Supporting files

Green route for ammonium nitrate synthesis: Fertilizer for plant growth enhancement

Figure S1: OES spectra of the system

Figure S2: Depiction of radish sprouts after 2 days of imbibition, circled are commercial N-fertilizer.

Figure S3: Depiction of tomato after 3 days of imbibition, circled are commercial N-fertilizer.

Figure S4: Standard curve for NH_4^+ , NO_2^- and $NO_2^- + NO_3^-$

Figure S1

Figure S2

Figure S3

Figure S4

Reactions		Ref.
$N_2 + e \longrightarrow$	2N + e	[1,2]
$N + e \longrightarrow$	$N^{+} + 2e$	[1,3]
$H_2O + e \longrightarrow$	OH + H + e	[4]
$\overline{H} + e$	$H^+ + 2e$	[1,5]
$H_2 + e$	$H^{+} + H + 2e$	[1,5]
$H_2 + e \longrightarrow$	$H_2^+ + 2e$	[1,5]
NH + e	$NH^+ + 2e$	[1,6]
$NH + e \longrightarrow$	$N^+ + H + e$	[1,6]
$NH_2 + e \longrightarrow$	$NH_{2}^{+} + 2e$	[1,6]
$NH_2 + e$	$NH^{+} + H + 2e$	[1,6]
$NH_3 + e \longrightarrow$	$NH_{3}^{+} + 2e$	[1,6]
$NH_3 + e \longrightarrow$	$NH_{2}^{+} + H + 2e$	[1,6]
$NH + e \longrightarrow$	N + H + e	[1,7]
$NH_2 + e$	$N + H_2 + e$	[1,8]
$NH_2 + e$	NH + H + e	[1,9]
$NH_3 + e \longrightarrow$	$NH_2 + H + e$	[1]
$N_2 + e \longrightarrow$	N + N + e	[1]
$H^+ + NH_3 \longrightarrow$	$NH_3^+ + H$	[1,10]
$H_2^+ + NH_3 \longrightarrow$	$NH_{3}^{+} + H_{2}$	[1,10]
$\tilde{H}_2^+ + N_2$	$N_2H^+ + H^-$	[1,10]
$\tilde{H_3^+} + \tilde{N}$	$\tilde{NH_2^+} + H$	[1,10]
$H_3^+ + NH_3 \longrightarrow$	$NH_4^+ + H_2$	[1,10]
$N + H + M \longrightarrow$	MH + M	[11]
NH + NH →	$N + NH_2$	[11,12]
$NH + NH_2 \longrightarrow$	$N + NH_3$	[11,12]
$H + NH_2 + M \longrightarrow$	$M + NH_3$	[11,13]
$H_2 + NH_2 \longrightarrow$	$H + NH_3$	[11,13]
$H_2 + NH + M \longrightarrow$	$M + NH_3$	[11,14]
$H_3^+ + N_2 \longrightarrow$	$N_2H^+ + H_2$	[1,10]
$N^+ + H_2 \longrightarrow$	$NH^+ + H_2$	[1,10]
$N^+ + NH_3 \longrightarrow$	$NH_2^+ + NH$	[1,10]
$N^+ + NH_3 \longrightarrow$	$NH_3^+ + N$	[1,10]
$N^+ + NH_3 \longrightarrow$	$N_2H^+ + H_2$	[1,10]
$NH^+ + H_2 \longrightarrow$	$H_{3}^{+} + N$	[1,10]
$NH^+ + H_2 \longrightarrow$	$NH_2^+ + H$	[1,10]
$NH^+ + NH_3 \longrightarrow$	$NH_3^+ + NH$	[1,10]
$NH^+ + NH_3 \longrightarrow$	$NH_4^+ + N$	[1,10]
$NH^+ + N_2 \longrightarrow$	$N_2H^+ + N$	[1,10]
$NH^+ + H_2 \longrightarrow$	$NH_3^+ + H$	[1,10]
$NH_2^+ + NH_3 \longrightarrow$	$NH_3^+ + NH_2$	[1,10]
$NH_2^+ + NH_3 \longrightarrow$	$NH_4^+ + NH$	[1,10]
$NH_3^+ + NH_3 \longrightarrow$	$NH_4^+ + NH_2$	[1,10]
$N_2^+ + H_2 \longrightarrow$	$N_2H^+ + H$	[1,10]
$N_2H^+ + NH_3 \longrightarrow$	$NH_4^+ + N_2$	[1,10]

 Table S1: Reactions used in the 1D-simulation.

$N_2^+ + NH_3$ -	→	$NH_{4}^{+} + N_{2}$	[1,10]
$N_2^+ + H_2O$ -	→	$H_2O^+ + N_2$	[4,15]
$OH^- + NO_2$ -		$NO_2 - + OH$	[4,15]
$e + NO_3 + M$ -		$M + NO_3$ -	[4,16]
$e + H_2O$ -		H + OH-	[4]
$e + NO_2 + M$ =	→	$M + NO_2$ -	[4,16]
$e + N_2^+ + M$ =	→	$M + N_2$	[4,17]
O + O + M -		$M + O_2$	[4,18]
$H^- + H$ =	→	$H_2 + e$	[4,19]
$OH^- + O$ -	→	$HO_2 + e$	[4,15]
$OH^{-} + H$ -		$H_2O + e$	[4,19]
N + OH -	→	NO + H	[4,15]
$N + HO_2$ -	→	NO + OH	[4,15]
OH + OH -	→	$H_2O + O$	[4,15]
$OH + HO_2$ -	→	$H_2O + O_2$	[4,20]
$OH + H_2$ -	→	$H_2O + H$	[4,15]
O + H + M	→	M + OH	[4,21]
N + O + M -	→	M + NO	[4,18]
H + H + M -	→	$M + H_2$	[4,22]
OH + H + M -		$H_2O + M$	[4,22]
OH + OH + M -	\longrightarrow	$H_2O_2 + M$	[4,21]
N + N + M -	\longrightarrow	$N_2 + M$	[4,15]
$N + O_3$ -	\longrightarrow	$NO + O_2$	[4,23]
$e + O_2 + O$ -	\longrightarrow	$O_2 + O_2$	[4]
$NO_3 + O$ -	\longrightarrow	$NO_2 + O_2$	[4,16]
$NO_2 + NO_2 =$	\longrightarrow	$NO_3 + NO$	[4,15]
$NO_2 + NO_3 =$		$NO_3 + NO_2$	[4,15]
N + O + M -	→	$O_3 + M$	[4,18]
$O + O_2 + M$ -		$O_3 + M$	[4,18]
$N + O_2$ -	\longrightarrow	NO + O	[4,17]
O + NO + M -	\longrightarrow	$NO_2 + M$	[4,18]
$NO + O_3$ -		$NO_2 + O_2$	[4,18]
$NO_2 + O_3$ -		$NO_3 + O_2$	[4,18]
OH + NO + M -	\longrightarrow	$HNO_2 + M$	[4,18]
$HNO_2 + H$ -	\longrightarrow	$NO_2 + H_2$	[4,18]
$HO_2 + NO$ -	\longrightarrow	$OH + NO_2$	[4,21]
$HNO_2 + HNO_2 =$	\longrightarrow	$NO_2 + H_2O + NO$	[4,16]
H + Sur	\rightarrow	H(s)	[1]
N + Sur		N(s)	[1]
NH + Sur -		NH(s)	[1]
$NH_2 + Sur$ -		NH ₂ (s)	
N + H(s)		NH(s)	
N(s) + H		NH(s)	
$H_2 + NH(s)$		$NH_3 + Sur$	
NH + H(s)		$NH_2(s)$	
$H + NH_2(s)$		$NH_3 + Sur$	[1]

$NH_2 + H(s)$	\rightarrow NH ₃ + Sur	[1]

Table S2: Concentration of reactive species at point C of 1D model (Figure 7) after 1000 s simulation.

Reactive species	Relative concentration (mol/m ³)
Ν	0.03
Н	1.62 X10 ⁻¹⁴
О	2.86 X10 ⁻¹⁷
ОН	6.67 X10 ⁻²⁵
H_2O_2	5.99 X10 ⁻¹⁴
NO	4.31X10 ⁻⁷
NO_2	3.73 X10 ⁻¹⁸
NO_3	9.74 X10 ⁻²¹
NO ₃	1.31 X10 ⁻¹⁵
NO_2	6.57 X10 ⁻¹²
$ m NH_3$	2.50 X10 ⁻¹⁸
$\mathrm{NH_4^+}$	8.54 X10 ⁻¹¹
NH	2.66 X10 ⁻¹⁰

Energy consumption for total N-fixation $(NO_3^- + NH_4^+)$

$$EC\left(\frac{MJ}{mol}\right) = \frac{Power}{Moles\left[NO_{3}^{-} + NH_{4}^{+}\right] per \ second\left[mol.s^{-1}\right]} \times \frac{1}{10^{6}\left[\frac{J}{MJ}\right]}$$

EC for total N-fixation = 12 MJ/mol

Energy consumption for NO₃⁻-fixation

$$EC\left(\frac{MJ}{mol}\right) = \frac{Power}{Moles\left[NO_{3}^{-}\right]per\ second\ [mol.s^{-1}]} \times \frac{1}{10^{6}\left[\frac{J}{MJ}\right]}$$

EC for $NO_3^- = 41 \text{ MJ/mol}$

Energy consumption for NH₄⁺-fixation

$$EC\left(\frac{MJ}{mol}\right) = \frac{Power}{Moles\left[NH_{4}^{+}\right]per\ second\ [mol.s^{-1}]} \times \frac{1}{10^{6}\ [\frac{J}{MJ}]}$$

EC for $NH_4^+ = 17 \text{ MJ/mol}$

References

- [1] E. Carrasco, M. Jiménez-Redondo, I. Tanarro, V.J. Herrero, Neutral and ion chemistry in low pressure dc plasmas of H2/N2 mixtures: routes for the efficient production of NH3 and NH4+, Phys. Chem. Chem. Phys. 13 (2011) 19561. https://doi.org/10.1039/c1cp22284h.
- [2] P.C. Cosby, Electron-impact dissociation of nitrogen, J. Chem. Phys. 98 (1993) 9544–9559. https://doi.org/10.1063/1.464385.
- [3] Y.K. Kim, J.P. Desclaux, Ionization of carbon, nitrogen, and oxygen by electron impact, Phys. Rev. A - At. Mol. Opt. Phys. 66 (2002) 127081–1270812. https://doi.org/10.1103/PhysRevA.66.012708.
- [4] Y. Sakiyama, D.B. Graves, H.W. Chang, T. Shimizu, G.E. Morfill, Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species, J. Phys. D. Appl. Phys. 45 (2012) 425201. https://doi.org/10.1088/0022-3727/45/42/425201.
- [5] I. Méndez, F.J. Gordillo-Vázquez, V.J. Herrero, I. Tanarro, Atom and ion chemistry in low pressure hydrogen DC plasmas, J. Phys. Chem. A. 110 (2006) 6060–6066. https://doi.org/10.1021/jp057182+.
- [6] V. Tarnovsky, H. Deutsch, K. Backer, Cross-sections for the electron impact ionization of NDx (x = 1-3), Int. J. Mass Spectrom. Ion Process. 167–168 (1997) 69–78. https://doi.org/10.1016/s0168-1176(97)00033-5.
- [7] L.C. Owono Owono, N. Jaidane, M.G. Kwato Njock, Z. Ben Lakhdar, Theoretical investigation of excited and Rydberg states of imidogen radical NH: Potential energy curves, spectroscopic constants, and dipole moment functions, J. Chem. Phys. 126 (2007) 244302. https://doi.org/10.1063/1.2741260.
- [8] R. Vetter, Photodissociation of NH2: Two-dimensional potential energy surfaces for the dissociation into NH and H, J. Chem. Phys. 104 (1996) 5558–5571. https://doi.org/10.1063/1.471796.
- [9] H. Biehl, G. Schönnenbeck, F. Stuhl, V. Staemmler, The vacuum-ultraviolet photodissociation of NH2(X 2B 1)-→NH(A 3Π)+H, J. Chem. Phys. 101 (1994) 3819–3830. https://doi.org/10.1063/1.467499.
- [10] V.G. Anicich, Evaluated Bimolecular Ion-Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds, J. Phys. Chem. Ref. Data. 22 (1993) 1469–1569. https://doi.org/10.1063/1.555940.
- [11] B. Gordiets, C.M. Ferreira, M.J. Pinheiro, A. Ricard, Self-consistent kinetic model of low-pressure N2-H2 flowing discharges: I. Volume processes, Plasma Sources Sci. Technol. 7 (1998) 363–378. https://doi.org/10.1088/0963-0252/7/3/015.
- [12] N. Cohen, The O + NH3 reaction: A review, Int. J. Chem. Kinet. 19 (1987) 319–362. https://doi.org/10.1002/kin.550190406.

- [13] J.D. Mertens, A.Y. Chang, R.K. Hanson, C.T. Bowman, Reaction kinetics of NH in the shock tube pyrolysis of HNCO, Int. J. Chem. Kinet. 21 (1989) 1049–1067. https://doi.org/10.1002/kin.550211107.
- [14] J.E. Dove, W.S. Nip, A shock-tube study of ammonia pyrolysis, Can. J. Chem. 57 (1979) 689–701. https://doi.org/10.1139/v79-112.
- [15] M. Capitelli, C.M. Ferreira, B.F. Gordiets, A.I. Osipov Plasma kinetics in atmospheric gases 2000.pdf, (n.d.). https://books.google.co.jp/books/about/Plasma_Kinetics_in_Atmospheric_Gases. html?id=Ff-JcgAACAAJ&redir_esc=y (accessed April 20, 2021).
- [16] H. Mätzing, Chemical Kinetics of Flue Gas Cleaning by Irradiation with Electrons, in: John Wiley & Sons, Ltd, 2007: pp. 315–402. https://doi.org/10.1002/9780470141298.ch4.
- [17] I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures, Plasma Sources Sci. Technol. 1 (1992) 207–220. https://doi.org/10.1088/0963-0252/1/3/011.
- J.T. Herron, D.S. Green, Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions, Plasma Chem. Plasma Process. 21 (2001) 459–481. https://doi.org/10.1023/A:1011082611822.
- [19] R.E. Olson, J.R. Peterson, J. Moseley, Ion-ion recombination total cross sectionsatomic species, J. Chem. Phys. 53 (1970) 3391–3397. https://doi.org/10.1063/1.1674506.
- [20] R. Atkinson, D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, M.J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI: IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data. 26 (1997) 1329–1499. https://doi.org/10.1063/1.556010.
- [21] R. Dorai, M.J. Kushner, A model for plasma modification of polypropylene using atmospheric pressure discharges, J. Phys. D. Appl. Phys. 36 (2003) 666–685. https://doi.org/10.1088/0022-3727/36/6/309.
- [22] M.J. Kushner, Plasma chemistry of He/O2/SiH4 and He/N 2O/SiH4 mixtures for remote plasma-activated chemical-vapor deposition of silicon dioxide, J. Appl. Phys. 74 (1993) 6538–6553. https://doi.org/10.1063/1.355115.
- [23] O. Eichwald, M. Yousfi, A. Hennad, M.D. Benabdessadok, Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases, J. Appl. Phys. 82 (1997) 4781–4794. https://doi.org/10.1063/1.366336.