytotoxicity of D-MetO-LOB2 (9) and L-MetO-LOB2 (3) against the MDA-MB-231 cells.

Fig. S4. % cytotoxicity of D-MetO₂-LOB2 (10) and L-MetO₂-LOB2 (4) against the MDA-MB-231 cells.

Fig. S9. % cytotoxicity of D-MetO₂-LOB2 (10) and L-MetO₂-LOB2 (4) against the Sk-Br-3 cells.

Fig. S13. HPLC chromatogram of (A) LOs 3 and 6; (B) KOH treated LOs 3 and 6; (C) KOH treated LOs 3 and 6 (preparative).

Fig. S14. HPLC chromatogram of (A) LOs 1, 4 and 7; (B) KOH treated LOs 1, 4 and 7; (C) KOH treated LOs 1, 4 and 7 (preparative).

Fig. S15. HPLC chromatogram of (A) LO 5; (B) KOH treated LO 5.

Fig. S16. HPLC chromatogram of LO 2, LO 8, LO 2 + LO 8 and KOH treated LO 2.

Fig. S17. HPLC chromatogram of LO 3, LO 9, LO 3 + LO 9 and KOH treated LO 3.

Fig. S18. HPLC chromatogram of LO 4, LO 10, LO 4 + LO 10 and KOH treated LO 4.

Fig. S19. HPLC chromatogram of LO 6, LO 12, LO 6 + LO 12 and KOH treated LO 6.

Fig. S20. HPLC chromatogram of LO 7 and KOH treated LO 7.

Fig. S21. (A) NMR spectra of LOs **3** and **6** mixture and KOH treated at different time intervals. (B) NMR difference spectra of KOH treated LOs **3** and **6**.

 Table S1 Amino acid sequences and masses of LOs 1-13

LO ^a (code)	amino acid sequence (NαC-)	chemical formula	MW
			(Da)
[1–9-NαC]-linusorb B3 (1)	Ile-Leu-Val-Pro-Pro-Phe-Phe- Leu-Ile	C ₅₇ H ₈₅ N ₉ O ₉	1040.34
[1–9-NαC]-linusorb B2 (2)	Met-Leu-Ile-Pro-Pro-Phe- Phe-Val-Ile	C ₅₆ H ₈₃ N ₉ O ₉ S	1058.38
$[1-9-N\alpha C], [1-(R_s, S_s)-MetO]-linusorb B2 (3)$	[(<i>R</i> _s , <i>S</i> _s)-MetO]-Leu-Ile-Pro- Pro-Phe-Phe-Val-Ile	$C_{56}H_{83}N_9O_{10}S$	1074.38
[1-9-NαC],[1-MetO ₂]-linusorb B2 (4)	MetO ₂ -Leu-Ile-Pro-Pro-Phe- Phe-Val-Ile	$C_{56}H_{83}N_9O_{11}S$	1090.38
[1-8-NαC]-linusorb B1 (5)	Met-Leu-Val-Phe-Pro-Leu- Phe-Ile	C ₅₁ H ₇₆ N ₈ O ₈ S	961.26
$[1-8-N\alpha C], [1-(R_s, S_s)-MetO]-linusorb B1 (6)$	[(<i>R</i> _s , <i>S</i> _s)-MetO]-Leu-Val-Phe- Pro-Leu-Phe-Ile	$C_{51}H_{76}N_8O_9S$	977.26
[1-8-NαC],[1-MetO ₂]-linusorb B1 (7)	MetO ₂ -Leu-Val-Phe-Pro-Leu-Phe-Ile	$C_{51}H_{76}N_8O_{10}S$	993.26
[1–9-NαC], DMet-linusorb B2 (8)	DMet-Leu-Ile-Pro-Pro-Phe- Phe-Val-Ile	C ₅₆ H ₈₃ N ₉ O ₉ S	1058.38
$[1-9-N\alpha C], [1-(R_s, S_s)-DMetO]-linusorb B2$ (9)	[(<i>R</i> _s , <i>S</i> _s)-DMetO]-Leu-Ile-Pro- Pro-Phe-Phe-Val-Ile	C ₅₆ H ₈₃ N ₉ O ₁₀ S	1074.38
[1–9-NaC],[1-DMetO ₂]-linusorb B2 (10)	DMetO ₂ -Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile	$C_{56}H_{83}N_9O_{11}S$	1090.38
[1-8-NaC], DMet-linusorb B1(11)	DMet-Leu-Val-Phe-Pro-Leu- Phe-Ile	C ₅₁ H ₇₆ N ₈ O ₈ S	961.26
$[1-8-N\alpha C], [1-(R_s, S_s)-DMetO]-linusorb B1$ (12)	[(<i>R</i> _s , <i>S</i> _s)-DMetO]-Leu-Val- Phe-Pro-Leu-Phe-Ile	$C_{51}H_{76}N_8O_9S$	977.26
[1-8-N\alphaC],[1-DMetO ₂]-linusorb B1 (13)	DMetO ₂ -Leu-Val-Phe-Pro- Leu-Phe-Ile	$C_{51}H_{76}N_8O_{10}S$	993.26