Supporting information

Sb₂O₃ nanoparticles anchored in N-doped graphene nanoribbons anode for sodium-ion batteries

Oscar Andrés Jaramillo-Quintero^{a,b,*}, Royer Valentín Barrera-Peralta^a, Agustin Baron Jaimes^{a,c}, Ramses Alejandro Miranda-Gamboa^a, and Marina Elizabeth Rincon^a

^{*a*} Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Privada Xochicalco S/N, C.P. 62580 Temixco, Mor., México.

^b Catedrático CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Privada Xochicalco S/N, C.P. 62580 Temixco, Mor., México.

^c Departamento de Ciencias Básicas, Unidades Tecnológicas de Santander, Av. Los Estudiantes #9-82, C.P. 680005318 Bucaramanga, Santander, Colombia.

* *E-mail address:* oajaq@ier.unam.mx

Figure S1. Cyclic voltammograms of 1st, 2nd and 5 cycles at a scan rate of 0.1 mV s⁻¹ for control anode.

Figure S2. *Ex situ* Raman spectra of Sb₂O₃/GNR electrodes during sodiation/desodiation processes at selected potentials, including the discharge/charge profiles at 10 mA g⁻¹ between 0 and 2.5 V. (A: discharged to 2.2 V, B: discharged to 0.8 V, C: discharged to 0.5 V, D: discharged to 0.2 V, E: charged to 1.2 V, and F: charged to 2.2 V).

Figure S3. Cycling performance of GNR and N-GNR after 30 cycles at a current density of 0.1 A g^{-1} .

Figure S4. Long-term cycling stability of Sb₂O₃/N-GNR anode at a current density of 5 A g⁻¹.

 Table S1. Comparison of the Na storage performance of Sb₂O₃/N-GNR with previously reported composites based on Sb₂O₃ and nitrogen-doped carbon nanostructures.

Anode	Current density (A g ⁻¹)	Specific capacity (mAhg ⁻¹)	Reference
Sb/Sb ₂ O ₃ @NCNFs	0.1	527.3 after 100 cycles	1
Sb@Sb ₂ O ₃ @N-3DCHs	0.1	507.9 after 100 cycles	2
SbO ₂ /Sb ₂ O ₃ @NC	0.1	622 after 100 cycles	3
Sb ₂ O ₃ /N-GNR	0.1	658 after 100 cycles	This work

Before cycling

After cycling

Figure S5. Equivalent circuits of Nyquist plots analysis for Sb₂O₃/N-GNR and control anodes before and after 100 cycles.

References

- 1 D. Li, Junzhi Li, J. Cao, X. Fu, L. Zhou and W. Han, *Sustain. Energy Fuels*, 2020, **4** 5732-5738.
- 2 B. Chen, L. Yang, X. Bai, Q. Wu, M. Liang, Y. Wang, N. Zhao, C. Shi, B. Zhou and C. He, *Small*, 2021, **17**, 2006824.
- 3 Z. Han, J. Zheng, F. Kong, S. Tao and B. Qian, *Nano Select* 2021, **2**, 425-432.
- 4 Y. Geng, T. Fujita, R. Bleischwitz, A. Chiu and J. Sarkis, *J. Clean. Prod.*, 2019, **213**, 118020.