Supporting Information

Formation of Cubic Perovskite Alloy Containing the Ammonium Cation of 2D perovskite for High Performance Solar Cells with Improved Stability

Mi-Hee Jung*,[†]

Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea; Fax: +82-2-3408-4342; Tel: +82-2-6935-2597

*To whom correspondence should be addressed.

E-mail: mhjung@sejong.ac.kr

Table S1. Calculated Goldschmidt tolerance factor for alloy perovskites

Compound	r _I /pm	r _{pb/} pm	r _{FA} /pm	r _{MA} /pm	r _{EA/} pm	r _{BA/} pm	t factor
MA _{0.67} FA _{0.33} PbI ₃	220	119	253	217			0.9363
$MA_{0.5}FA_{0.5}PbI_3$	220	119	253	217			0.9491
$MA_{0.83}EA_{0.17}PbI_3$	220	119		217	274		0.9317
$MA_{0.65}FA_{0.3}EA_{0.05}PbI_{3} \\$	220	119	253	217	274		0.9400
MA _{0.53} FA _{0.38} EA _{0.09} PbI	220	119	253	217	274		0.9508
MA _{0.65} FA _{0.30} BA _{0.05} PbI	220	119	253	217		517	0.9653

The Goldschmidt tolerance factor, t, defined as follows: $t = (r_A + r_I)/\sqrt{2}(r_{Pb} + r_I)$, where r_A , r_{pb} and r_I are the effective radii of cation, Pb²⁺ and I⁻ ions, respectively. The cation radii in mixed-cation materials were calculated based on a weighted average of the radii of cations

Figure S1. Powder X-ray diffraction and the simulated pattern from SCXRD for the $MA_{0.83}EA_{0.17}PbI_3$, $MA_{0.65}FA_{0.30}BA_{0.05}PbI_3$ and the $MA_{0.65}FA_{0.3}EA_{0.05}PbI_3$ perovskites

Figure S2. The low and high resolution of SEM images of MAPbI₃ perovskite films.