Supplementary Information

Synthesis of covalently bounded MWCNT-oligoethylene Linezolid conjugates and their antibacterial activity against bacterial strains

José A. Alatorre-Barajas,¹ Eleazar Alcántar-Zavala,¹ M. Graciela Gil-Rivas,¹ Edgar Estrada-Zavala,² Adrián Ochoa-Terán,¹* Y. Gochi-Ponce,¹* Julio Montes-Ávila,² Alberto Cabrera,¹ Balter Trujillo-Navarrete,¹ Yazmin Yorely Rivera-Lugo,¹ Gabriel Alonso-Núñez,³ Edgar A. Reynoso-Soto,¹ J. L. Medina-Franco⁴

¹ Centro de Graduados e Investigación en Química. Tecnológico Nacional de México/ IT de Tijuana. Tijuana, B. C. México.

² Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Culiacán, Sin. México.

³ Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México. Ensenada, B. C. México.

⁴ Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México. México.

 $* Corresponding \ email: \ adrian.ochoa@tectijuana.edu.mx, \ yadira.gochi@tectijuana.edu.mx$

Figure S1. ¹H NMR (CDCl₃, 400 MHz) of 3-fluoro-4-morpholinylnitrobenzene (1).

Figure S2. ¹³C NMR (CDCl₃, 400 MHz) of 3-fluoro-4-morpholinylnitrobenzene (1).

Figure S3. MS(EI) of 3-fluoro-4-morpholinylnitrobenzene (1).

Figure S4. FTIR of 3-fluoro-4-morpholinylnitrobenzene (1).

Figure S6. ¹³C NMR (CDCl₃, 400 MHz) of 3-fluoro-4-morpholinylaniline (2).

Figure S7. MS(EI) of 3-fluoro-4-morpholinylaniline (2).

Figure S8. FTIR of 3-fluoro-4-morpholinylaniline (2).

Figure S9. ¹H NMR (CDCl₃, 400 MHz) of *N*-carboethoxy-3-fluoro-4-morpholinylaniline (**3**).

Figure S10. ¹³C NMR (CDCl₃, 400 MHz) of *N*-carboethoxy-3-fluoro-4-morpholinylaniline (**3**).

Figure S11.MS(EI) of *N*-carboethoxy-3-fluoro-4-morpholinylaniline (3).

Figure S12. FTIR of *N*-carboethoxy-3-fluoro-4-morpholinylaniline (**3**).

Figure S13. ¹H NMR (CDCl₃, 400 MHz) of (*R*)-[*N*-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methanol (**4**).

Figure S14. ¹³C NMR (CDCl₃, 400 MHz) of (*R*)-[*N*-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methanol (**4**).

FigureS15.FTIRof(R)oxazolidinyl]methanol (4).

(R)-[N-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-

Figure S16. ¹H NMR (DMSO-*d*₆, 400 MHz) of (*R*)-[*N*-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methyl methanesulfonate (**5**).

Figure S17. FTIR of (R)-[N-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methyl methanesulfonate (5).

Figure S18. ¹H NMR (CDCl₃, 400 MHz) of (*R*)-[*N*-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methyl azide (**6**).

Figure S19. ¹³C NMR (CDCl₃, 400 MHz) of (*R*)-[*N*-3-(3-Fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methyl azide (**6**).

Figure S20. MS(EI) of (R)-[N-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl] methyl azide (6).

Figure S21. FTIR of (*R*)-[*N*-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl] methyl azide (**6**).

Figure S22. ¹H NMR (CDCl₃, 400 MHz) of (*R*)-[*N*-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methanamine (**7**).

Figure S23. ¹³C NMR (CDCl₃, 400 MHz) of (R)-[N-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl]methanamine (**7**).

Figure S24. MS(EI) of (R)-[N-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl] methanamine (7).

Figure S25. FTIR of (*R*)-[*N*-3-(3-fluoro-4-morpholinylphenyl)-2-oxo-5-oxazolidinyl] methanamine (**7**).

Figure S26. Raman spectra of MWCNT-1 (black) and MWCNT-2 (red).

Figure S27. Raman spectra of **MWCNT**-*Ox*-1 (red), *f*-**MWCNT**-*S*₁-1 (green), *f*-**MWCNT**-*S*₂-1 (black) and *f*-**MWCNT**-*S*₃-1 (blue).

Figure S28. Raman spectra of **MWCNT**-*Ox*-2 (red), *f*-**MWCNT**-*S*₁-2 (green), *f*-**MWCNT**-*S*₂-2 (black) and *f*-**MWCNT**-*S*₃-2 (blue).

Figure S29. Raman spectra of MWCNT-1 (black), MWCNT-*Ox*-1 (red), *f*-MWCNT-*S*₂-1 (blue solid) and *f*-MWCNT-*S*₂-7-1 (blue dashed).

Figure S30. Raman spectra of **MWCNT-2** (black), **MWCNT-***Ox-2* (red), *f*-**MWCNT-***S*₂-2 (blue solid) and *f*-**MWCNT-***S*₃-2 (blue dashed).

Figure S31. Thermograms of MWCNT-1 (solid line) and MWCNT-2 (dashed line).

Figure S32. Thermograms of MWCNT-Ox-1 (solid line) and MWCNT-Ox-2 (dashed line).

Figure S33. Thermograms of **MWCNT-1** (black), **MWCNT-***Ox***-1** (red), *f***-MWCNT-***S*₁**-1** (blue), *f***-MWCNT-***S*₂**-1** (green) and *f***-MWCNT-***S*₃**-1** (yellow).

Figure S34. Thermograms of **MWCNT-1** (black), **MWCNT-***Ox***-1** (red), *f***-MWCNT***-S*_{*I*}**-1** (blue), *f***-MWCNT***-S*_{*2*}**-1** (green) and *f***-MWCNT***-S*_{*3*}**-1** (yellow).

Figure S35. Thermograms of MWCNT-1 (black), MWCNT-*Ox*-1 (red) and *f*-MWCNT-7-1 (blue).

Figure S36. Thermograms of MWCNT-2 (black), MWCNT-*Ox-*2 (red) and *f*-MWCNT-7-2 (blue).

Figure S37. SEM micrographs of A) **MWCNT-2**, B) **MWCNT-***Ox***-2**, C) *f***-MWCNT***SI***-1** y D) *f***-MWCNT***SI***-7-1**.

Figure S38. SEM micrographs of A) **MWCNT-1**, B) **MWCNT-***Ox***-1**, C) *f***-MWCNT***S*₂**-1** y D) *f***-MWCNT***S*₂**-7-1**.

Figure S39. SEM micrographs of A) **MWCNT-1**, B) **MWCNT-***Ox***-1**, C) *f***-MWCNT***-S*₃**-1** y D) *f***-MWCNT***-S*₃**-7-1**.

Figure S40. SEM micrographs of A) **MWCNT-2**, B) **MWCNT-***Ox***-2**, C) *f***-MWCNT-***S*_{*I*}**-2** y D) *f***-MWCNT-***S*_{*I*}**-7-2**.

Figure S41. SEM micrographs of A) **MWCNT-2**, B) **MWCNT-***Ox***-2**, C) *f***-MWCNT***S*₃**-2** y D) *f***-MWCNT***S*₃**-7-2**.

Figure S42. SEM micrographs of A) **MWCNT-1**, B) **MWCNT-***Ox***-1**, C) *f***-MWCNT***-SI***-1** y D) *f***-MWCNT***-SI***-4-1**.

Figure S43. Radial diffusion assay for antibacterial activity of *f*-MWCNT-*S*₁-4-1 with A) *S. aureus* ATCC 29213 and B) *S. aureus* clinically isolated.

Figure S44. A) Molecular docking of Linezolid (yellow) in the PTC of *E. coli* rRNA and B) interactions map of Linezolid.

Figure S45. A) Molecular docking of **7** (pose one, yellow) and Linezolid (green) in the PTC of *E. coli* rRNA and B) interactions map of **7**.

Figure S46. A) Molecular docking of **7** (pose two, yellow) and Linezolid (green) in the PTC of *E. coli* rRNA and B) interactions map of **7**.

Figure S47. A) Molecular docking of **7** (pose three, yellow) and Linezolid (green) in the PTC of *E*. *coli* rRNA and B) interactions map of **7**.

Figure S48. A) Molecular docking of **7** (pose four, yellow) and Linezolid (green) in the of *E. coli* rRNA and B) interactions map of **7**.

Figure S49. A) Molecular docking of **7** (pose five, yellow) and Linezolid (green) in the PTC of *E*. *coli* rRNA and B) interactions map of **7**.

Figure S50. A) Molecular docking of S_{I} -7 (yellow) and Linezolid (green) in the PTC of *E. coli* rRNA and B) interactions map of S_{I} -7.

Figure S51. A) Molecular docking of S_2 -7 (yellow) and Linezolid (green) in the PTC of *E. coli* rRNA and B) interactions map of S_2 -7.

Figure S52. A) Molecular docking of S_3 -7 (yellow) and Linezolid (green) in the PTC of *E. coli* rRNA B) interactions map of S_3 -7.

Scheme S1. Activation and functionalization of MWCNT-*Ox* with compound 7.

Scheme S2. Plausible mechanism for the amino-oligoethylene Linezolid analogues S_n -7 release from MWCNTs.

Compounds	H- Acceptor-	H-Donor	LogP _(o/a)	Molecular Weight	TPSA
<i>E</i> ₁ - 7	8	3	-0.58	366.39	97.13
E_1 -7-H ⁺	8	3	-0.58	366.39	97.13
E_2 -7	8	3	0.30	394.45	97.13
E_2 -7-H ⁺	8	3	0.30	394.45	97.13
E3- 7	8	3	1.18	422.50	97.13
E_3 -7- H^+	8	3	1.18	422.50	97.13
Optimum values ^{a,b}	<10	<5	<5	<500	<140

Table S1. Verification of the Lipinski rule for the compounds S_n -7 and S_n -7-H⁺.

a. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3-26. doi:10.1016/S0169-409X(00)00129-0.

b. Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies 2004, 1, 337-341. doi:10.1016/j.ddtec.2004.11.007