Mannich bases of hydroxycoumarins: synthesis, DFT/QTAIM computational study and assessment of biological activity.

J. Sergio Durand-Niconoff,^a Erik Ortiz-Blanco,^a Gabriela Sosa-Ortiz,^b José L. Olivares-Romero,^c Enrique Juárez-Aguilar,^d Eva Luz Montoya-Hernández,^d Cynthia Fernández-Pomares,^e Ricardo Tovar-Miranda,^a María Eugenia Castro,^f Francisco J. Melendez,^{*g} and Tomás Guerrero^{*a}

^aInstituto de Ciencias Básicas, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Ver., 91190, México. **e-mail:** tguerrero@uv.mx

^bUniversidad Veracruzana, Facultad de Bioanálisis, Médicos s/n, U. H. del Bosque, Xalapa, Ver., 91010, México.

^cRed de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic[®], Instituto de Ecología A. C. (INECOL), Carretera antigua a Coatepec No. 351, Col. El Haya, Xalapa, Ver., 91070, México.

^dUniversidad Veracruzana, Instituto de Ciencias de la Salud, Dr. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Ver., 91190, México.

^eUniversidad Veracruzana, Programa de Especialización en Métodos Estadísticos. Facultad de Estadística e Informática, Av. Xalapa s/n, Col. Obrero Campesina, Xalapa, Ver., 91020, México.

^fCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAP, Edif. IC8, 22 Sur y San Claudio, Ciudad Universitaria, 72570 Puebla, Puebla, México.

^aLab. de Química Teórica, Centro de Investigación, Depto. De Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. FCQ10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, 72570 Puebla, México.

e-mail: francisco.melendez@correo.buap.mx

Supplementary Information (SI)

1. Synthesis and characterization

¹H-NMR spectroscopy of the derivatives of 7-hydroxycoumarin (Compounds **5a-5c**) shows the expected pattern of signals, two double signals in 7.50 and 6.70 ppm approximately, both with coupling constants near to 8.8 Hz and integrals to one hydrogen nuclei. These signals are the expected for the hydrogen atoms in positions 5 and 6 (see Scheme 1) of a tetrasubstituted aromatic ring. In 6.09 ppm the vinylic signal is found, and at low frequency the methylene and methyl substituents appear at 3.90 and 2.34 ppm, respectively. The signals of substituents of the secondary amines appear in the expected region of aliphatic groups, for instance in compound **5a** specifically as multiple signals in 2.53 ppm, which was assigned as de hydrogen atoms alpha to the nitrogen of the amine, and the rest of the chain in 1.54 and 1.43 ppm, respectively. The results of ¹H-NMR spectroscopy of the derivatives of 6,7-dihydroxycoumarin (Compounds **5d-5f**) shows the expected single signal around 6.89 ppm which was assigned to the only aromatic hydrogen nucleus in the benzene ring of the coumarin, in 5.99 the vinylic signal is observed, in most of the cases the long range coupling with the methyl in position 4 is observed, the rest of the molecule, both the methylene and the methyl signals and the aliphatic chain of the substituents of the amine group are observable within the aliphatic region of the spectra.

¹H-NMR (500 MHz, DMSO- d_6)

1.1 7-hydroxy-4-methylcoumarin (4a).

1.2 6,7-dihydroxy-4-methylcoumarin (4b).

1.3 7-hydroxy-4-methyl-8-(piperidin-1-ylmethyl)-2H-chromen-2-one (5a).

¹H-NMR (500 MHz, DMSO- d_6)

1.4 7-hydroxy-4-methyl-8-(pyrrolidin-1-ylmethyl)-2H-chromen-2-one (5b).

1.5 8-((diethylamino)methyl)-7-hydroxy-4-methyl-2H-chromen-2-one (5c).

1.6 6,7-dihydroxy-4-methyl-8-(piperidin-1-ylmethyl)-2H-chromen-2-one (5d).

¹H-NMR (500 MHz, DMSO- d_6)

1.7 6,7-dihydroxy-4-methyl-8-(pyrrolidin-1-ylmethyl)-2H-chromen-2-one (5e).

1.8 8-((diethylamino)methyl)-6,7-dihydroxy-4-methyl-2H-chromen-2-one (5f).

¹H-NMR (500 MHz, DMSO- d_6)

2. UV-Vis normalized absorption in HPLC Methanol

- 3. Computational details
- 3.1 Cartesian coordinates optimized of 7-hydroxy-4-methylcoumarin (4a) at PBE0/aug-cc-pvTZ level theory using the SMD model solvation.

Charge =	= 0 Multiplicity = 1		
С	-2.34100691	1.03084609,	0.00000117
С	-2.52596093	-0.35588202	-0.00000176
С	-1.43798335	-1.21376906	-0.00000185
С	-0.16621321	-0.66869536	0.00000282
С	0.05902087	0.71070432	0.00000625
С	-1.06723719	1.54631007	0.00000413
0	0.86973748	-1.55336406	0.00000777
С	2.17501383	-1.13851704	0.00003134
С	2.42139208	0.26925156	0.00000313
С	1.41737450	1.18152874	0.00000216
0	3.02077520	-2.01841267	-0.00003363
С	1.70656545	2.64036808	-0.00000933
0	-3.80049169	-0.81283583	-0.00000560
Н	-3.20735306	1.67973423	-0.00000014
Н	-1.57166077	-2.28869372	-0.00000402
Н	-0.92949062	2.61996091	0.00000408
Н	3.45961911	0.57248460	-0.00001393
Н	2.77939349	2.82451124	-0.00001309
Н	1.26567030	3.11969007	0.87768262
Н	1.26566698	3.11967503	-0.87770773
Н	-3.80715943	-1.77726190	-0.00000794
E(PBE0)	= -611.117848 Hartree		

Dipole Moment = 7.242106 Debye

3.2 Cartesian coordinates optimized of 6,7-dihydroxy-4-methyl-2*H*-chromen-2-one (**4b**) at PBE0/aug-cc-pvTZ level theory using the SMD model solvation.

Charge = 0	0 Multiplicity = 1		
0	-0.40616153	-1.49026392	-0.52006853
С	-1.13566310	-2.64057303	-0.40719225
С	-2.51579959	-2.51397427	-0.05842472
С	-3.10461014	-1.31039627	0.15782331
С	-2.80143734	1.17752089	0.22922296
С	1.98184173	2.27040801	0.09090200
С	-0.62849668	2.09623863	-0.25396010
С	-0.12064095	0.82904290	-0.45414164
С	-0.96148126	-0.26173051	-0.31044980
С	-2.30694463	-0.12090789	0.03048869
0	-2.38134217	3.56102538	0.26584110
0	0.18856984	3.16448559	-0.39322052
0	-0.53668709	-3.68474125	-0.61638163
С	-4.54386479	-1.21413823	0.51940788
Н	-3.07483762	-3.43612953	0.02566698
Н	-3.84071839	1.32987811	0.49522904

Н	-3.31626982	3.58941551	0.49725555
Н	-0.31285153	3.97214539	-0.22198217
Н	-4.99864507	-2.20156150	0.57317235
Н	-5.08554637	-0.61440939	-0.21661084
Н	-4.66479261	-0.71563325	1.48466397
Н	0.91955230	0.69190670	-0.71952530
E(PBE0)	= -686.301412 Hartree		
D' 1 M	11 040012 D 1		

Dipole Moment = 11.940913 Debye

3.3 Cartesian coordinates optimized of 7-hydroxy-4-methyl-8-(piperidin-1-ylmethyl)-2*H*-chromen-2one (**5a**) at PBE0/aug-cc-pvTZ level using the SMD model solvation.

Charge =	0 Multiplicity $= 1$		
С	-0.91869082	1.84654291	-1.3260873
С	-1.41288353	0.53773493	-1.2658547
С	-0.73810358	-0.45560557	-0.5442296
С	0.43290777	-0.08204014	0.1039812
С	0.95163883	1.21784955	0.0634680
С	0.24337877	2.17572841	-0.6741932
0	1.08331603	-1.06562018	0.7892996
С	2.24428382	-0.83905451	1.4743320
С	2.77790237	0.48438798	1.4476411
С	2.17139818	1.49234566	0.7704131
0	2.72603540	-1.80169211	2.0517762
С	2.75471230	2.86132706	0.7568669
0	-2.55309967	0.24905791	-1.9159738
С	-1.22781364	-1.87948440	-0.5381000
Ν	-2.68671206	-1.96266052	-0.6292880
С	-3.11197565	-3.28718770	-1.0821995
С	-4.61801998	-3.35395902	-1.2458598
С	-5.32763127	-2.97427821	0.0445026
С	-4.82683726	-1.62639023	0.5388236
С	-3.31483046	-1.62006197	0.6498849
Н	-1.47092354	2.58537338	-1.8932338
Н	0.61839744	3.18954927	-0.7277088
Н	3.69711531	0.64334703	1.9950224
Н	3.67293169	2.89799929	1.3405195
Н	2.04666810	3.58566862	1.1670676
Н	2.97424210	3.17646879	-0.2662487
Н	-2.82580523	-0.68118319	-1.5766537
Н	-0.86243620	-2.41021459	0.3480565
Н	-0.81334419	-2.39562823	-1.4101764
Н	-2.77991137	-4.04924950	-0.3591257
Н	-2.61369020	-3.49728123	-2.0307786
Н	-4.89386933	-4.36305646	-1.5610300
Н	-4.91942988	-2.67130056	-2.0472929
Н	-5.12486595	-3.73583431	0.8060431
Н	-6.40976014	-2.95201485	-0.1047402
Н	-5.25342455	-1.38414003	1.5150233
Н	-5.13849721	-0.83808948	-0.1545000

Н	-2.99041607	-2.33939347	1.4183310	
Н	-2.95698628	-0.63434027	0.9556422	
E(PBE0)	= -900.896891 Hartree			

Dipole Moment = 5.163712 Debye

3.4 Cartesian coordinates optimized of 7-hydroxy-4-methyl-8-(pyrrolidin-1-ylmethyl)-2H-chromen-2-one (5b) at PBE0/aug-cc-pvTZ level using the SMD model solvation.

Charge =	= 0 Multiplicity = 1		
С	-0.80423409	1.91601282	-1.37849935
С	-1.31289818	0.61197303	-1.34769380
С	-0.68033692	-0.39252819	-0.60482368
С	0.46830329	-0.03598861	0.09164602
С	1.00134592	1.25852126	0.08119653
С	0.33316827	2.22897837	-0.67703341
0	1.08066506	-1.03116200	0.79482813
С	2.21598172	-0.82169350	1.52676727
С	2.76362072	0.49636164	1.53118712
С	2.19479624	1.51532436	0.83812455
0	2.66488633	-1.79344535	2.11515553
С	2.79210821	2.87814025	0.85759858
0	-2.42623350	0.33979279	-2.05104656
С	-1.18792371	-1.80965701	-0.62058682
Ν	-2.63846839	-1.87587906	-0.76855340
С	-3.11451607	-3.21826709	-1.10584411
С	-4.61722633	-3.15524251	-0.85276921
С	-4.79096472	-2.01410496	0.17179082
С	-3.37169742	-1.53685826	0.45463295
Н	-1.32511445	2.66388215	-1.96315254
Н	0.72001734	3.23930306	-0.70735611
Н	3.66204608	0.64184064	2.11557598
Н	3.68681861	2.90111378	1.47733102
Н	2.07575560	3.60699942	1.24470001
Н	3.05522910	3.19799374	-0.15372291
Н	-2.72212453	-0.58684023	-1.73891501
Н	-0.86936142	-2.34388035	0.28197977
Н	-0.74395473	-2.33278280	-1.47404434
Н	-2.63990668	-3.95457523	-0.44116072
Н	-2.85068150	-3.47109053	-2.13350884
Н	-4.99160325	-4.10909991	-0.48216819
Н	-5.15291836	-2.92798549	-1.77495087
Н	-5.28437704	-2.34254507	1.08615447
Н	-5.38841070	-1.20615003	-0.25202279
Н	-2.93823832	-2.08087531	1.30624569
Н	-3.30377214	-0.46839577	0.66500825
E(PBE0)) = -861.612039 Hartree		

Dipole Moment = 5.104207 Debye

3.5 Cartesian coordinates optimized of 8-((diethylamino)methyl)-7-hydroxy-4-methyl-2*H*-chromen-2one (**5c**) at PBE0/aug-cc-pvTZ level using the SMD model solvation.

Charge =	0 Multiplicity = 1		
С	-0.94602478	1.74718755	-1.44610287
С	-1.39896328	0.42472321	-1.37732574
С	-0.72910351	-0.52922408	-0.60048600
С	0.39410683	-0.10502161	0.09819601
С	0.87202724	1.21059618	0.05012142
С	0.17214926	2.12731090	-0.74571639
0	1.04008261	-1.04979141	0.83973781
С	2.15819269	-0.76868528	1.57371713
С	2.65087451	0.57045143	1.53862363
С	2.04634177	1.54182572	0.80841652
0	2.64119706	-1.70030216	2.19910306
С	2.58611150	2.92845985	0.78892483
0	-2.49284070	0.07269141	-2.07390828
С	-1.18821038	-1.96123737	-0.60391297
Ν	-2.65385378	-2.06090556	-0.64007633
С	-3.04435333	-3.39066938	-1.11870711
С	-4.53223453	-3.56799140	-1.32455514
С	-4.46699897	-0.84274048	0.59960336
С	-3.23759138	-1.72679890	0.67388078
Н	-1.49193428	2.45530308	-2.05682855
Н	0.51755920	3.15137376	-0.80502265
Н	3.53684241	0.77241387	2.12522616
Н	3.47251323	3.00902233	1.41567333
Н	1.83589057	3.63875976	1.14517551
Н	2.84627851	3.22626578	-0.22987909
Н	-2.78380694	-0.82375035	-1.66735868
Н	-0.77534735	-2.50787773	0.24953080
Н	-0.80430601	-2.44485549	-1.50760845
Н	-2.67513069	-4.15477219	-0.41801533
Н	-2.52973350	-3.55263860	-2.06841913
Н	-4.71467342	-4.55303442	-1.75889458
Н	-4.93148829	-2.81704885	-2.00970916
Н	-4.84315917	-0.65630590	1.60828384
Н	-4.22657953	0.12167018	0.14800987
Н	-3.46277547	-2.65511965	1.21261176
Н	-2.47452324	-1.20865668	1.25842091
Н	-5.27063330	-1.29797932	0.02069764
Н	-5.08914911	-3.51425668	-0.38816945
E(PBE0)	= -862.806697 Hartree		

Dipole Moment = 4.975896 Debye

3.6 Cartesian coordinates optimized of 6,7-dihydroxy-4-methyl-8-(piperidin-1-ylmethyl)-2*H*-chromen-2-one (**5d**) at PBE0/aug-cc-pvTZ level using the SMD model solvation.

Charge = 0 Multiplicity = 1

0	-0.35143423	-1.46122861	-0.44623993
С	-1.06101598	-2.61665333	-0.33612169
С	-2.44762580	-2.50904754	-0.01163397
С	-3.05233523	-1.30876734	0.17232944
С	-2.80029297	1.17585592	0.20195428
С	-1.99702790	2.27618700	0.05443734
С	-0.63289958	2.12336046	-0.24845098
С	-0.06128051	0.86618624	-0.40345205
С	-0.91075348	-0.23228542	-0.26315678
С	-2.26848218	-0.11063093	0.04080124
0	-2.42481545	3.56528202	0.17765714
0	0.13471621	3.22476798	-0.40499673
С	1.39636830	0.73040028	-0.74843057
Ν	2.28208347	0.87105710	0.41021385
0	-0.44328960	-3.65501372	-0.52693830
С	3.66182317	1.13549490	-0.00046326
С	4.38666656	-0.05938091	-0.60757456
С	4.35577745	-1.23813371	0.35542166
С	2.92227108	-1.53814921	0.77210916
С	2.24407064	-0.28300384	1.31037099
С	-4.50018212	-1.22298963	0.50361600
Н	-2.99595708	-3.43710023	0.07694108
Н	-3.84887857	1.31086761	0.43778682
Н	-3.36982793	3.58420437	0.36532613
Н	-0.42046425	4.00674080	-0.28676159
Н	1.65360900	1.53123668	-1.44357758
Н	1.54333119	-0.21045490	-1.28866193
Н	4.21034571	1.45667761	0.89233835
Н	3.65771666	1.97885450	-0.69497490
Н	5.41617413	0.22768325	-0.83985352
Н	3.91537220	-0.34141794	-1.55500696
Н	4.94453593	-0.98631434	1.24604227
Н	4.82132690	-2.11983632	-0.09292299
Н	2.89508071	-2.31249358	1.54412314
Н	2.36528041	-1.93008904	-0.08420466
Н	2.74886073	0.01459195	2.23618892
Н	1.20443852	-0.48816549	1.57392377
Н	-4.94260610	-2.21518099	0.57249290
Н	-5.03553870	-0.64992135	-0.25780409
Н	-4.64781230	-0.70356828	1.45384654
E(PBE()) = -976.069168 Hartree		

Dipole Moment = 10.283564 Debye

3.7 Cartesian coordinates optimized of 6,7-dihydroxy-4-methyl-8-(pyrrolidin-1-ylmethyl)-2*H*-chromen-2-one (**5e**) at PBE0/aug-cc-pvTZ level using the SMD model solvation.

Charge =	0 Multiplicity = 1		
0	-0.30555982	-1.38545660	-0.50357691
С	-0.96101599	-2.57488624	-0.42068608

С	-2.35115299	-2.53868420	-0.09569081
С	-3.00977061	-1.37244364	0.11961934
С	-2.86991120	1.11987500	0.21750125
С	-2.11752701	2.25889457	0.09778796
С	-0.74906965	2.17622788	-0.21279789
С	-0.12206370	0.95084159	-0.40259152
С	-0.92030292	-0.18876770	-0.28832120
С	-2.28108632	-0.13671413	0.02082023
0	-2.60094281	3.52419370	0.25471979
0	-0.03337963	3.31476821	-0.34404820
С	1.33392046	0.88688770	-0.76391909
Ν	2.23744849	1.04525656	0.38725772
0	-0.29552388	-3.57862428	-0.63423610
С	3.62839184	1.08090019	-0.08170361
С	4.05124710	-0.37171600	-0.34893125
С	3.12370725	-1.19879606,	0.55997934
С	2.24133558	-0.14459215	1.24720402
С	-4.45999535	-1.36183907	0.45148624
Н	-2.85690779	-3.49262849	-0.03234850
Н	-3.92257891	1.20100027	0.45929120
Н	-3.54632137	3.49842954	0.43930741
Н	-0.62273810	4.06753038	-0.20286168
Н	1.54904242	1.70651660	-1.45053273
Н	1.51935435	-0.04266860	-1.31290483
Н	4.24300246	1.50053816	0.71874783
Н	3.72392799	1.73172328	-0.95099644
Н	5.10673885	-0.52274049	-0.11987569
Н	3.90599123	-0.63485520	-1.39778846
Н	3.67525839	-1.78524983	1.29573302
Н	2.52150395	-1.89563809	-0.02460207
Н	2.68718039	0.13867508	2.20391887
Н	1.22688227	-0.48518029	1.45020407
Н	-4.85747304	-2.37455881	0.48789776
Н	-5.02031893	-0.78893697	-0.29180443
Н	-4.63065295	-0.88066685	1.41784844
E(PBE0)	= -936.786401 Hartree		

Dipole Moment = 10.259344 Debye

3.8 Cartesian coordinates optimized of 8-((diethylamino)methyl)-6,7-dihydroxy-4-methyl-2*H*-chromen-2-one (**5f**) at PBE0/aug-cc-pvTZ level using the SMD model solvation.

Charge =	0 Multiplicity = 1		
0	-0.36923776	-1.53541740	-0.44327886
С	-1.07863885	-2.69062082	-0.33121130
С	-2.46887965	-2.58160874	-0.02312955
С	-3.07616120	-1.38051094	0.14776112
С	-2.82605257	1.10586202	0.16011313
С	-2.02095977	2.20458126	0.00822226
С	-0.65482856	2.04929870	-0.28334869
С	-0.08231734	0.79115393	-0.42188581

С	-0.93235296	-0.30570738	-0.27783629
С	-2.29262637	-0.18223167	0.01457030
0	-2.45049122	3.49442204	0.11473284
0	0.11553502	3.14829958	-0.44650919
С	1.38054074	0.65457649	-0.74935295
Ν	2.24999746	0.79215373	0.41336792
0	-0.45675908	-3.72948888	-0.50511666
С	3.59942678	1.21664016	0.05477208
С	4.33383496	0.46185290	-1.04886623
С	2.74485917	-1.66756819	0.96006586
С	2.17341440	-0.31133710	1.36158628
С	-4.52682794	-1.29492136	0.46604178
Н	-3.01771567	-3.50941020	0.06579857
Н	-3.87658624	1.24403904	0.38547116
Н	-3.39798595	3.51094328	0.28811395
Н	-0.43743609	3.93395940	-0.34300592
Н	1.64205069	1.45628449	-1.44247258
Н	1.53587989	-0.28544689	-1.29089124
Н	4.19523677	1.19130062	0.97111084
Н	3.54260482	2.26817334	-0.24842726
Н	5.30916701	0.92947221	-1.20761886
Н	3.79404001	0.51031215	-1.99704209
Н	2.45298197	-2.41317967	1.70452567
Н	2.36983009	-2.00574091	-0.00759253
Н	2.67111136	0.01663520	2.27917735
Н	1.11874911	-0.43728110	1.62121309
Н	-4.96983522	-2.28710571	0.52999657
Н	-5.05554694	-0.72075865	-0.29909311
Н	-4.68250943	-0.77649556	1.41555148
Н	4.50264491	-0.58735760	-0.80818336
Н	3.83488727	-1.65401546	0.92089910
E(PBE0) = -937.981135 Hartree		

Dipole Moment = 10.565352 Debye

3.9 Theoretical calculations performed at several levels of theory, the final decision was made by accuracy with experimental data and other results already published.

	aug-cc-p	ov IZ level of t	neory.			
	Entry	$\nabla^2 \rho(ea_0^{-5})$	ϵ	V(a.u.)	^H ^b (a.u.)	H _b (kcal/mol)
N13-H7	5a	0.1235	0.0244	-0.0417	-0.0054	-13.0836
	5b	0.1239	0.0245	-0.0419	-0.0055	-13.1463
	5c	0.1301	0.0181	-0.0453	-0.0064	-14.2131
O6-H7	5d	0.0855	0.6394	-0.0182	0.0016	-5.7103
	5e	0.0855	0.6345	-0.0183	0.0015	-5.7417

 Table 1. Topological indexes of electronic density in critical points for selected bonds of compounds 5a-5f calculated at B3LYP/aug-cc-pVTZ level of theory.

 Table 2. Topological indexes of electronic density in critical points for selected bonds of compounds 5a-5f calculated at PBE0/aug-cc-pVTZ level of theory.

	Entry	$\nabla^2 \rho(ea_0^{-5})$	ε	V(a.u.)	^H _b (kcal/mol)
N13-H7	5a	0.1554	0.01540	-0.0687	-21.55
	5b	0.1557	0.0176	-0.0655	-20.55
	5c	0.1527	0.0182	-0.0658	-20.65
O6-H7	5d	0.0873	1.0574	-0.0190	-5.96
	5e	0.0876	1.0109	-0.0191	-5.99
	5f	0.0869	1.2087	-0.0188	-5.90

Table 2. Molecular orbital energies (E_{HOMO} and E_{LUMO} , eV), gap energies (ΔE_g , eV), and total energy (E_{Tot} , hartree) of **4a**, **4b**, and **5a-5f** compounds calculated at B3LYP/aug-cc-pVTZ level of theory.

Compound	E _{HOMO}	E _{LUMO}	ΔE_{g}	E _{Tot}
4 a	-6.326	-1.892	4.434	-611.8156
5a	-6.134	-1.823	4.310	-901.9404
5b	-6.146	-1.828	4.319	-862.6064
5c	-6.152	-1.830	4.321	-863.8132
4b	-6.078	-1.901	4.178 ^{<i>a</i>}	-687.0728
5d	-5.729	-1.860	3.869	-977.1871
5e	-6.045	-1.866	4.178	-937.8548
5f	-5.652	-1.856	3.797	-939.0624

 $^{a}\Delta E_{g-reported} = 4.154 \text{ eV}$ in ref. 24.

Table 2. Molecular orbital energies (E_{HOMO} and E_{LUMO} , eV), gap energies (ΔE_g , eV), and total energy (E_{Tot} , hartree) of **4a**, **4b**, and **5a-5f** compounds calculated at $\omega B97XD/aug$ -cc-pVTZ level of theory.

	<u> </u>			ê î
Compound	E _{HOMO}	E _{LUMO}	ΔE_{g}	E _{Tot}
4a	-8.176	0.005	8.181	-611.6022
5a	-7.996	0.053	8.049	-901.6474

5b	-8.012	0.049	8.061	-862.3232
5c	-8.028	0.043	8.071	-863.5295
4b	-7.916	-0.012	7.904 ^a	-686.8372
5d	-7.828	0.015	7.843	-976.8746
5e	-7.894	0.008	7.902	-937.5519
5f	-7.902	0.017	7.799	-938.7581

 ${}^{a}\Delta E_{g-reported} = 4.154 \text{ eV}$ in ref. 24.

Table 2. Molecular orbital energies (E_{HOMO} and E_{LUMO} , eV), gap energies (ΔE_g , eV), and total energy (E_{Tot} , hartree) of **4a**, **4b**, and **5a-5f** compounds calculated at M06-2X/aug-cc-pVTZ level of theory.

Compound	E _{HOMO}	E _{LUMO}	ΔE_{g}	E _{Tot}
4 a	-7.621	-0.933	6.688	-611.5788
4b	-7.376	-0.954	6.421 ^{<i>a</i>}	-686.8150
$a\Delta E_{g-reported} = 4.154 \text{ eV}$ in ref. 24.				

Table 2. Molecular orbital energies (E_{HOMO} and E_{LUMO} , eV), gap energies (ΔE_g , eV), and total energy (E_{Tot} , hartree) of **4a**, **4b**, and **5a-5f** compounds calculated at M06/aug-cc-pVTZ level of theory.

Compound L _{HOMO} L _{LUMO}	ΔEg	E _{Tot}
4a -6.527 -1.602	4.925	-611.4037
4b -6.265 -1.613	4.652 ^a	-686.6300

 ${}^{a}\Delta E_{g-reported} = 4.154 \text{ eV}$ in ref. 24.

Table 2. Molecular orbital energies (E_{HOMO} and E_{LUMO} , eV), gap energies (ΔE_g , eV), and total energy (E_{Tot} , hartree) of **4a**, **4b**, and **5a-5f** compounds calculated at PBE0/aug-cc-pVTZ level of theory.

Compound	Еномо	Ешмо	ΔΕσ	ETot
4a	-6.523	-1.700	4.823	-611.1178
5a	-6.317	-1.633	4.683	-900.8969
5b	-6.330	-1.636	4.693	-861.6120
5c	-6.333	-1.640	4.694	-862.8067
4b	-6.250	-1.705	4.545 ^a	-686.3014
5d	-5.979	-1.671	4.308	-976.0692

5e	-6.223	-1.678	4.545	-936.7864	
5f	-5.920	-1.669	4.251	-937.9811	
$a\Delta E_{g-reported} = 4.154 \text{ eV in ref. 24.}$					

Table 2. Molecular orbital energies (E_{HOMO} and E_{LUMO} , eV), gap energies (ΔE_g , eV), and total energy (E_{Tot} , hartree) of **4a**, **4b**, and **5a-5f** compounds calculated at HSE/aug-cc-pVTZ level of theory.

	1		0	1
Compound	E _{HOMO}	E _{LUMO}	ΔE_{g}	E _{Tot}
4a	-6.144	-2.068	4.076	-611.1716
4b	-5.872	-2.073	3.799 ^a	-686.3618
$a\Delta E_{g-reported} = 4.154$	eV in ref. 24			

Table 3. Calculated maximum absorption wavelengths λ_{max} (nm), oscillator strengths (*f*), transition energy (E_{g-theo}, eV), % of contribution, and assignment of **4a**, **4b**, and **5a-5f** compounds calculated at B3LYP/augcc-pVTZ level of theory.

Compound	$\lambda_{\rm max}$	f	Eg-theo	%Major Contribution	Assignment
4 a	327.41 ^a	0.7058	3.7869 ^b	HOMO->LUMO (99%)	$\pi \to \pi^*$
5a	330.99	0.5949	3.7459	HOMO->LUMO (98%)	$\pi \to \pi^*$
5b	336.95	0.6777	3.6796	HOMO->LUMO (99%)	$\pi \to \pi^*$
5c	336.73	0.6797	3.6820	HOMO->LUMO (99%)	$\pi \to \pi^*$
4b	348.25	0.5558	3.5602	HOMO->LUMO (99%)	$\pi \to \pi^*$
5d	378.83	0.0046	3.2728	HOMO->LUMO (100%)	$n \rightarrow \pi^*$
5e	348.24	0.5373	3.5603	HOMO->LUMO (99%)	$n \rightarrow \pi^*$
5f	388.32	0.0042	3.1928	HOMO->LUMO (100%)	$n \rightarrow \pi^*$

 $a\lambda_{max}$ =325 nm in toluene solvent in ref. 23 and ^b E_{g-theo}=319nm-323nm in different organic solvents in ref. 32.

Table 3_new. Calculated maximum absorption wavelengths λ_{max} (nm), oscillator strengths (*f*), transition energy (E_{g-theo}, eV), % of contribution, and assignment of **4a**, **4b**, and **5a-5f** compounds calculated at PBE0/aug-cc-pVTZ level of theory.

Compound	$\lambda_{\rm max}$	f	Eg-theo	%Major Contribution	Assignment
			-		

4 a	300.73 ^a	0.4392	4.1227 ^b	HOMO->LUMO (100%)	$\pi \to \pi^*$
5a	310.79	0.3997	3.9893	HOMO->LUMO (99%)	$\pi \to \pi^*$
5b	310.06	0.4010	3.9987	HOMO->LUMO (100%)	$\pi \to \pi^*$
5c	310.06	0.4017	3.9987	HOMO->LUMO (100%)	$\pi \to \pi^*$
4b	322.38	0.3282	3.8458	HOMO->LUMO (99%)	$\pi \to \pi^*$
5d	348.71	0.0038	3.5556	HOMO->LUMO (98%)	$n \rightarrow \pi^*$
5e	322.91	0.2948	3.8392	HOMO->LUMO (100%)	$n \rightarrow \pi^*$
5f	355.49	0.0031	3.4877	HOMO->LUMO (98%)	$n \rightarrow \pi^*$

 $a\lambda_{max}$ =325 nm in toluene solvent in ref. 23 and $b E_{g-theo}$ =319nm-323nm in different organic solvents in ref. 32.

4. Test to verify the authenticity of Human Cell Line

Test to verify the authenticity Human Cell Line.

Result issued on: November 23, 2020 14:19 hrs

Methodology: DNA extraction was performed from the provided sample using the appropriate methodology according to the type of sample delivered (Maxwell 16 from Promega. QIAIAamp DNA Blood Mini Kit from QIAGEN Prep-n-go buffer from AB or FTA Purification Reagent from GE). Multiplex-type polymerase chain reaction and capillary electrophoresis on AB's 3500 Genetic Analyzer, fragment analysis on Gene Mapper ID v5.

Results:

Marcador	LCH1120-220-33		
D3S1358	15	18	
vWA	16	18	
D16S539	9	9	
CSFIPO	9	10	
TPOX	8	12	
D8S1179	12	12	
D2ISII	27	28	
D18S51	13	16	
Penta E	7	17	
D2S441	10	11	
D19S433	13	14	
TH01	7	7	
FGA	18	21	
D22S1045	16	17	
D55818	11	12	
D13S317	12	13.3	
D7S820	8	12	
D6S1043	18	18	
D10S1248	13	15	
D1S1656	12	15	
D12S391	20	25	
D2S1338	17	17	
Penta D	8	15	
Amelogenina	×	x	

From the short tandem repeat (STR) DNA profiles, identity of the cell line was corroborated at CLASTR, which is an STR profile search tool available through Cellosaurus (<u>https://web.expasy.org/cellosaurus-str-search/</u>). According with this database, cells were authenticated as a **derivative of HeLa cell line**.