SUPPORTING INFORMATION

Effects of the halogenido ligands to Kumada-coupling catalytic activity of [Ni{^tBuN(PPh₂)₂- κ^2 P}X₂], X = Cl, Br, I, complexes

Polydoros-Chrysovalantis Ioannou,^[a] Radek Coufal,^[b,c] Kalliopi Kakridi,^[a] Catherine P. Raptopoulou,^[d] Olga Trhlíková,^[e] Vassilis Psycharis,^{*[d]} Jiří Zedník,^{*[c]} Panayotis Kyritsis,^{*[a]} Jiří Vohlídal^[c]

- [a] Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
- [b] Technical University of Liberec, Faculty of Health Studies, Department of Science and Research, Studentska 1402/2, CZ-461 17, Liberec 1, Czech Republic, radek.coufal@tul.cz
- [c] Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Albertov 2030, CZ-128 43, Prague 2, Czech Republic
- [d] Institute of Nanoscience and Nanotechnolgy, N.C.S.R. "Demokritos", Aghia Paraskevi 15310, Attiki, Greece
- [e] Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czech Republic

Figure S1. FT-IR spectrum of [**Ni(P,P)Cl**₂]. Selected bands (KBr, cm⁻¹): 1437 v(P-Ph), 1180, 1101, 1015, 868 v(P-N-P), 746, 694.

Figure S2. FT-IR spectrum of [**Ni(P,P)Br**₂]. Selected bands (KBr, cm⁻¹): 1477, 1433 v(P-Ph), 1173, 1093, 1007, 868 v(P-N-P), 744, 692.

Figure S3. FT-IR spectrum of [Ni(P,P)I₂]. Selected bands (KBr, cm⁻¹): 1481, 1437 v(P-Ph), 1370, 1180, 1098, 1009, 868 v(P-N-P), 744, 700.

¹H and ¹³C NMR spectra

Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of [Ni(P,P)Cl₂]. S – 7.25 ppm CH₃Cl (solvent signal), 5.27 ppm trace of dichloromethane, 2.10 ppm trace of acetone, 1.50 ppm trace of moisture, 1.25 ppm trace of hexane, all impurities are marked by an asterisk.

Figure S5. ¹³C NMR (101 MHz, CDCl₃) spectrum of [**Ni(P,P)Cl₂**], S – solvent peak, residual trace of acetone is marked by an asterisk.

Figure S6. ¹H NMR (600 MHz, CDCl₃) spectrum of [Ni(P,P)Br₂]. S – 7.25 ppm CH₃Cl (solvent signal), 2.1 ppm – acetone, 1.50 ppm trace of moisture, 1.25 ppm trace of hexane, all impurities are marked by an asterisk.

Figure S7. ¹³C NMR (151 MHz, CDCl₃) spectrum of [Ni(P,P)Br₂]. S – solvent peak, residual trace of acetone (29.9 ppm) is marked by an asterisk.

Figure S8. ¹H NMR (400 MHz, CDCl₃) spectrum of $[Ni(P,P)I_2]$. S – 7.25 ppm CH₃Cl (solvent signal), 1.50 ppm moisture, 1.25 ppm trace of hexane, all impurities are marked by an asterisk.

Figure S9. ¹³C NMR (151 MHz, CDCl₃) spectrum of $[Ni(P,P)I_2]$, S – solvent peak, trace of acetone (29.9 ppm) is marked by an asterisk.

Figure S10. ³¹P NMR (162 MHz, CDCl₃) spectrum of [Ni(P,P)Cl₂]. The spectral window was extended to the full scale.

Figure S11. ³¹P NMR (162 MHz, CDCl₃) spectrum of [Ni(P,P)Br₂]. The spectral window was extended to the full scale.

Figure S12. ³¹P NMR (162 MHz, CDCl₃) spectrum of $[Ni(P,P)I_2]$. The spectral window was extended to the full scale.

X-ray crystallography

Figure S13. Molecular structures and atom numbering of $[Ni(P,P)X_2]$, X = Br, I: (a) and (b), respectively. Thermal ellipsoids are presented at a level 50 % probability. Hydrogen atoms are omitted for clarity.

Figure S14. LDI-MS spectra of [Ni(P,P)X₂].

Figure S15. UV-vis spectra of complexes [Ni(P,P)X₂], X = Cl(1), Br(2), I(3), in THF solution (~ 10⁻⁵ M)

Table S1. Data for reactions of **4-'Bu** substrate with Grignard reagent **T** catalyzed by complexes [**Ni**(**P**,**P**)**X**₂]. Y_{CROSS} and Y_{HOMO} stand for the substrate conversion by cross-coupling and homo-coupling, respectively (Scheme 2).

[Ni(P,P) Cataly)X 2] st	X =	Cl	X =	Br	X = I			
Reaction	<i>t,</i> min	Y _{CROSS} %	Ү _{номо} %	Y _{CROSS} %	Ү _{номо} %	Y _{CROSS} %	Ү _{номо} %		
4- ^{<i>t</i>} Bu + T	20	76	< 2	1.0	< 2	1	< 2		
	90	85	< 2	51	< 2	22	< 2		
	1080		< 2	61	< 2	65	< 2		

Table S2. Data for Kumada coupling reactions between substrates with shielded iodine atom and Grignard reagent T catalyzed by [Ni(P,P)Cl₂]. Y_{CROSS} and Y_{HOMO} stand for the substrate conversion by cross-coupling and homo-coupling respectively (Scheme 2)

nomo-coupling, respectively (Scheme 2).													
Substra	4-	^t Bu	2-	Me	2,6-diMe								
Catalyst	<i>t,</i> min	Y _{CROSS} %	Ү _{номо} %	Y _{CROSS} %	Ү _{номо} %	Y _{CROSS} %	Ү _{номо} %						
[Ni(P,P)Cl ₂]	20	76	< 2	20	8	57	18						
	90	85	< 2	73	12	58	24						
	1080	90	< 2	76	15	62	26						

Figure S16. The DFT-calculated LUMO, HOMO and HOMO-2 orbitals of complexes $[Ni(P,P)X_2]$ showing contours at ± 0.05 a.u.

Figure S17. ¹H NMR spectra upon addition of first T and then 4-^{*t*}Bu to a THF solution of [Ni(P,P)Cl₂].

[Ni(P,P)Cl2] +Reagent T added 1st Islands, bilder, de Line and Line And Line and the second state of the s												h q qiliti	WHITE A		4 4 44	i i i i i i i i i i i i i i i i i i i		ul in the	a, interest							
95	90	85	80	75	70	65	60	55	50	45	40	35 f1 (p	30 om)	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	

Figure S18. ³¹P NMR spectra upon upon addition of first T and then 4-'Bu to a THF solution of [Ni(P,P)Cl₂].