One-Pot Synthesis for Gradient Copolymers via Concurrent Tandem Living Radical Polymerization: Mild and Selective Transesterification of Methyl Acrylate through Al(acac)₃ with Common Alcohols

Tam Thi-Thanh Huynh,^{1,2} Si Eun Kim,¹ Soon Cheon Kim,¹ Jin Chul Kim,¹ Young Il Park,¹ Ji-Eun Jeong,¹ Hyeonuk Yeo^{2,3}*, and Sang-Ho Lee¹*

¹Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea

²Department of Science Education, Kyungpook National University, Daegu, 41566, Republic of

Korea

³Department of Chemistry Education and Department of Pharmacy, Kyungpook National

University, Daegu, 41566, Republic of Korea

E-mail: slee@krict.re.kr; yeo@knu.ac.kr

Figure S1. Al(acac)₃-catalyzed transesterification of MA with various alcohols: $[MA]_0 = 2.0 \text{ M}$ $[Al(acac)_3]_0 = 20 \text{ mM}$ in toluene/alcohols (1/1, v/v) at 80°C. (A) Ethanol (EtOH), (B) *iso*-propanol, (C) octanol, and (D) benzyl alcohol (BzOH).

Figure S2. Al(acac)₃-catalyzed transesterification of $[PMA (DP_{n, NMR} = 100)]_0 = 20 \text{ mM};$ $[Al(acac)_3]_0 = 20 \text{ mM}$ in toluene/alcohols (1/1, v/v) at 80°C.

Figure S3. Control of molecular weight of poly(MA) : $[MA]_0= 2.0$ M; $[EBP]_0=20$ mM; $[RuCp*]_0=10$ mM; $[Al(acac)_3]_0=10$ mM in toluene at 80°C.

Figure S4. Kinetic plot of homolymerization of MA (black square): $[MA]_0= 2.0 \text{ M}$; $[EBP]_0=20 \text{ mM}$; $[RuCp^*]_0=10 \text{ mM}$; $[Al(acac)_3]_0=10 \text{ mM}$ in toluene at 80°C and gradient copolymerization of MA (blue triangle): $[MA]_0=2.0 \text{ M}$; $[EBP]_0=20 \text{ mM}$; $[Ru(Cp^*)Cl(PPh_3)_2]_0=10 \text{ mM}$; $[Al(acac)_3]_0=20 \text{ mM}$ in toluene/ethanol (1/1, v/v) at 80°C.

Figure S5. Effect of temperature on MA-EA gradient copolymer by concurrent tandem LRP. (A) Time-total conversion and (B) monomer content of EA in polymerization solution: $[MA]_0 = 2.0$ M; $[EBP]_0 = 20$ mM; $[Ru(Cp^*)Cl(PPh_3)_2]_0 = 10$ mM; $[Al(acac)_3]_0 = 20$ mM in toluene/ethanol (1/1, v/v) at 40°C, 60°C and 80°C.

Figure S6. ¹H NMR spectrum of the sample obtained from the concurrent tandem living radical copolymer of MA with EtOH in toluene/EtOH (1/1): $[MA]_0 = 2.0$ M; $[EBP]_0 = 20$ mM; $[Ru(Cp^*)Cl(PPh_3)_2]_0 = 10$ mM; $[Al(acac)_3]_0 = 10$ mM at 80°C.

Figure S7. ¹H NMR spectrum of the sample obtained from the concurrent tandem living radical copolymer of MA with EtOH in toluene/EtOH (1/1): $[MA]_0 = 2.0$ M; $[EBP]_0 = 20$ mM; $[Ru(Cp^*)Cl(PPh_3)_2]_0 = 10$ mM; $[Al(acac)_3]_0 = 10$ mM at 80°C.

Figure S8. ¹H NMR spectrum of the sample obtained from the concurrent tandem living radical copolymer of MA with EtOH in toluene/EtOH (1/1): $[MA]_0 = 2.0 \text{ M}$; $[EBP]_0 = 20 \text{ mM}$; $[Ru(Cp^*)Cl(PPh_3)_2]_0 = 10 \text{ mM}$; $[Al(acac)_3]_0 = 40 \text{ mM}$ at 80°C.

Figure S9. SEC curves of MA/EA gradient copolymer synthesis depending on the polymerization conditions.

Figure S10. ¹H NMR spectrum of the sample obtained from the concurrent tandem living radical copolymer of MA with octanol in toluene/octanol (1/1): $[MA]_0 = 2.0 \text{ M}$; $[EBP]_0 = 20 \text{ mM}$; $[Ru(Cp^*)Cl(PPh_3)_2]_0 = 10 \text{ mM}$; $[Al(acac)_3]_0 = 20 \text{ mM}$ at 80°C.

Figure S11. ¹H NMR spectrum of the sample obtained from the concurrent tandem living radical copolymer of MA with *iso*-propanol in toluene/*iso*-propanol (1/1): $[MA]_0 = 2.0 \text{ M}$; $[EBP]_0 = 20 \text{ mM}$; $[Ru(Cp^*)Cl(PPh_3)_2]_0 = 10 \text{ mM}$; $[Al(acac)_3]_0 = 20 \text{ mM}$ at 80°C.

Figure S12. ¹H NMR spectrum of the sample obtained from the concurrent tandem living radical copolymer of MA with benzyl alcohol in toluene/benzyl acohol (1/1, v/v): $[MA]_0 = 2.0 M$; $[EBP]_0 = 20 \text{ mM}$; $[Ru(Cp^*)Cl(PPh_3)_2]_0 = 10 \text{ mM}$; $[Al(acac)_3]_0 = 20 \text{ mM}$ at 80°C.

Figure S13. Extended DSC thermograms (2nd heating process at 10 °C min⁻¹ after heating up to 100 °C) of (A) homopolymers and (B) their differentiated DSC thermograms.