Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Practical aziridination of α,β-unsaturated carbonyl compounds with a simple carbamate utilizing sodium hypochlorite pentahydrate

Takehiro Umeda and Satoshi Minakata*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan. e-mail: minakata@chem.eng.osaka-u.ac.jp

Table of Contents

1. Materials and General	S2		
 Preparation of <i>tert</i>-butyl <i>N</i>-chloro-<i>N</i>-sodio-carbamate			
		8. References	S8
		9. NMR & HPLC data	

1. Materials and General

Unless otherwise noted, all reactions were performed in two-neck glass tubes under a nitrogen atmosphere. Concentration of solution was carried out by using a rotary evaporator and generally followed by removal of residual solvents on a vacuum line held at 0.1–1 torr. Products were purified by chromatography on silica gel BW-300 (Fuji Silysia Chemical Ltd.). Commercial reagents and solvents were purchased from Sigma Aldrich, TCI, FUJIFILM Wako Chemicals, nacalai tesque, Iharanikkei Chemical Industry and Kanto Chemical and used as received with the following exceptions: acetonitrile was used from a solvent purification system. Analytical thin-layer chromatography (TLC) was performed on pre-coated silica gel glass plates (Merck silica gel 60 F₂₅₄, 0.25 mm thickness). Compounds were visualized with UV lamp or treatment with an ethanolic solution of phosphomolybdic acid followed by heating or exposure to an iodine atmosphere. ¹H and ¹³C NMR spectra were recorded on a JEOL JMTC-400/54/SS spectrometer (¹H NMR, 400 MHz; ¹³C NMR, 100 MHz). ¹H NMR chemical shifts for CDCl₃ were determined relative to Me₄Si (0.0 ppm) as an internal standard. Infrared spectra were recorded on a SHIMADZU IRAffinity-1 FT-IR Spectrometer. High-resolution mass spectra were obtained on a JEOL JMS-DX303HF mass spectrometer. Melting points were determined on a Stanford Research Systems MPA100 OptiMelt Automated Melting Point System. Chiral-phase high-performance liquid chromatography (HPLC) was performed on a SHIMADZU prominence series instruments equipped with chiral columns.

2. Preparation of tert-butyl N-chloro-N-sodio-carbamate

Sodium hypochlorite pentahydrate (493.5 mg, 3 mmol) was added to a stirring solution of *tert*butyl carbamate (351.5 mg, 3 mmol) at room temperature under a nitrogen atmosphere in MeCN (10 mL). The reaction mixture was stirred at room temperature for 3 h. After stirring, acetonitrile was removed from the resulting suspension by rotary evaporator. The residual solid was washed with Et_2O (40 mL). The resulting suspension was filtered by washing with ether and the solid was dried to give the pure product (466.7 mg; 90%).

H₂N-Boc + NaOCI
$$\cdot$$
 5H₂O
(1.0 equiv) MeCN, r.t., 3 h Na N-Boc
(1.0 equiv) 90%

3. Preparation of electron deficient olefins

Acrylates 1a, 1e and 1f were prepared according to the literature procedures.¹ α , β -Unsaturated carbonyl compounds 1g,² 1h,³ 1i,⁴ 1j⁵ and 1l⁶were prepared by the known procedures.

4. Preparation of chiral ammonium catalysts

Ammonium catalysts CN1 and CD1 were synthesized by the literature procedures.^{6,7}

5. Typical procudure for aziridination of acrylates

Potassium carbonate was ground in a mortar and then dried under reduced pressure at 200 $^{\circ}$ C prior to use. A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with K₂CO₃ (4.5 mmol), BnEt₃N⁺Cl⁻ (0.025 mmol), *tert*-butyl carbamate (0.7 mmol), acrylate (0.5 mmol), and MeCN (2 mL). To the mixture, NaOCl·5H₂O (0.7 mmol) was added, and the mixture was stirred at room temperature for the indicated time on the benchtop. The reaction mixture was quenched by Na₂S₂O₃ aq. (1 M, 10 mL), and extracted with CH₂Cl₂ (3 x 30 mL). Collected organic layers were dried over anhydrous Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product. Purification by flash column chromatography on silica gel gave the pure product.

6. Typical procudure for aziridination of electron-deficient olefins

Potassium carbonate was ground in a mortar and then dried under reduced pressure at 200 $^{\circ}$ C prior to use. A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with K₂CO₃ (4.5 mmol), BnEt₃N⁺Cl⁻ (0.025 mmol), *tert*-butyl carbamate (0.7 mmol), and MeCN (2 mL). To the mixture, NaOCl·5H₂O (0.7 mmol) was added, and the mixture was stirred at room temperature. After stirring for 3 hours, electron-deficient olefin was added to the reaction mixture, followed by stirring at room temperature for the indicated time. The reaction mixture was quenched by Na₂S₂O₃ aq. (1 M, 10 mL), and extracted with CH₂Cl₂ (3 x 30 mL). Collected organic layers were dried over anhydrous Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product. Purification by flash column chromatography on silica gel gave the pure product.

7. Product data

2-Benzyloxycarbonyl-1-tert-butoxycarbonylaziridine (2a).

Benzyl 3-(tert-butoxycarbonylamino)propionate (3a).

Colorless oil; $R_f = 0.23$ (hexane/EtOAc, 8:2, v/v, silica gel plate); IR (neat) 3375, 2978, 1732, 1713, 1163 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (s, 9H), 2.57 (t, 2H, J = 6.0 Hz), 3.40 (q, 2H, J = 6.0 Hz), 5.12 (s, 3H, overlap with NH), 7.30-7.41 (m, 5 H); ¹³C NMR (100 MHz,

CDCl₃) 28.2, 34.4, 35.9, 66.3, 79.1, 128.0, 128.2, 128.4, 135.5, 155.6, 172.1; MS (CI) m/z 280 ([M⁺+H], 3), 224 (100), 180 (33), 91 (9); HRMS (CI) calcd for (C₁₅H₂₂NO₄) 280.1543 ([M+H]⁺), found m/z 280.1553.

1,2-Bis(benzyloxycarbonyl)aziridine (2a').

51.6 mg (32%); Colorless oil; $R_f = 0.40$ (hexane/EtOAc, 7:3, v/v, silica gel plate); IR (neat) 3034, 1728, 1215, 1173 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.48 (dd, 1H, J = 1.3, 5.4 Hz), 2.62 (dd, 1H, J = 1.3, 3.1 Hz), 3.14 (dd, 1H, J = 3.1, 5.4 Hz), 5.06-5.17 (m, 4H), 7.32-7.39 (m, 10H); ¹³C NMR (100

MHz, CDCl₃) 31.5, 34.9, 67.6, 68.6, 128.4, 128.5, 128.5, 128.5, 128.6, 128.7, 134.8, 135.3, 160.7, 168.1; MS (FAB) *m*/*z* 312 ([M+H]⁺, 16), 178 (9), 107 (10), 91 (100), 77 (6); HRMS (FAB) calcd for (C₁₈H₁₈NO₄) 312.1230 ([M+H]⁺), found *m*/*z* 312.1241.

1-tert-Butoxycarbonyl-2-methoxycarbonylaziridine (2b).

The analytical data for this compound were in excellent agreement with the reported data^{8,9)}. 67.7 mg (60%); Colorless oil; HPLC (Daicel Chiralcel IA, hexane/2-propanol, 95:5, 0.3 mL/min, RI detector, 30 °C) t = 17.7 and 19.3 min; ¹H NMR (400 MHz, CDCl₃) δ = 1.46 (s, 9H), 2.42 (dd, 1H, J = 1.4, 5.4 Hz), 2.53 (dd, 1H, J = 1.4, 3.4 Hz), 3.04 (dd, 1H, J = 3.4, 5.4 Hz), 3.78 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) & 27.8, 31.3, 34.8, 52.6, 82.1, 159.5, 168.9.

2-Ethoxycarbonyl-1-tert-butoxycarbonylaziridine (2c).

60.1 mg (55%); Colorless oil; $R_f = 0.38$ (hexane/EtOAc, 8:2, v/v, silica gel plate); ¹H NMR (400 MHz, CDCl₃) δ = 1.31 (t, 3H, J = 6.8 Hz), 1.46 (s, 9H), 2.40 (dd, 1H, *J* = 1.3, 5.3 Hz), 2.52 (dd, 1H, *J* = 1.3, 3.0 Hz), 3.02 (dd, 1H, J = 3.0, 5.3 Hz), 4.16-4.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0,

27.9, 31.2, 34.9, 61.6, 82.0, 159.5, 168.4; MS (FAB) *m/z* 216 ([M+H]⁺, 16), 160 (34), 57 (100); HRMS (FAB) calcd for ($C_{10}H_{18}NO_4$) 216.1230 ([M+H]⁺), found *m*/*z* 216.1238.

1,2-Bis(tert-butoxycarbonyl) aziridine (2d).

42.2 mg (35%); Colorless oil; $R_f = 0.29$ (hexane/EtOAc, 8:2, v/v, silica gel plate); IR (neat) 2980, 1736, 1724, 1147 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) ^tBuO 0 $\delta = 1.46$ (s, 9H), 1.50 (s, 9H), 2.32 (dd, 1H, J = 1.6, 5.2 Hz), 2.47 (dd, 1H, 2d J = 1.6, 3.0 Hz), 2.93 (dd, 1H, J = 3.0, 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃)

δ 27.8, 27.9, 30.9, 35.7, 81.8, 82.4, 159.7, 167.4; MS (FAB) *m*/*z* 244 ([M+H]⁺, 28), 188 (32), 57 (100); HRMS (FAB) calcd for ($C_{12}H_{22}NO_4$) 244.1543 ([M+H]⁺), found *m*/*z* 244.1550.

1-tert-Butoxycarbonyl-2-o-methoxybenzyloxycarbonylaziridine (2e).

114.2 mg (75%); Colorless oil; $R_f = 0.22$ (hexane/EtOAc, 8:2, v/v, silica gel plate); IR (neat) 2978, 1742, 1724, 1248, 1152, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (s, 9H), 2.40 (dd, 1H, J = 1.1, 5.4 Hz), 2.54 (dd, 1H, J = 1.1, 3.3 Hz), 3.07 (dd, 1H, J = 3.3, 5.4 Hz),

3.84 (s, 3H), 5.23 and 5.29 (1H and 1H, AB system, J=12.2 Hz), 6.89-6.97 (m, 2H), 7.28-7.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 27.7, 31.3, 34.8, 55.3, 62.8, 81.9, 110.4, 120.3, 123.3, 129.9, 130.0, 157.5, 159.5, 168.3; MS (FAB) *m*/*z* 328 ([M+Na]⁺, 5), 308 ([M+H]⁺, 4), 121 (100); HRMS (FAB) calcd for ($C_{16}H_{21}NO_5$) 307.1420 (M⁺), found *m/z* 307.1414.

9[{1-tert-butoxycarbonylaziridin-2'-yl}carbonyloxymethyl]anthracene (2f).

107.9 mg (57%); Pale yellow solid; mp 42.1–46.1 °C; $R_f = 0.18$ (hexane/EtOAc, 5:1, v/v, silica gel plate); HPLC (Daicel Chiralcel IB, hexane/2-propanol, 99:1, 1.0 mL/min, 254 nm, 30 °C) t = 19.8 and 22.7 min; IR (neat) 2976, 1732, 1304, 1192, 1157, 1144, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.39 (s, 9H), 2.35 (dd, 1H, J

= 1.6, 5.1 Hz), 2.54 (dd, 1H, J = 1.6, 3.4 Hz), 3.02 (dd, 1H, J = 3.4, 5.1 Hz), 6.24 and 6.29 (1H and 1H, AB system, J =12.6 Hz), 7.50 (t, 2H, J = 7.6 Hz), 7.59 (t, 2H, J = 7.8 Hz), 8.04 (d, 2H, J = 8.0 Hz), 8.35 (d, 2H, J = 8.8 Hz), 8.53 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) 27.8, 31.5, 34.9, 60.1, 82.1, 123.8, 125.2, 125.4, 126.8, 129.1, 129.5, 131.1, 131.4, 159.5, 168.7; MS (EI) m/z 377 (M⁺, 20), 207 (20), 191 (100); HRMS (EI) calcd for (C₂₃H₂₃NO₄) 377.1627 (M⁺), found m/z 377.1622.

2-Benzoyl-1-tert-butoxycarbonylaziridine (2g).

114.6 mg (87%); Colorless oil; $R_f = 0.31$ (hexane/EtOAc, 8:2, v/v, silica gel plate); IR (neat) 2978, 1722, 1682, 1227, 1153, 708 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, 9H), 2.53 (dd, 1H, J = 1.5, 5.4 Hz), 2.70 (dd, 1H, J = 1.5, 3.3 Hz), 3.94 (dd, 1H, J = 3.3, 5.4 Hz), 7.52 (t, 2H, J = 7.4 Hz), 7.63 (t, 1H,

J = 7.2 Hz), 8.09 (d, 2H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) 27.8, 32.5, 37.3, 81.9, 128.5, 128.7, 133.7, 136.4, 160.2, 193.5; MS (FAB) m/z 248 ([M+H]⁺, 39), 192 (70), 148 (100), 105 (53), 57 (70); HRMS (FAB) calcd for (C₁₄H₁₈NO₃) 248.1281 ([M+H]⁺), found m/z 248.1288.

Oxirane-2-yl-(phenyl)-methanone (4g).

Ph Colorless solid; $R_f = 0.25$ (hexane/EtOAc, 8:2, v/v, silica gel plate); IR (neat) 1684 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.97 (dd, 1H, J = 2.7, 6.5 Hz), 3.13 49 (dd, 1H, J = 4.4, 6.5 Hz), 4.26 (dd, 1H, J = 2.7, 4.4 Hz), 7.51 (t, 2H, J = 7.8 Hz), 7.63 (t, 1H, J = 7.3 Hz), 8.04 (d, 2H, J = 7.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 47.5, 50.9, 128.2, 128.7, 133.9, 135.2, 194.6; MS (CI) *m/z* (relative intensity, %) 149 ([M+H]⁺, 100), 133 (6), 105 (8); HRMS (CI) calcd for (C₉H₉O₂) 149.0597 ([M+H]⁺), found *m/z* 149.0602.

1-[{(1'-tert-Butoxycarbonyl)aziridin-2'-yl}carbonyl]-3,5-dimethylpyrazole (2h).

113.1 mg (85%); Colorless oil; $R_f = 0.39$ (hexane/EtOAc, 8:2, v/v, silica gel plate); HPLC (Daicel Chiralcel OB-H, hexane/2-propanol, 99:1, 0.3 mL/min, 254 nm, 30 °C) t = 29.1 and 49.1 min; IR (neat) 2978, 1728, 1337, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, 9H), 2.28 (s, 3H),

2.55 (s, 3H), 2.56-2.58 (m, 1H), 2.62 (dd, 1H, J = 1.4, 2.9 Hz), 4.53 (dd, 1H, J = 2.9, 5.6 Hz), 6.04 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) 13.8, 14.3, 27.9, 32.6, 34.7, 82.0, 111.8, 144.5, 153.2, 160.0, 167.4; MS (EI) m/z 265 (M⁺, 0.7), 164 (34), 57 (100); HRMS (EI) calcd for (C₁₃H₁₉N₃O₃) 265.1426 (M⁺), found m/z 265.1427.

3-[{(1'-*tert*-butoxycarbonyl)aziridin-2'-yl}carbonyl]-2-oxazolidinone (2i).

124.0 mg (96%); Colorless oil; $R_f = 0.33$ (hexane/EtOAc, 1:1, v/v, silica gel plate); IR (neat) 2982, 1778, 1721, 1703, 1219, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.46 (s, 9H), 2.53-2.56 (m, 2H), 4.02-4.13 (m, 2H), 4.45 (dd, 1H, J = 3.4, 5.8 Hz), 4.50 (t, 2H, J = 8.0 Hz); ¹³C NMR (100

MHz, CDCl₃) 27.8, 32.6, 33.9, 42.7, 62.5, 82.1, 153.4. 159.7, 167.7 MS (FAB) m/z 257 ($[M+H]^+$, 10), 201 (100), 157 (65), 57(${}^{\prime}Bu$, 58); HRMS (FAB) calcd for ($C_{11}H_{17}N_2O_5$) 257.1132 ($[M+H]^+$)⁺, found *m*/*z* 257.1134.

1-[{(1'-tert-Butoxycarbonyl)aziridin-2'-yl}carbonyl]carbazole (2j).

125.2 mg (76%); Colorless solid; mp 106.1–113.2 °C; $R_f = 0.21$ (hexane/EtOAc, 9:1, v/v, silica gel plate); HPLC (Daicel Chiralcel IB, hexane/2-propanol, 9:1, 1.0 mL/min, 254 nm, 30 °C) t = 7.0 and 9.9 min.; IR (neat) 2974, 1730, 1680, 1294, 1144, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.35 (s, 9H), 2.63 (d, 1H, J = 4.7 Hz), 3.13 (d, 1H, J

= 3.4 Hz), 3.93 (dd, 1H, J =3.4, 4.7 Hz), 7.42 (t, 2H, J = 7.2 Hz), 7.50 (t, 2H, J = 7.8 Hz), 8.01 (d, 2H, J = 8.4 Hz), 8.30 (d, 2H, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) 27.8, 32.2, 38.1, 82.6, 115.8, 120.0, 124.0, 126.3, 127.3, 138.3, 159.7, 166.9; MS (FAB) *m*/*z* 336 (M⁺, 42), 281 (43), 237 (50), 167 (100), 57 (89); HRMS (FAB) calcd for (C₂₀H₂₀N₂O₃) 336.1474 (M⁺), found *m*/*z* 336.1475.

1-tert-Butoxycarbonyl-2-phenylsulfonylaziridine (2k).

95.5 mg (66%); Colorless solid; mp 116.1–119.7 °C; $R_f = 0.30$ (hexane/EtOAc, 7:3, v/v, silica gel plate); IR (neat) 3026, 1726, 1287, 1146 cm⁻¹;¹H NMR (400 MHz, CDCl₃) $\delta = 1.26$ (s, 9H), 2.68 (d, 1H, J = 5.8 Hz), 2.89 (d, 1H, J = 2.8 Hz), 3.73 (dd, 1H, J = 2.8, 5.8 Hz), 7.60 (t, 2H, J = 7.8

Hz), 7.70 (t, 1H, J = 7.4 Hz), 7.98 (d, 2H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 27.4, 30.0, 50.9, 82.9, 128.7, 129.0, 134.1, 137.4, 158.4; MS (FAB) m/z 284 ([M+H]⁺, 12), 228 (30), 184 (100) 154 (38), 57 (90); HRMS (FAB) calcd for C₁₃H₁₈NO₄S 284.0951 ([M+H]⁺), found m/z 284.0955.

(4*R*,7*S*)-1-[{(2'*S*)-(1'*-tert*-Butoxycarbonyl)aziridin-2'-yl}carbonyl]-4-methyl-3-phenyl-7-propyl-4,5,6,7-tetrahydroindazole (2l).

The analytical data for this compound were in excellent agreement with the reported data.⁶⁾ 144.5 mg (66%); Colorless oil; $R_f = 0.44$ (hexane/EtOAc, 7:3, v/v, silica gel plate); ¹H NMR (400 MHz, CDCl₃) δ 0.89-0.97 (m, 9H), 1.46 (s, 10H overlap with 1H), 1.76-1.85 (m, 2H), 2.04-2.16 (m, 2H), 2.56 (dd, 1H, J = 1.6, 5.7 Hz), 2.68

(dd, 1H, J = 1.6, 3.2 Hz), 3.20-3.26 (m, 1H), 3.36-3.39 (m, 1H), 4.67 (dd, 1H, J = 3.2, 5.7 Hz), 7.39-7.47 (m, 3H), 7.81-7.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 19.7, 20.6, 20.9, 25.6, 26.8, 27.8, 31.4, 32.3, 35.0, 37.7, 81.8, 125.2, 127.5, 128.5, 128.8, 132.7, 146.2, 153.5, 160.0, 167.0.

8. References

(1) H. Zhang, X. Lin, S. Chin and M. W. Grinstaff, J. Am. Chem. Soc., 2015, 137, 12660.

(2) S. Chanthamath, S. Takaki, K. Shibatomi and S. Iwasa, *Angew. Chem. Int. Ed.*, 2013, **52**, 5818.

(3) M. P. Sibi and K. Itoh, J. Am. Chem. Soc. 2007, 129, 8064.

(4) A. Sakakura, R. Kondo, Y. Matsumura, M. Akakura and K. Ishihara, K. *J. Am. Chem. Soc.*, 2009, **131**, 17762.

(5) A. S. Brar and P. K. Singh, Indian J. Chem., 2006, 45A, 581.

(6) Y. Murakami, Y. Takeda and S. Minakata, J. Org. Chem., 2011, 76, 6277.

(7) E. J. Corey, F. Xu and M. C. Noe, J. Am. Chem. Soc., 1997, 119, 12414.

(8) A. L. Braga, P. H. Schneider, M. W. Paixäo, A. M. Deobald and D. P. Bottega, J. Org. Chem., 2006, 71, 4305.

(9) Y.-C. Wu and J. Zhu, Org. Lett., 2009, 11, 5558.

S10

¹H NMR (400 MHz, CDCl₃) 7.387 7.375 7.375 7.365 7.365 7.365 7.365 7.365 7.365 7.349 7.349 7.349 7.349 7.349 7.349 5.172 5.165 5.160 5.151 5.151 5.137 5.137 5.137 5.137 5.137 5.121 5.089 5.089 3.1523.1523.1383.1383.1313.1313.1313.1312.6262.6262.6262.6212.6212.6212.6212.6212.6212.6212.6222.6272.620.000 ЦЦЦ Ľ 10.52 1.01 1.08 1.00
 PPM

 7.0
 6.0
 5.0
 4.0
 3.0
 2.0
 1.0
 0.0
 -1.0
 10.0 9.0 8.0 ¹³C NMR (100 MHz, CDCl₃) 135.255 134.843 128.652 128.619 128.619 128.496 128.496 128.430 168.103 77.346 77.239 77.025 68.595 67.558 34.940 31.482 160.66 UU

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) 8.099 8.081 8.077 7.645 7.645 7.609 7.534 7.534 7.534 7.515 7.497 3.948 3.940 3.935 3.926 2.701 2.698 2.698 2.698 2.639 2.534 2.534 2.534 2.534 2.534 1.478 1.478 1.478 1.445 1.445 0.000 $\langle \rangle \rangle$ 9.67 2.03 2.06 1.02 1.04 1.00
 PPM

 7.0
 6.0
 5.0
 4.0
 3.0
 2.0
 1.0
 0.0
 -1.0
 10.0 9.0 8.0 ¹³C NMR (100 MHz, CDCl₃) 136.424 133.723 128.710 128.677 128.677 193.526 160.150 37.335 32.609 32.519 32.436 27.818 27.785 81.940 77.321 77.000 76.679

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) 7.993 7.975 7.720 7.720 7.702 7.683 7.683 7.683 7.595 7.595 7.595 2.889 2.882 2.689 2.675 0.000 3.736 3.729 3.721 3.714 \bigcup 2.01 2.00 8 1.00 1.00
 PPM

 10.0
 9.0
 8.0
 7.0
 6.0
 5.0
 4.0
 3.0
 2.0
 1.0
 0.0
 -1.0
 ¹³C NMR (100 MHz, CDCl₃) 137.370 134.168 134.127 134.077 129.162 129.113 129.113 129.031 129.031 128.710 158.438 50.919 50.845 82.862 77.321 77.000 76.679 30.082 29.950 29.827 27.571 27.571 27.489 27.406 27.316 \bigcup LLUU

