

Electronic Supporting Information

Ni₂Mn-layered double oxide electrodes in organic electrolyte based supercapacitors †

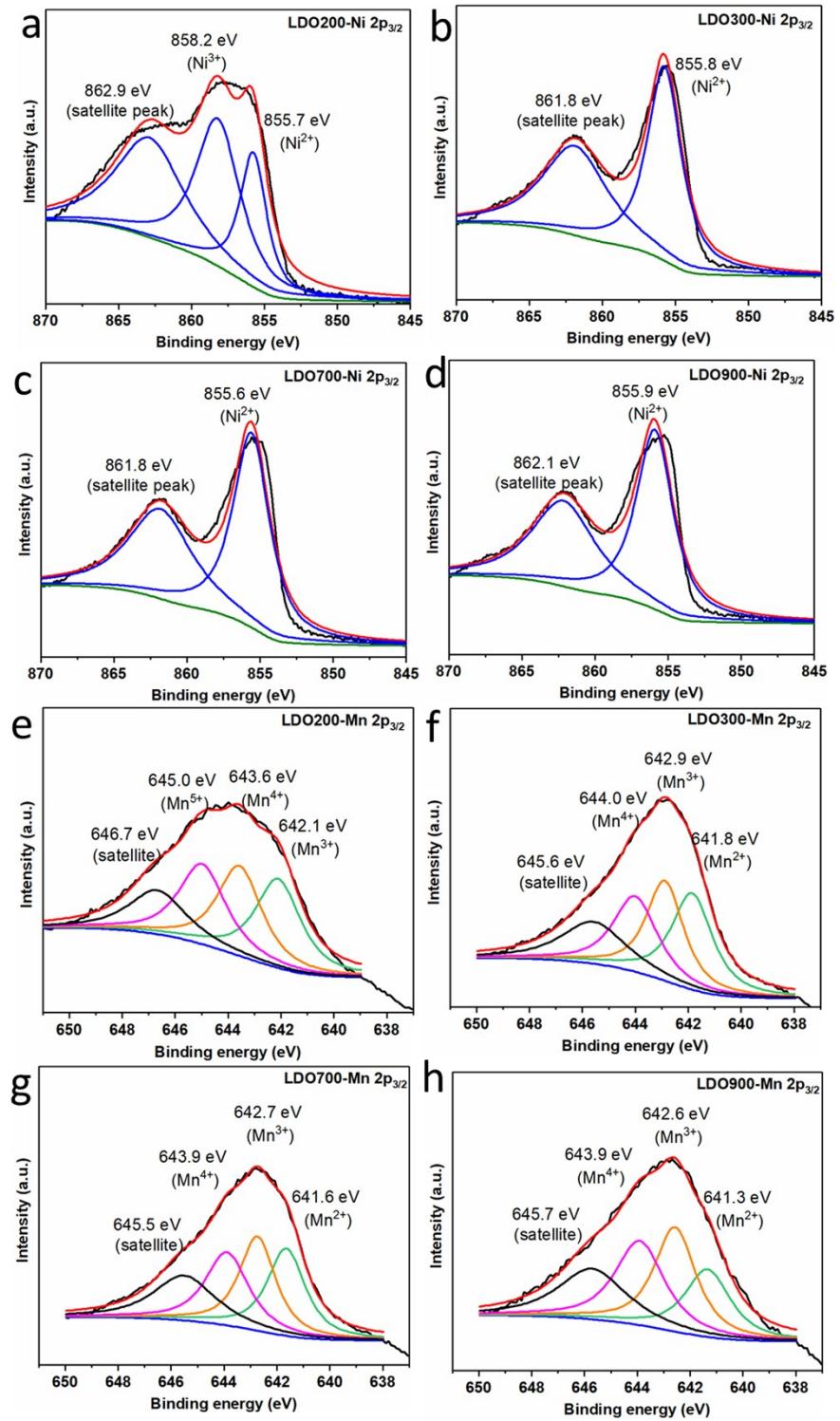
Jindui Hong,^a Chunping Chen,^a Ampornphan Siriviriyannun,^b Dana-Georgiana Crivoi,^a Philip Holdway,^c Jean-Charles Buffet^a and Dermot O'Hare*^a

a. Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. E-mail: dermot.ohare@chem.ox.ac.uk; Tel: +44 (0)1865 272686

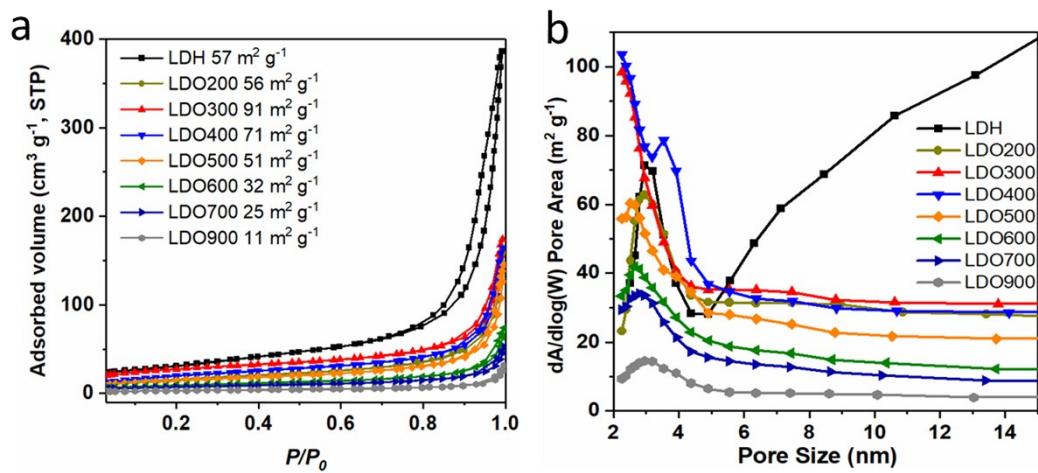
b. SCG Chemicals Co Ltd, 1 Siam Cement Rd, Bangsue, Bangkok, 10800, Thailand

c. Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom

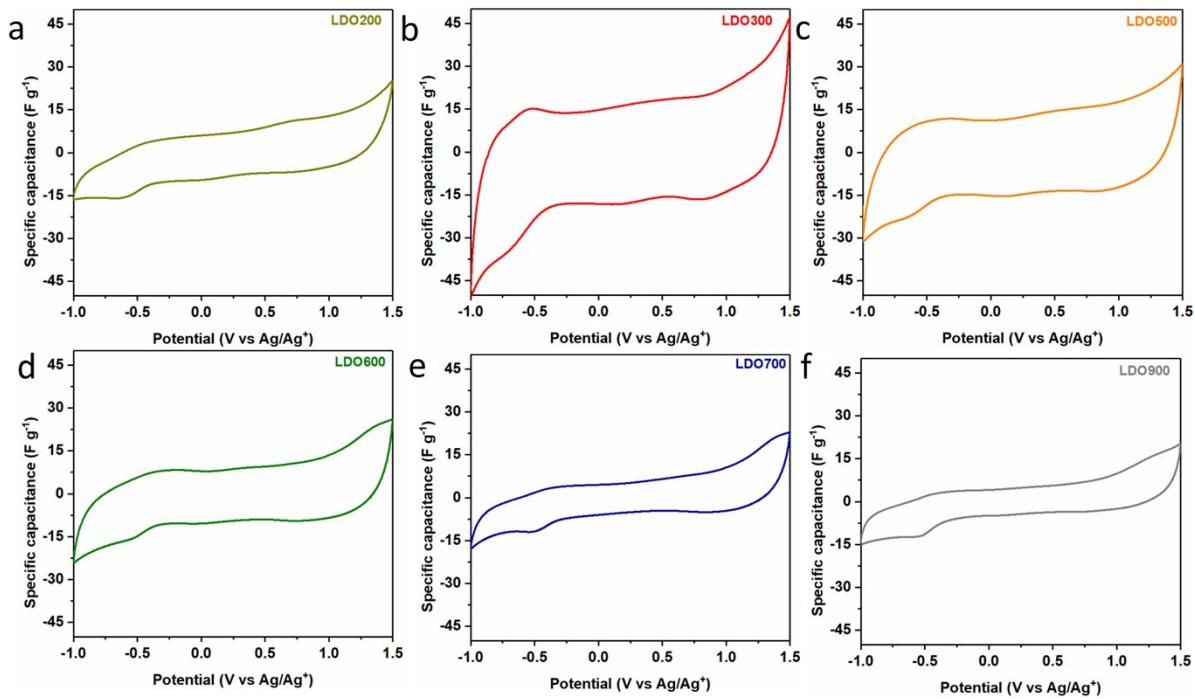
Table of Contents


Chemicals and Materials	1
Materials characterisation	2
Fig. S1. XPS spectra of Ni 2p3/2 for (a) LDO200, (b) LDO300, (c) LDO700, (d) LDO900, XPS spectra of Mn 2p2/3 for (e) LDO200, (f) LDO300, (g) LDO700 and (h) LDO900 indicated that there are Ni ²⁺ and mixing of Mn ²⁺ /Mn ³⁺ /Mn ⁴⁺ in LDO300, LDO700 and LDO900 while mixing of Ni ²⁺ /Ni ³⁺ and mixing of Mn ³⁺ /Mn ⁴⁺ /Mn ⁵⁺ for LDO200.	4
Fig. S2. (a) N ₂ adsorption isotherms of LDH and LDOs and (b) BJH pore size distribution of LDH and LDOs.....	5
Fig. S3. CV curves of (a) LDO200, (b) LDO300, (c) LDO500, (d) LDO600, (e) LDO700 and (f) LDO900 at the scan rate of 50 mV S ⁻¹ . Electrolyte: 1 M tetraethylammonium tetrafluoroborate (TEABF ₄) in acetonitrile.....	6
Fig. S4. (a) The effect of calcination ramping rate (calcination temperature and holding time fixed at 400 °C and 3 h, respectively) and (b) the effect of calcination holding time rate (calcination temperature and ramping rate fixed at 400 °C and 5 °C min ⁻¹ , respectively) on the specific capacitance of LDO400 showing that generally, lower ramping rate, higher specific capacitance and the effect of calcination hold time is negligible. Electrolyte: 1 M tetraethylammonium tetrafluoroborate (TEABF ₄) in acetonitrile.....	7

Chemicals and Materials


Carbon black, (Super P® Conductive, 99+% metals basis, Alfa Aesar), Polyvinylidene fluoride (average molecular weight \sim 534,000 g mol $^{-1}$, powder, PVDF, Sigma-Aldrich), 1-Methyl-2-pyrrolidinone (NMP, Sigma-Aldrich), activated charcoal (AC, Sigma-Aldrich), tetraethylammonium tetrafluoroborate (TEABF $_4$, 99%, Sigma-Aldrich), acetonitrile (AN, anhydrous, 99.8%, Sigma-Aldrich), manganese(II) nitrate tetrahydrate (Mn(NO $_3$) $_2$ ·4H $_2$ O, >97%, Honeywell), nickel(II) nitrate hexahydrate (Ni(NO $_3$) $_2$ ·6H $_2$ O, >98.5%, Sigma-Aldrich), sodium carbonate (Na $_2$ CO $_3$, 99.6%, Acros Organics), nickel(II) hydroxide (Ni(OH) $_2$, Sigma-Aldrich), manganese dioxide (MnO $_2$, activated, \sim 85%, <10 μ m, Sigma-Aldrich), nitric acid (70%, Fisher), sodium hydroxide (NaOH, Sigma-Aldrich) were received and used without further treatment. Nickel foam (purity > 99.99%, porosity \geq 95%, thickness: 1.6 mm, MTI Corporation) were received, cut into 3 cm x 1 cm stripes and sonicated in hydrochloric acid (\sim 37%, Fisher) for 5 minutes, followed sonication in deionised water for 5 minutes, sonication in acetone for another 5 minutes to remove surface nickel oxide layer, before drying overnight in an oven at 60 °C.

Materials characterisation


Powder X-ray diffraction (XRD) was conducted on a diffractometer (PAN-Analytical X'Pert Pro) at 40 kV and 40 mA using Cu K radiation ($\alpha 1 = 1.54057$ Å, $\alpha 2 = 1.54433$ Å, weighted average = 1.54178 Å) from 5 to 70°. The chemical state and chemical compositions of LDH and LDOs were studied using a Thermo Scientific K-Alpha X-ray Photoelectron Spectrometer (XPS) System, with an ion pumped VG Microtech CLAM 4 MCD analyser system equipped with a 200 W unmonochromated Mg K α X-ray radiation of 1253.6 eV, with detection limits of \sim 0.2 atomic %. Thermogravimetric analyses of LDH were carried out using a TGA/DSC1 STAR e system (METTLER TOLEDO) from 30-900 °C at a ramp rate of 10 °C min $^{-1}$ in constant air flow (50 mL min $^{-1}$). Differential thermogravimetric analysis (DTG) was obtained from the 1st derivative of TGA data. Morphology and elemental distribution of LDH and LDOs were observed using a Transmission Electron Microscopy (TEM, JEOL-2100, operated at 200 kV) with an energy-dispersive X-ray Inca spectrometer (EDS, Oxford Instruments). Nitrogen sorption analysis was performed using a porosity analyser (Micrometric TriStar) at -196 °C.

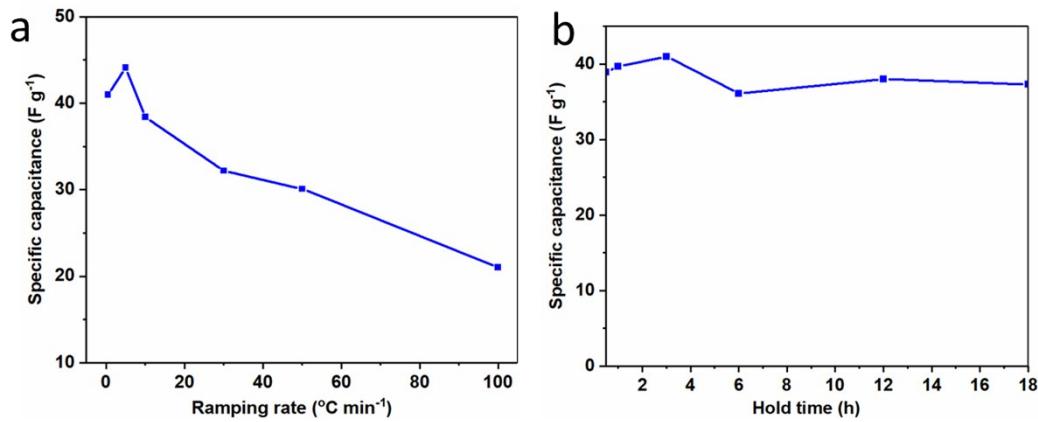

Fig. S1. XPS spectra of Ni 2p3/2 for (a) LDO200, (b) LDO300, (c) LDO700, (d) LDO900, XPS spectra of Mn 2p2/3 for (e) LDO200, (f) LDO300, (g) LDO700 and (h) LDO900 indicated that there are Ni²⁺ and mixing of Mn²⁺/Mn³⁺/Mn⁴⁺ in LDO300, LDO700 and LDO900 while mixing of Ni²⁺/Ni³⁺ and mixing of Mn³⁺/Mn⁴⁺/Mn⁵⁺ for LDO200.

Fig. S2. (a) N_2 adsorption isotherms of LDH and LDOs and (b) BJH pore size distribution of LDH and LDOs.

Fig. S3. CV curves of (a) LDO200, (b) LDO300, (c) LDO500, (d) LDO600, (e) LDO700 and (f) LDO900 at the scan rate of 50 mV S⁻¹. Electrolyte: 1 M tetraethylammonium tetrafluoroborate (TEABF₄) in acetonitrile.

Fig. S4. (a) The effect of calcination ramping rate (calcination temperature and holding time fixed at $400\text{ }^{\circ}\text{C}$ and 3 h, respectively) and (b) the effect of calcination holding time rate (calcination temperature and ramping rate fixed at $400\text{ }^{\circ}\text{C}$ and $5\text{ }^{\circ}\text{C min}^{-1}$, respectively) on the specific capacitance of LDO400 showing that generally, lower ramping rate, higher specific capacitance and the effect of calcination hold time is negligible. Electrolyte: 1 M tetraethylammonium tetrafluoroborate (TEABF₄) in acetonitrile.