Supporting Information

High-efficiency solid-phase microextraction performance of polypyrrole enhanced titania nanoparticles for sensitive determination of polar chlorophenols and triclosan in environmental water samples

Mingguang Ma, Yunxia Wei*, Huijuan Wei, Xianyu Liu, Haixia Liu

College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China

*Corresponding Author's Email: weiyx07@lzu.edu.cn

^{*} Corresponding author at: College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China. *E-mail address: weiyx07@lzu.edu.cn.*

Fig S1. Effect of extraction time (a), temperature (b), stirring rate (c) and ionic strength (d) on extraction efficiency

Fig S2.Chromatograms of SPME-HPLC for phenolic compounds. SPME-HPLC with the untreated Ti wire (a), the TiO₂NPs fiber (b), the 100-μm PDMS fiber (c), the 85-μm PA fiber (d), PPy@TiO₂NPs/Ti fiber (e) for CPs spiked at 25 μg·L⁻¹

Fig S3. Chromatograms of SPME-HPLC for phenolic compounds in wastewater. Direct extraction (a), spiked wastewater at 5 μ g L⁻¹ (b), and at 10 μ g L⁻¹(c) with the PPy@TiO₂NPs/Ti fiber.