Supporting information for

The role of β-hairpin conformation in ester hydrolysis peptide catalysts based on a TripZip scaffold

Xinyu Liu,^a Riley Waters,^b Hannah E. Gilbert,^b Gage Barroso,^b Kelsey M. Boyle,^b and Leah S. Witus^{*b}

^a Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ^b Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105, USA.

*Correspondence should be addressed to L.S.W. (lwitus@macalester.edu)

Table of Contents

DATA ON 10MER PEPTIDE SERIES WITH TRUNCATED N- AND C-TERMINI	2
NMR EXPERIMENTS	5
a) 1D ¹ H, 2D TOCSY, and 2D NOESY NMR Data	5
b) NMR proton assignments and NOE/ROE analysis	15
CIRCULAR DICHROISM	
PEPTIDE CHARACTERIZATION	
COMPUTATIONAL MODELS	
SUPPLEMENTAL REFERENCES	

Data on 10mer peptide series with truncated N- and C-termini

Sequences based on the TrpZip sequence with a truncation of the N- and C-terminal residues were also studied. In these 10mer sequences (listed in Table S1) the cross-strand positioning of the catalytic residues was in positions 2 and 9. Chemical shift deviation (CSD) analysis of sequences **Trunc-TrpZip**, **Trunc-2H9H-pG**, and **Trunc-2H9H-PG**, showed some positive deviations indicative of β -hairpin character in the D-Pro-Gly-containing **Trunc-2H9H-pG**, but not in the L-Pro-Gly-containing **Trunc-2H9H-PG** or **Trunc-TrpZip** (Figure S1). The catalytic efficiency of these sequences showed similar trends to the full-length sequences discussed in the main text (Figures S2-4).

 Table S1.
 10mer peptide sequences studied.
 The N-termini were free amines and the C-termini were amidated.
 Lowercase one letter code indicates use of D amino acid.

peptide	sequence
Trunc-TrpZip	NH ₂ -WTWEGNKWTW-NH ₂
Trunc-2H9H-pG	NH ₂ -W H WEpGKW H W-NH ₂
Trunc-2H9H-PG	NH ₂ -W H WEPGKW H W-NH ₂
Trunc-2H9K-pG	NH ₂ -W H WEpGKW K W-NH ₂
Trunc-2H9K-PG	NH ₂ -W H WEPGKW K W-NH ₂

Figure S1. CSD analysis of the 10mer peptide sequences.

Figure S2. pNPA hydrolysis plot wherein the shaded areas represent the area between error bars from 9 replicates in three separate experiments.

Figure S3. A comparison of initial velocity of each sequence of the 10mer series of peptides.

Figure S4. A comparison of the initial velocity for each catalyst on a per histidine equivalent basis.

NMR experiments

Peptide samples were analyzed with a Bruker Avance 600MHz spectrometer equipped with a 5mm,z-axis gradient, triple resonance, cryogenic probe. Peptides were dissolved in 600 μ L of 9:1 H₂O:D₂O at a concentration of 1 mM with trace amounts of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) as internal reference. All spectra were obtained at 24°C. The following standard Avance pulse programs were employed: 1D with solvent suppression using excitation sculpting (zgesgp), 2D TOCSY with excitation sculpting (mlevesgpph), 2D NOESY with excitation sculpting (noesyesgpph), and 2D ROESY with excitation sculpting (roesyesgpph). TOCSY experiments used a mixing time of 100 ms. NOESY experiments used a mixing time of 250 ms. ROESY experiments used a mixing time of 300 ms. Data were processed using TopSpin 3.6.1. Data were analyzed using MestRe Nova 12.0.1 and NMRFAM Sparky^{S1}, with employment of sequential assignment procedures to assign chemical shifts of protons.

a) 1D ¹H, 2D TOCSY, and 2D NOESY NMR Data

Figure S5: Solvent-suppressed ¹H-NMR of **3H10H-pG** in 9:1 H₂O:D₂O at 1 mM.

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Figure S8: Solvent-suppressed ¹H-NMR of **TrpZip** in 9:1 H₂O:D₂O at 1 mM.

Figure S12: Solvent-suppressed 2D TOCSY NMR of **3H10H-PG** in 9:1 H₂O:D₂O at 1 mM.

 $\begin{array}{c} \hline 11.5 \ 11.0 \ 10.5 \ 10.0 \ 9.5 \ 9.0 \ 8.5 \ 8.0 \ 7.5 \ 7.0 \ 6.5 \ 6.0 \ 5.5 \ 5.0 \ 4.5 \ 4.0 \ 3.5 \ 3.0 \ 2.5 \ 2.0 \ 1.5 \ 1.0 \ 0.5 \ 0.0 \ -0.5 \ -1.0 \ -1.5 \ -2.0 \ Figure S14: Solvent-suppressed \ ^1H-NMR \ of Trunc-2H9H-pG \ in \ 9:1 \ H_2O:D_2O \ at \ 1 \ mM. \end{array}$

b) NMR proton assignments and NOE/ROE analysis

	HN	Ηα	Нβ	Нγ	Ηδ	Ηε	Other
Ser1			3.91, 3.73				
Trp2	9.10	5.31	3.39, 3.10		7.42	10.36	Ηε3: 7.27; Ηζ3: 7.45; Ηη2: 7.14; Ηζ2: 6.60
His3	9.75	5.23	3.33, 3.20		7.23	8.65	
Trp4	9.19	4.62	2.89, 1.87		6.72	9.98	Ηζ2: 7.29
Glu5	8.57	4.67	1.96, 1.76	2.21,2.1 5			
DPro6	NA	4.174	2.30, 1.99	1.83	3.61, 3.53		
Gly7	7.29	3.84, 3.18					
Lys8	6.89	4.32	1.68	1.26	1.49	3.00	
Trp9	8.63	5.17	3.36, 3.05		7.38	10.07	Ηζ2: 6.59
His10	9.72	5.31	3.37, 3.18		7.42	8.67	
Trp11	9.34	4.44	2.82, 2.18		6.89	10.14	Ηζ2: 7.45
Lys12	7.79	4.24	1.54	1.19	1.42, 1.37	2.78	

 Table S2. Proton resonances (ppm) for 3H10H-pG.

Table S3. NOEs observed for 3H10H-pG (signals for sequence assignment are excluded).

NOE Assignments	CS1(ppm)	CS2(ppm)
Trp11HA-His3HD2	4.44	7.23
Trp11HA-His3HN	4.44	9.75
Lys12HB-His3HD2	1.54	7.23
Lys12HD3-His3HD2	1.37	7.23
Lys12HG-His3HD2	1.19	7.23
His3HB3-Lys12HG	3.20	1.19
His3HB2-Lys12HG	3.33	1.19
Trp4HA-His10HN	4.62	9.72
Glu5HB3-His10HD2	1.76	7.42

Figure S23: Selected NOEs for **3H10H-pG**. Red arrows indicate a long-range NOEs involving side chains. Blue arrows indicate long-range backbone NOEs.

	HN	Ηα	Ηβ	Нγ	Ηδ	Ηε	Other
Ser1			3.84, 3.62				
Trp2	8.89	5.18	3.12, 3.04		7.38	10.27	Ηε3: 7.45; Ηη3: 6.73; Ηζ2: 6.65
Thr3	9.41	4.84	4.02	1.14			
Trp4	8.84	4.64	3.01, 2.27		7.04	9.84	Ηζ2: 7.23
Glu5	8.35	4.42	1.98, 1.79	2.26,2.2 2			
Gly6	8.10	3.84, 3.53					
Asn7	8.10	4.10	2.81				
Lys8	6.73	4.24	1.76, 1.70	1.28,1.5 5	1.64	2.99	ΝΗ2ζ: 7.52
Trp9	8.57	5.13	3.28, 2.98		7.27	9.93	Ηζ2: 6.56
Thr10	9.53	4.86	4.05	1.19			
Trp11	8.89	4.32	2.83, 2.27		6.87	10.04	Ηζ2: 7.43
Lys12	7.66	4.17	1.53	1.23, 1.16	1.40	2.86	ΝΗ2ζ: 7.52

Table S4. Proton resonances (ppm) for TrpZip.

	HN	Ηα	Нβ	Нγ	Ηδ	Ηε	Other
Ser1			4.13				
Trp2	8.71	4.62	3.18, 3.12		7.11	9.92	Ηζ2: 7.43
His3	7.97	4.45	3.04, 2.92		7.08	8.49	
Trp4	8.10	4.25	3.08		7.07	9.97	Ηζ2: 7.45
Glu5	7.71	4.39	1.89, 1.63	2.18			
Pro6		4.08	2.23	1.90	3.50, 3.35		
Gly7	8.33	3.88, 3.84					
Lys8	7.98	4.23	1.65, 1.60	1.21, 1.15	1.52	2.83	NH2ζ: 7.46
Trp9	8.06	4.55	3.09		7.21	10.07	Ηε3: 7.53; Ηζ2: 7.42
His10	8.04	4.46	3.02, 2.89		6.97	8.42	
Trp11	7.97	4.50	3.17, 3.07		7.22	10.13	Ηζ2: 7.45
Lys12	8.03	4.10	1.68	1.21	1.56	2.87	ΝΗ2ζ: 7.46

 Table S5. Proton resonances (ppm) for 3H10H-PG.

Table S6. Proton resonances (ppm) for Trunc-2H9H-pG.

	HN	Ηα	Ηβ	Нγ	Ηδ	Ηε	Other
Trp1		4.37	2.87, 2.75		7.21	10.12	Ηζ2: 7.33
His2	9.01	4.78	3.25, 3.19		7.17	8.04	
Trp3	8.94	4.90	3.25, 2.76		7.19	10.18	Ηζ2: 7.52
Glu4	9.02	4.90	1.99, 1.75	2.23			
D-Pro5		4.34	2.35, 2.10	2.05, 1.95	3.77, 3.70		
Gly6	8.16	3.98, 3.68					
Lys7	7.67	4.65	1.85, 1.78	1.39	1.73	3.02	ΝΗ2ζ: 7.58
Trp8	8.66	4.49	2.91, 2.60		6.75	9.3	Ηζ2: 7.13
His9	8.62	4.66	2.73		7.18	8.48	
Trp10	7.89	3.59	2.92, 2.84		7.06	10.05	Ηζ2: 7.46

ROE Assignments	CS1(ppm)	CS2(ppm)
Trp1HA-Trp10HA	4.37	3.59
His9HN-His2HN	8.62	9.01
His9HE-Glu4HG	8.48	2.23
His9HE-Glu4HB	8.48	1.75

 Table S7. ROEs observed for Trunc-2H9H-pG (signals for sequence assignment are excluded).

Figure S24: Selected ROEs for Trunc-2H9H-pG. Red arrows indicate long-range ROEs involving side chains. Blue arrows indicate long-range backbone ROEs.

	HN	Ηα	Нβ	Нγ	Ηδ	Ηε	Other
Trp1		4.36	3.13		7.13	10.04	Ηζ2: 7.43
Thr2	8.68	4.45	3.98	1.1			
Trp3	8.53	4.52	3.08, 2.81		7.18	10.01	Ηζ2: 7.29
Glu4	8.26	4.26	1.93, 1.70	2.18			
Gly5	7.67	3.73, 3.52					
Asn6	8.12	4.4	2.68				
Lys7	7.53	4.16	1.63, 1.57	1.13	1.52	2.84	ΝΗ2ζ: 7.46
Trp8	8.22	4.72	2.98, 2.90		7.02	9.74	Ηζ2: 7.28
Thr9	8.28	4.38	4.01	1.06			
Trp10	8.02	4.27	3.15,3.05		7.08	9.95	Ηζ2:7.34

Table S8. Proton resonances (ppm) for Trunc-TripZip.

Table S9. Proton resonances (ppm) for Trunc-2H9H-PG.

	HN	Ηα	Ηβ	Нγ	Ηδ	Ηε	Other
Trp1		4.23	3.27, 3.21		7.14	10.04	Ηζ2: 7.45
His2	8.25	4.52	3.09, 3.01		7.13	8.49	
Trp3	8.27	4.25	3.09		7.23	10.05	Ηζ2: 7.40
Glu4	7.67	4.39	1.90, 1.58	2.22			
Pro5		4.10	2.25	1.95, 1.89	3.50, 3.36		
Gly6	8.32	3.92, 3.82					
Lys7	7.97	4.27	1.68	1.24, 1.17	1.60, 1.55	2.85	NH2ζ: 7.48
Trp8	8.10	4.51	3.04		6.94	9.77	Ηζ2: 7.37
His9	7.70	4.39	2.90, 2.81		6.92	8.25	
Trp10	7.68	4.45	3.28, 3.11		7.16	10.02	Ηζ2: 7.40

Circular dichroism

Circular dichroism spectra were acquired on a Jasco Model J-1500 CD spectrometer at 25.0 °C. Wavelength scans were collected from 260 to 180 nm with a 1 nm bandwidth, 0.1 nm wavelength step, and an averaging time of 4 sec per step. The concentration of each peptide was 50 μ M measured by UV-Vis absorbance at 280 nm.

Figure S25. Circular dichroism of peptides **3H10H-pG** and **3H10H-PG**. The peptide **3H10H-pG** shows a spectral signature characteristic of beta-sheet secondary structure and the positive signal at 227 nm indicates the interaction between Trp aromatic chromophores,^{S2} providing further evidence of hairpin formation.

Peptide Characterization

Figure S26. LCMS characterization of peptide **TrpZip**, sequence SWTWEGNKWTWK, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+3H]^{3+}$ calculated m/z = 537.25, found m/z = 537.03.

Figure S27. LCMS characterization of peptide **3H10H-pG**, sequence SWHWEpGKWHWK, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+3H]^{3+}$ calculated m/z = 555.59, found m/z = 555.40.

Figure S28. LCMS characterization of peptide **3H10H-PG**, sequence SWHWEPGKWHWK, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+3H]^{3+}$ calculated m/z = 555.59, found m/z = 555.84.

Figure S29. LCMS characterization of peptide **3H10K-pG**, sequence SWHWEpGKWKWK, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+4H]^{4+}$ calculated m/z = 414.71, found m/z = 414.52.

m/z Figure S30. LCMS characterization of peptide 3H10K-PG, sequence SWHWEPGKWKWK, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+3H]^{3+}$ calculated m/z = 552.61, found m/z = 552.17.

Figure S31. LCMS characterization of peptide **3H10A-pG**, sequence SWHWEpGKWAWK, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+3H]^{3+}$ calculated m/z = 533.58, found m/z = 533.23.

Figure S32. LCMS characterization of peptide **3H10A-PG**, sequence SWHWEPGKWAWK, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+4H]^{4+}$ calculated m/z = 400.44, found m/z = 400.31.

Figure S33. LCMS characterization of peptide **Trunc-TrpZip**, sequence WTWEGNKWTW, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+3H]^{3+}$ calculated m/z = 465.54, found m/z = 465.54.

Figure S34. LCMS characterization of peptide **Trunc-2H9H-pG**, sequence WHWEpGKWHW, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+3H]^{3+}$ calculated m/z = 483.89, found m/z = 483.90.

Figure S35. LCMS characterization of peptide **Trunc-2H9H-PG**, sequence WHWEPGKWHW, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. [M+3H]³⁺ calculated m/z = 483.89, found m/z = 483.90.

Figure S36. LCMS characterization of peptide **Trunc-2H9K-pG**, sequence WHWEpGKWKW, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+2H]^{2+}$ calculated m/z = 720.85, found m/z = 720.37.

Figure S37. LCMS characterization of peptide **Trunc-2H9K-PG**, sequence WHWEPGKWKW, showing a) absorbance at 280 nm, b) absorbance at 220 nm, c) the total ion chromatogram, and d) the mass spectrum of the main peak. $[M+2H]^{2+}$ calculated m/z = 720.85, found m/z = 720.91.

Computational Models

Computational models were calculated for peptides **3H10H-pG** and **Trunc-2H9H-pG** using Robetta (<u>https://robetta.bakerlab.org/</u>), using the modeling method, RoseTTAFold.^{S3} The input sequences had multiple Gly residues (not shown in images) added to the N and C termini in order to satisfy the length limit in Robetta. Since Robetta does not support D-amino acids, the input β -turn was a Gly-Asn type II' β -turn, similar to the D-Pro-Gly turn used in our sequences.

Figure S38. Robetta computational model of peptide 3H10H-pG with backbone distances between protons observed to have NOE signals labeled.

Figure S39. Robetta computational model of peptide Trunc-2H9H-pG with backbone distances between protons observed to have NOE signals labeled.

Supplemental references

S1. Lee, W.; Tonelli, M.; Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. *Bioinformatics.* **2015**, *31*, 1325.

S2. I. B. Grishina and R. W. Woody, Contributions of tryptophan side chains to the circular dichroism of globular proteins: exciton couplets and coupled oscillators, *Faraday Disc.*, **1994**, 99, 245.

S3. Kim, D. E.; Chivian, D.; Baker, D. Protein Structure Prediction and Analysis Using the Robetta Server. *Nucleic Acids Research* **2004**, *32*, W526–W531.