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IR spectra

Figure S1. FT-IR spectrum of [Ni(P,P)Cl2]. Selected bands (KBr, cm1): 1437 (P-Ph), 1180, 1101, 1015, 
868 (P-N-P), 746, 694.
 

Figure S2. FT-IR spectrum of [Ni(P,P)Br2]. Selected bands (KBr, cm1):  1477, 1433 (P-Ph), 1173, 1093, 
1007, 868 (P-N-P), 744, 692.  

Figure S3. FT-IR spectrum of [Ni(P,P)I2]. Selected bands (KBr, cm1):  1481, 1437 (P-Ph), 1370, 1180, 
1098, 1009, 868 (P-N-P), 744, 700.
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1H and 13C NMR spectra

Figure S4. 1H NMR (400 MHz, CDCl3) spectrum of [Ni(P,P)Cl2]. S – 7.25 ppm CH3Cl (solvent signal), 5.27 
ppm trace of dichloromethane, 2.10 ppm trace of acetone, 1.50 ppm trace of moisture, 1.25 ppm trace of 
hexane, all impurities are marked by an asterisk.
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Figure S5. 13C NMR (101 MHz, CDCl3) spectrum of [Ni(P,P)Cl2], S – solvent peak, residual trace of acetone 
is marked by an asterisk. 
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Figure S6. 1H NMR (600 MHz, CDCl3) spectrum of [Ni(P,P)Br2]. S – 7.25 ppm CH3Cl (solvent signal), 2.1 
ppm – acetone,1.50 ppm trace of moisture, 1.25 ppm trace of hexane, all impurities are marked by an asterisk.
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Figure S7. 13C NMR (151 MHz, CDCl3) spectrum of [Ni(P,P)Br2]. S – solvent peak, residual trace of acetone 
(29.9 ppm) is marked by an asterisk. 
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Figure S8. 1H NMR (400 MHz, CDCl3) spectrum of [Ni(P,P)I2]. S – 7.25 ppm CH3Cl (solvent signal), 1.50 
ppm moisture, 1.25 ppm trace of hexane, all impurities are marked by an asterisk.

7



Figure S9. 13C NMR (151 MHz, CDCl3) spectrum of [Ni(P,P)I2], S – solvent peak, trace of acetone (29.9 
ppm) is marked by an asterisk.
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31P NMR spectra
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Figure S10. 31P NMR (162 MHz, CDCl3) spectrum of [Ni(P,P)Cl2]. The spectral window was extended to 
the full scale.
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Figure S11. 31P NMR (162 MHz, CDCl3) spectrum of [Ni(P,P)Br2]. The spectral window was extended to 
the full scale.
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Figure S12. 31P NMR (162 MHz, CDCl3) spectrum of [Ni(P,P)I2]. The spectral window was extended to the 
full scale.
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X-ray crystallography 

                                        (a)                                                       (b)

Figure S13. Molecular structures and atom numbering of [Ni(P,P)X2], X = Br, I: (a) and (b), respectively. 
Thermal ellipsoids are presented at a level 50 % probability. Hydrogen atoms are omitted for clarity. 
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MS spectra

Figure S14. LDI-MS spectra of [Ni(P,P)X2].
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Figure S15. UV-vis spectra of complexes [Ni(P,P)X2], X = Cl (1), Br (2), I (3), in THF solution ( 105 M)
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Table S1. Data for reactions of 4-tBu substrate with Grignard reagent 
T catalyzed by complexes [Ni(P,P)X2]. YCROSS and
YHOMO stand for the substrate conversion by cross-coupling 
and homo-coupling, respectively (Scheme 2).

[Ni(P,P)X2] 
Catalyst X = Cl X = Br X = I

Reaction t, 
min

YCROSS 
%

YHOMO

%
YCROSS 

%
YHOMO

%
YCROSS 

%
YHOMO

%

4-tBu + T 20 76 < 2 1.0 < 2 1 < 2
90 85 < 2 51 < 2 22 < 2

1080 90 < 2 61 < 2 65 < 2

Table S2. Data for Kumada coupling reactions between substrates with shielded 
iodine atom and Grignard reagent T catalyzed by [Ni(P,P)Cl2]. YCROSS and 
YHOMO stand for the substrate conversion by cross-coupling and
homo-coupling, respectively (Scheme 2).

Substrate 4-tBu 2-Me 2,6-diMe

Catalyst t, 
min

YCROSS 
%

YHOMO 
%

YCROSS 
%

YHOMO 
%

YCROSS 
%

YHOMO

%

[Ni(P,P)Cl2] 20 76 < 2 20 8 57 18
90 85 < 2 73 12 58 24

1080 90 < 2 76 15 62 26

Figure S16. The DFT-calculated LUMO, HOMO and HOMO-2 orbitals of complexes [Ni(P,P)X2] showing 
contours at ±0.05 a.u.
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Figure S17. 1H NMR spectra upon addition of first T and then 4-tBu to a THF solution of [Ni(P,P)Cl2].
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Figure S18. 31P NMR spectra upon upon addition of first T and then 4-tBu to a THF solution of [Ni(P,P)Cl2].
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