Supporting Information

Interligand Communication in a Metal Mediated LL'CT System – A Case Study

Sara A. Dille,^[a] Kyle J. Colston,^[a] Stephen C. Ratvasky,^[b] Jingzhi Pu,^[a] and Partha Basu*^[a]

[a]	Dr. S. A. Dille, Mr. K. J. Colston, Dr. J. Pu, and Dr. P. Basu
	Department of Chemistry and Chemical Biology
	Indiana University – Purdue University Indianapolis
	Indianapolis, IN, 46202, USA
	E-mail: basup@iupui.edu
[b]	Mr S. C. Ratvasky
• •	Department of Chemistry and Biochemistry

Department of Chemistry and Biochemistry Duquesne University Pittsburgh, PA, 15282, USA

Experimental Section

Materials. All reagents and solvents were purchased from either Sigma Aldrich or Thermo Fisher Scientific and used as received without further purification. All work was carried out under an inert atmosphere either in a dry box or using Schlenk line techniques under argon. [MoOCl(i Pr₂Dt⁰)₂][PF₆], [MoOCl(Me₂Dt⁰)₂][PF₆]¹², *N*,*N*'-diisopropylpiperazine-2,3-dithione (i Pr₂Dt⁰), and *N*,*N*'-dimethylpiperazine-2,3-dithione (Me₂Dt⁰)⁶⁰ were synthesized following literature procedures. Multivariate regression analyses for Kamlet-Taft models were performed using Minitab 18 software.

Physical Methods. ¹H NMR spectra were recorded on either a Bruker 500 MHz Avance spectrometer or a Bruker 400 MHz Avance spectrometer in air-tight NMR tubes. ³¹P NMR spectra were recorded on a Bruker 400 MHz Avance spectrometer in air-tight NMR tubes. Infrared spectroscopy (FTIR) was recorded using a Thermofisher Nicolet iS10 spectrometer at room temperature using a KBr pellet. Electronic absorbance spectra were collected on a Shimadzu UV-3600 Plus in an air tight quartz cuvette. Cyclic voltammetry was recorded on a Metrohm PGSTAT204 galvanostat/potentiostat. A Pt disk working electrode, Ag^{+/}Ag reference electrode and Pt wire auxillary electrode and tetrabutylammonium hexafluorophosphate supporting electrolyte were used. All voltammograms were referenced to the Fc⁺/Fc couple as an internal standard. All potentials are presented versus the Fc ⁺/Fc couple, Mass spectra were collected using an Agilent Technologies 6520 Accurate Mass-OTOF LC/MS.

Computational Methods. All computational work was performed using Gaussian 09 software package running on UNIX OS and visualized utilizing GaussView 5.0.9.

2

Calculations were done using the Lee-Yang-Parr nonlocal correlation functional⁶¹ (B3LYP) and a combination of the LANL2DZ⁶² effective core potential basis set for molybdenum and the 6-31G** basis set for all other atoms. The crystal structure geometry was optimized using DFT to afford the geometry used for subsequent calculations. Atomic composition for molecular orbitals was determined using C-squared population analysis from single-point calculations with the program *OM-Forge*. The lowest 60 transition energies were generated using non-equilibrium TDDFT calculations with the polarizable continuum model (PCM) algorithm. PCM-TDDFT calculations were performed using acetonitrile as the solvent to match experimental conditions. Electron density difference maps (EDDMs) were generated using the cubman package in Gaussian09. X-Ray Crystallography. Single crystals were mounted using glass fiber and data collected using a Bruker SMART Apex II diffractometer with a graphite monochromator for Mo Ka radiation (0.71073 Å). The absorption correction was performed using SADABS routine.⁶³ The structure solution and the refinement were done using SHELXS-9764 and SHEXLX-2018 programs.⁶⁵ The X-ray data were collected at room temperature (296 K). Hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters. The methyl group on the toluene-2,3-dithiolene moiety of MoO(tdt)(^{*i*}PrDt⁰) was refined as disordered over two moieties with different rotational orientations. The disorder extends to the other carbon and sulfur atoms of the toluene-2,3dithiolene moiety, and they were included in the disorder modeling. The two moieties were restrained to have similar geometries (SAME command of Shelxl) and Uii components of ADPs for disordered atoms closer to each other than 2.0 Angstrom were restrained to be

similar. Subject to these conditions, the occupancy ratio refined to 0.517(5) to 0.483(5). Details of the structure determination are listed in Table S1.

Table S1. Crystallographic Data for MoO(tdt)(^{*i*}Pr₂Dt⁰)

Formula	$C_{17}H_{24}MoN_2OS_4$
Formula weight	496.56
Temperature	296 K
Color/shape	Purple/Block
Crystal system	Orthorhombic
Space group	Pbca
	a=12.6981 (1) Å
Unit cell dimensions	b= 15.8799 (2) Å
	c= 21.2754 (2) Å
Volume (Å ³)	4290.07(8)
Z, Formula unit/unit cell	8
density (calculated)	1.534 Mg m ⁻³
μ (mm ⁻¹)	1.01
Diffractometer	Bruker Smart Apex II
Radiation, graphite monochrome	Mo Kα (λ=0.71073 Å)
Crystal size	0.20 x 0.11 x 0.08 mm
Reflections collected/unique	70727/6665
Parameters/restraints	314/292
R _{int}	0.054
Refinement method	Full-matrix least-squares on F ²
Goodness-of-fit on F ²	1.03
Final R indices $[I \ge 2\sigma(I)]$	R=0.041 wR2=0.100
Maximum residue peaks (e·Å-3)	0.53 and -0.44

Syntheses of Complexes

MoO(bdt)(Me₂Dt⁰) (1). [MoOCl(Me₂Dt⁰)₂][PF₆] (200 mg, 0.312 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of benzenedithiol (63 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple and the release of white vapor. The reaction mixture was stirred for one hour. The solution was filtered, and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. Yield 56% (75 mg, 0.175 mmol). Calcd (Expt) for C₁₂H₁₄MoN₂OS₄: C, 33.80 (33.95): H, 3.31 (3.34); N, 6.33 (6.57). ¹H NMR (CD₃CN): δ 3.77 (s, CH₃, 6H), 3.89 (m, CH₂, 2H), 4.18 (m, CH₂, 2H), 7.10 (dd, *J*= 5.8 Hz, 3.2 Hz, aromatic, 2H), 7.65 (dd, *J*= 5.8 Hz, 3.2 Hz, aromatic, 2H). FTIR (KBr, cm⁻¹): 1531 (vs, C(-N)S), 1354 (vs, C=S), 940 (s, Mo=O). UV-Vis (MeCN): λ_{max} (ϵ , M⁻¹cm⁻¹) 380 nm (1610), 532 nm (4400).

MoO(tdt)(Me₂Dt⁰) (2). [MoOCl(Me₂Dt⁰)₂][PF₆] (200 mg, 0.312 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of toluene-3,4-dithiol (53 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple and the release of white vapor. The reaction mixture was stirred for one hour. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. (79 mg, 0.164 mmol). 52% Calcd (Expt) for $C_{13}H_{16}MoN_2OS_4$: C, 35.45 (35.44): H, 3.66 (3.74); N, 6.36 (6.24). ¹H NMR (CD₃CN): δ 2.34 (s, CH₃, 3H), 3.76 (s, CH₃, 6H), 3.86 (m, CH₂, 2H), 4.14 (m,

5

CH₂, 2H), 6.92 (d, J= 7.87 Hz, aromatic 1H), 7.47 (s, aromatic, 1H), 7.51 (d, J= 7.9 Hz, aromatic, 1H). FTIR (KBr, cm⁻¹): 1534 (vs, C(-N)S), 1355 (vs, C=S), 929 (s, Mo=O). UV-Vis (MeCN): λ_{max} (ϵ , M⁻¹cm⁻¹) 380 nm (2320), 531 nm (6050).

MoO(qdt)(Me₂Dt⁰) (3). [MoOCl(Me₂Dt⁰)₂][PF₆] (200 mg, 0.312 mmol)was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of qunioxalinedithiol (66 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple and the release of white vapor. The reaction mixture was stirred for one hour. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. (20 mg, 0.0401 mmol). 11% Calcd (Expt) for C₁₄H₁₄MoN₄OS₄ +H₂O: C, 33.87(34.21): H, 3.25(2.82); N, 11.28 11.84). ¹H NMR (CD₃CN): δ 3.84 (s, CH₃, 6H), 4.00 (q, *J*= 8.2 Hz, 7.0 Hz, CH₂, 2H), 4.21(q, *J*= 7.0 Hz, 6.4 Hz, CH₂, 2H), 7.63 (dd, *J*= 6.4 Hz, 3.4 Hz, aromatic, 2H), 7.93 (dd, *J*= 6.4 Hz, 3.4 Hz, aromatic, 2H). FTIR (KBr, cm⁻¹): 1524 (vs, C(-N)S), 1350 (vs, C=S), 955 (s, Mo=O). UV-Vis (MeCN): λ_{max} (ϵ , M⁻¹cm⁻¹) 410 nm (6110), 548 nm (7450).

MoO(bdtCl₂)(Me₂Dt⁰) (4). [MoOCl(Me₂Dt⁰)₂][PF₆] (200 mg, 0.312 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of 3,6-dichloro-1,2-benzenedithiol (72 mg, 0.34 mmol) and triethylamine (69 mg, 0.68 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for thirty minutes. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure product. Yield 42% (65 mg,

0.132 mmol). Calcd (Expt) for $C_{12}H_{12}Cl_2MoN_2OS_4$: C, 29.10 (29.35): H, 2.44 (2.50); N, 5.66 (5.69). ¹H NMR (CD₃CN): δ 3.81 (s, CH₃, 6H), 4.10 (m, CH₂, 2H), 4.20 (m, CH₂, 2H), 7.12 (s, aromatic 2H). FTIR (KBr, cm⁻¹): 1527 (vs, C(-N)S), 1353 (vs, C=S), 926 (s, Mo=O). Electronic spectrum, UV-Vis (MeCN): λ_{max} (ϵ , M⁻¹cm⁻¹) 385 nm (2050), 531 nm (4460).

 $MoO(bdt)(^{i}Pr_2Dt^0)$ (5). [MoOCl($^{i}Pr_2Dt^0$)₂][PF₆] (200 mg, 0.26 mmol) was dissolved in 10.5 mL of acetonitrile generating a dark blue solution. A solution of benzenedithiol (49 mg, 0.34mmol) and triethylamine (59 mg, 0.58 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for one hour. The solution was filtered, and dark purple solid was collected. Free ^{*i*}Pr₂Dt⁰ ligand was present in the crude product. To remove the free ligand, the crude product (80 mmol) was dissolved in 7.5 mL of CH₃Cl. MoCl₅ (10 mg, 0.037 mmol) was dissolved in 3 mL of MeOH generating HCl gas. The MoCl₅ was stirred until the cessation of the HCl gas was observed resulting in a green solution. The methanolic solution was added dropwise to the chloroform solution of the crude MoO(bdt)(i Pr₂Dt⁰). The mixture was stirred for 1.5 hours and filtered. A dark purple filtrate of analytically pure complex was collected. Yield 41% (52 mg, 0.107 mmol) Calcd (Expt) for C₁₆H₂₂MoN₂OS₄: C, 39.82 (40.24): H, 4.60 (4.51); N, 5.81 (5.54). ¹H NMR (CD₃CN): δ 1.28 (d, J= 6.7 Hz, CH₃, 6H), 1.43 (d, J= 6.7 Hz, CH₃, 6H), 3.74 (m, CH₂, 2H), 4.02 (m, CH₂, 2H), 5.23 (h, J= 6.7 Hz, CH, 2H), 7.10 (dd, J= 5.8 Hz, 3.2 Hz, aromatic, 2H), 7.65 (dd, J = 5.8 Hz, 3.3 Hz, aromatic, 2H) FTIR (KBr, cm⁻¹): 1501 (vs, C(-N)S), 1350 (vs, C=S), 931 (s, Mo=O). Electronic spectrum, UV-Vis (MeCN): λ_{max} (ϵ , M⁻¹cm⁻¹) 380 (2880), 529 nm (6900).

MoO(tdt)(i **Pr₂Dt⁰**) (6). [MoOCl(i **Pr**₂Dt⁰)₂][PF₆] (200 mg, 0.26 mmol) was dissolved in 9 mL of acetonitrile generating a dark blue solution. A solution of toluene-3,4-dithiol (0.45 g, 0.00029 moles) and triethylamine (59 mg, 0.58 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for one hour. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform resulting in analytically pure product. Yield 58% (77 mg, 0.155 mmol). Calcd (Expt) for C₁₇H₂₄MoN₂OS₄: C, 41.12 (41.04): H, 4.87 (4.76); N, 5.64 (5.52). ¹H NMR (CD₂Cl₂): δ 1.24 (d, CH₃, *J*= 6.9 Hz ,6H), 1.43 (d, *J*= 6.8 Hz, CH₃, 6H), 2.34 (s, CH₃, 3H), 3.62 (m, CH₂, 2H), 3.88 (m, CH₂, 2H), 5.22(h, *J*= 6.7 Hz, CH, 2H), 6.93 (d, *J*=8.1 Hz, aromatic H), 7.47 (s, aromatic, H), 7.51 (d, *J*= 7.9 Hz, aromatic, H). FTIR (KBr, cm⁻¹): 1501 (vs, C(-N)S), 1350 (vs, C=S), 931 (s, Mo=O). UV-Vis (MeCN): λ_{max} (ϵ , M⁻¹cm⁻¹) 380 (2880) 533 nm (7500).

MoO(qdt)(i **Pr₂Dt**⁰) (7). [MoOCl(i **Pr**₂Dt⁰)₂][PF₆] (200 mg, 0.26 mmol) was dissolved in 13.5 mL of acetonitrile generating a dark blue solution. A solution of quinoxalinedithiol (56 mg, 0.29 mmol) and triethylamine (59 mg, 0.58 mmol) in 4.5 mL of methanol was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for one hour. The solution was filtered and green solid was collected. The green solid was washed with CH₃Cl to collect a dark purple filtrate. The solvent was dried en vacuo to obtain analytically pure complex. Yield 34% (49 mg, 0.091 mmol). Calcd (Expt) for C₁₈H₂₂MoN₄OS₄+ CH₃Cl: C, 40.27 (39.77): H, 4.63 (4.52); N, 9.89 (9.16). ¹H NMR (CD₃CN): δ 1.27(d, *J*= 6.7 Hz, CH₃, 6H), 1.41 (d, *J*= 6.7 Hz, CH₃, 6H), 3.63 (m, CH₂, 2H), 3.87 (m, CH₂, 2H), 5.25 (h, *J*= 6.7 Hz, CH, 2H), 7.54 (dd, J= 6.4 Hz, 3.4 Hz, aromatic, 2H), 7.98 (dd, J= 6.3 Hz, 3.4 Hz, aromatic, 2H). FTIR (KBr, cm⁻¹): 1491 (vs, C(-N)S), 1351 (vs, C=S), 950 (s, Mo=O). UV-Vis (MeCN): λ_{max} (ε, M⁻¹cm⁻¹) 400 nm (8240), 543 nm (7070).

MoO(bdtCl₂)('Pr₂Dt⁰) (8). [MoOCl('Pr₂Dt⁰)₂][PF₆] (200 mg, 0.26 mmol) was dissolved in 13.5 mL of acetonitrile generating a dark blue solution. A solution of 3,6-dichloro-1,2benzenedithiol (61 mg, 0.29 mmol) and triethylamine (59 mg, 0.58 mmol) in 1.5 mL of acetonitrile was added dropwise to the dark blue solution initiating an instantaneous color change to dark purple. The reaction mixture was stirred for 15 minutes. The solution was filtered and dark purple solid was collected. The crude product was washed with cold chloroform to obtain analytically pure complex. Yield: 68% (100 mg, 0.181 mmol). Calcd (Expt) for C₁₆H₂₀Cl₂MoN₂OS₄: C, 34.85 (34.65): H, 3.66 (3.67); N, 5.08 (5.08). ¹H NMR (CD₃CN): δ 1.31 (d, *J*= 6.7 Hz, CH₀, 6H), 1.45 (d, *J*= 6.7 Hz, CH₃, 6H), 3.71 (m, CH₂, 2H), 4.01 (m, CH₂, 2H), 5.28 (h, *J*= 6.7 Hz, CH, 2H), 7.23 (s, aromatic 2H). FTIR (KBr, cm⁻¹): 1507 (vs, C(-N)S), 1356 (vs, C=S), 939 (s, Mo=O). UV-Vis (MeCN): λ_{max} (ϵ , M⁻¹cm⁻¹) 390 nm (4070), 530 nm (9400).

Electrochemistry

Figure S1. A plot showing the linearity of the peak current (i_p) versus the square root of the scan rate(v) for complex **6** suggesting diffusion-controlled processes. Fit of the equations are given below.

Oxidation

★ i_p = 1.40E-6(+/-6.36E-8)n^{3/2}AD^{1/2}C^b -8.71E-7(+/-1.27E-6); r²=0.99 ▲ i_p = 5.63E-7 (+/-7.84E-8) n^{3/2}AD^{1/2}C^b -8.56E-7 (+/- 1.57E-6); r²=0.93 Reduction

- i_p = -1.44E-6 (+/- 1.91 E-8) n^{3/2}AD^{1/2}C^b 2.12E-6 (+/- 3.82E-7); r²= 0.99
- $i_p = -1.60E-6(+/-3.78E-8)n^{3/2}AD^{1/2}C^b 3.44E-6(+/-7.56E-7); r^2 = 0.99$

Figure S2 Cyclic voltammogram of ${}^{i}Pr_{2}Dt^{0}$. Scan rate, 100mV s⁻¹; solvent, acetonitrile; temperature, 25°C; Glassy carbon working electrode, Ag/Ag⁺ reference electrode, and a Pt-wire auxiliary electrode; supporting electrolyte, ${}^{t}BuNPF_{6}$. Potentials referenced internally to Fc⁺/Fc couple.

Figure S3. Cyclic voltammogram of Zn(mnt)(${}^{i}Pr_{2}Dt^{0}$) at varying scan rates ; solvent, acetonitrile; temperature, 25°C; Platinum disk working electrode, Ag/Ag⁺ reference electrode, and a Pt-wire auxiliary electrode; supporting electrolyte, Bu₄NPF₆. Potentials referenced internally to Fc⁺/Fc couple. The two poorly defined couples are due to potential dissociation of the ${}^{i}Pr_{2}Dt^{0}$ ligand. Support for this suggestion comes from multiple scan rate experiment. As scan rate increases, the couple at $E_{1/2} = -1556$ mV ($\Delta E_p = 90$ mV) is no longer observed. The peak height of the two reversible couples attributed to the coordinated ligand increase with increasing scan rate whereas the peak heights of the couple at $E_{1/2} = -1556$ mV ($\Delta E_p = 90$ mV) does not increase. At a scan rate of 100 mV/sec the peak heights -1923 mV is ~50% and at a scan rate of 900 mV/sec the peak height at -1923 mV is ~8% of the peak height at -1601 mV. Dissociation of the ligand is a slow electron process and the concentration of free ligand can be decreased by increasing the scan rate.

Electronic Spectra

Figure S4. Absorbance spectra for complexes possessing the Me_2Dt^0 dithione ligand in acetonitrile.

Figure S5. Absorbance spectra for complexes possessing the ${}^{i}Pr_{2}Dt^{0}$ dithione ligand in acetonitrile.

Figure S6. Absorbance spectra of **3** and **7** in acetonitrile.

Solvatochromic Effect

Figure S7. Linear correlation between dipole moment (μ) and the energy of the LL'CT of MoO(bdt)(Me₂Dt⁰). Equation of fit: E = -518.86 μ + 20432 R² = 0.97

Figure S8. Linear correlation between dipole moment (μ) and the energy of the LL'CT of MoO(tdt)(Me₂Dt⁰). Equation of fit: E = -739.58 μ + 21146 R² = 0.93

Figure S10. Linear correlation between dipole moment (μ) and the energy of the LL'CT of MoO(bdt)(ⁱPr₂Dt⁰). Equation of fit: E = - 399.03 μ + 20108 R² = 0.92

Figure S11. Linear correlation between dipole moment (μ) and the energy of the LL'CT of MoO(tdt)(ⁱPr₂Dt⁰). Equation of fit: E = -610.17 μ + 20884 R² = 0.90

Figure S12. Linear correlation between dipole moment (μ) and the energy of the LL'CT of MoO(bdtCl₂)(ⁱPr₂Dt⁰). Equation of fit: E = -338.3 μ + 19833 R² = 0.93

Orbital	E, eV	Mo	Mo(d)	0	tdt	S ^{tdt}	$^{i}Pr_{2}Dt^{0}$	S^{Dt°
L+2	-1.05	48.47	39.81	10.24	17.89	16.34	23.40	17.21
L+1	-1.41	42.55	35.40	9.71	9.32	7.67	38.42	14.78
LUMO	-2.81	25.82	25.37	1.70	3.08	1.56	69.40	22.97
HOMO	-4.91	7.46	4.16	5.63	82.26	39.79	4.66	1.60
H-1	-5.33	1.36	1.05	1.99	87.81	49.26	8.84	6.62
H-2	-5.64	46.93	44.00	0.11	13.71	8.27	39.25	6.25

Table S2. Composition of the molecular orbitals in 6.

Table S3. Dt⁰ fold angles (°) of **2**, **5**, **6**, **7**, and **8** calculated from gas phase optimizations. Compounds without crystallographic data were generated by editing **6** in *GaussView6.0* to change Dt^{2-} and Dt^{0} substituents.

Complex	Dt ⁰ Fold Angle (°)
$MoO(tdt)(Me_2Dt^0)$ (2)	65.93
$MoO(bdt)(^{i}Pr_2Dt^0)$ (5)	70.53
$MoO(tdt)(^{i}Pr_2Dt^0)$ (6)	70.47
$MoO(bdtCl_2)(^{i}Pr_2Dt^0)$ (7)	69.85
$MoO(qdt)(^{i}Pr_2Dt^0)$ (8)	69.58

Table S4. Equation of the fit for the multivariate regression using the Kamlet-Taft model.

Complex MoO(bdt)(Me ₂ Dt ⁰) (1)	Equation of Fit 23726+1514 π*– 1675 α - 9347 β
$MoO(tdt)(Me_2Dt^0) (2)$	26752+1785 $\pi^*\!\!-$ 27025 α - 1406 β
$MoO(bdtCl_2)(Me_2Dt^0)(4)$	20777-3031 π^* + 425.9 α + 606 β
$MoO(bdt)(^{i}Pr_{2}Dt^{0}) (5)$	23041+366
$MoO(tdt)({}^{i}Pr_{2}Dt^{0}) (6)$	25891+1336 π^* - 23442 α - 11962 β
$MoO(bdtCl_2)(^{i}Pr_2Dt^0) (8)$	21829-104 $\pi^*\!-$ 7887 α - 4563 β

Complex	Dipole Moment R ²	Kamlet-Taft R ²
$MoO(bdt)(Me_2Dt^0)$ (1)	0.97	0.98
$MoO(tdt)(Me_2Dt^0) (2)$	0.93	0.94
$MoO(bdtCl_2)(Me_2Dt^0)$ (4)	0.98	0.98
$MoO(bdt)(^{i}Pr_{2}Dt_{0}) (5)$	0.92	0.96
$MoO(tdt)(^{i}Pr_2Dt_0)$ (6)	0.90	0.97
$MoO(bdtCl_2)(^{i}Pr_2Dt^0)$ (8)	0.93	0.99

Table S5. Correlation coefficients of peak maxima fit to the Kamlet-Taft model.

Theoretical Calculations

Charge =	0 Multipli	city = 1	
Мо	-0.432	0.003	0.128
С	-3.633	-1.017	0.206
Ν	3.519	-1.183	-0.197
S	-2.028	-1.772	0.311
0	-0.02	0.464	1.72
S	-2.327	1.303	-0.534
С	-3.764	0.33	-0.151
Ν	2.922	1.551	0.052
С	-5.04	0.908	-0.239
Н	-5.126	1.955	-0.517
S	0.967	-1.799	-0.81
С	-6.191	0.164	0.024
S	0.729	1.37	-1.528
С	-6.045	-1.188	0.377
С	3.845	-2.633	-0.168
Н	3.062	-3.121	-0.75
С	-4.786	-1.772	0.468
Н	-4.687	-2.819	0.742
С	3.953	3.772	-0.375
Н	3.752	4.848	-0.362
Н	4.174	3.479	-1.405
Н	4.849	3.604	0.234

С	3.784	-3.177	1.265
Н	2.8	-2.998	1.705
Н	4.545	-2.722	1.909
Н	3.964	-4.256	1.257
С	4.544	-0.243	0.263
Н	5.153	0.109	-0.58
Н	5.203	-0.763	0.962
С	2.73	3.02	0.162
Н	1.882	3.246	-0.483
С	2.049	0.731	-0.597
С	2.355	3.419	1.596
Н	2.097	4.482	1.619
Н	3.183	3.269	2.299
Н	1.49	2.846	1.943
С	3.878	0.927	0.964
Н	3.373	0.586	1.878
Н	4.633	1.663	1.243
С	5.184	-2.907	-0.862
Н	5.193	-2.502	-1.878
Н	5.335	-3.989	-0.927
Н	6.036	-2.493	-0.314
С	2.296	-0.727	-0.549
С	-7.562	0.795	-0.059
Н	-8.049	0.825	0.924
Н	-8.224	0.23	-0.726
Н	-7.508	1.821	-0.433
Н	-6.928	-1.788	0.585

Excitation energies and oscillator strengths:

1.9465 eV 636.95 nm f=0.0115 <S**2>=0.000 Excited State 1: Singlet-A 0.70049 113 ->114 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2507.39909459 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.3850 eV 519.84 nm f=0.0091 <S**2>=0.000 111 ->114 0.62758 112 ->114 -0.30273 2.4944 eV 497.06 nm f=0.1752 <S**2>=0.000 Excited State 3: Singlet-A 111 ->114 0.30744 112 ->114 0.56780 112 ->115 -0.14893 112 ->116 -0.17355

Excited State 112 ->114 112 ->115 112 ->116 113 ->115	4: Singlet-A 0.10439 0.56066 -0.15536 -0.33777	2.8406 eV 436.47 nm f=0.0146 <s**2>=0.000</s**2>
Excited State 112 ->115 113 ->115	5: Singlet-A 0.33978 0.59747	3.0308 eV 409.08 nm f=0.0034 <s**2>=0.000</s**2>
Excited State 109 ->114 110 ->114 112 ->116	6: Singlet-A 0.17121 0.64063 0.18533	3.0657 eV 404.43 nm f=0.0046 <s**2>=0.000</s**2>
Excited State 110 ->114 112 ->114 112 ->115 112 ->116 113 ->116	7: Singlet-A -0.18069 0.22461 0.11939 0.54462 -0.25749	3.2085 eV 386.43 nm f=0.1255 <s**2>=0.000</s**2>
Excited State 111 ->115 112 ->116 113 ->116	8: Singlet-A 0.15594 0.28653 0.61029	3.3153 eV 373.98 nm f=0.0232 <s**2>=0.000</s**2>
Excited State 109 ->114 112 ->117 112 ->118 113 ->117	9: Singlet-A 0.12833 0.55843 0.24788 -0.26725	3.4525 eV 359.11 nm f=0.0056 <s**2>=0.000</s**2>
Excited State 109 ->114 110 ->114	10: Singlet-A 0.66222 -0.17874	3.4706 eV 357.25 nm f=0.0032 <s**2>=0.000</s**2>
Excited State 111 ->115 113 ->116 113 ->117	11: Singlet-A 0.64750 -0.10787 0.14787	3.5612 eV 348.15 nm f=0.0651 <s**2>=0.000</s**2>
Excited State 111 ->115 111 ->116 112 ->117	12: Singlet-A -0.11913 -0.18849 0.24848	3.6969 eV 335.37 nm f=0.0319 <s**2>=0.000</s**2>

112 ->118 0.11893 113 ->117 0.56256 113 ->118 0.17253 3.8104 eV 325.39 nm f=0.0194 <S**2>=0.000 Excited State 13: Singlet-A 105 ->114 -0.17815107 ->114 0.53624 111 ->116 0.37740 Excited State 14: Singlet-A 3.8181 eV 324.73 nm f=0.0181 <S**2>=0.000 105 ->114 0.12181 107 ->114 -0.36016111 ->116 0.53083 113 ->117 0.14213 113 ->118 0.16120 3.9125 eV 316.89 nm f=0.0544 <S**2>=0.000 Excited State 15: Singlet-A 108 ->114 -0.10789112 ->117 -0.22713112 ->118 0.50035 113 ->117 0.11114 113 ->118 -0.32321 Excited State 16: 3.9883 eV 310.87 nm f=0.0213 <S**2>=0.000 Singlet-A 106 ->114 -0.31306108 ->114 0.55191 110 ->115 -0.16152 112 ->118 0.18408 4.0079 eV 309.35 nm f=0.0178 <S**2>=0.000 Singlet-A Excited State 17: 106 ->114 0.51169 108 ->114 0.39698 110 ->115 0.17722 112 ->118 -0.10505Excited State 18: 4.0864 eV 303.40 nm f=0.0936 <S**2>=0.000 Singlet-A 106 ->114 0.13289 110 ->115 0.11047 111 ->117 0.11717 112 ->117 -0.12638112 ->118 0.27889 113 ->117 -0.16113113 ->118 0.52994 Excited State 19: 4.1768 eV 296.84 nm f=0.0248 <S**2>=0.000 Singlet-A 111 ->117 0.65572

111 ->118 0.12423

4.2372 eV 292.61 nm f=0.0116 <S**2>=0.000 Excited State 20: Singlet-A 0.21900 104 ->114 106 ->114 -0.20315 110 ->115 0.59258 4.3018 eV 288.21 nm f=0.0041 <S**2>=0.000 Excited State 21: Singlet-A 103 ->114 -0.11423104 ->114 -0.12329105 ->114 0.61661 106 ->114 -0.11980107 ->114 0.24420 4.3662 eV 283.97 nm f=0.0326 <S**2>=0.000 Excited State 22: Singlet-A 104 ->114 0.62972 105 ->114 0.15770 106 ->114 0.13554 110 ->115 -0.166344.4504 eV 278.59 nm f=0.0073 <S**2>=0.000 Excited State 23: Singlet-A 109 ->115 0.13758 110 ->116 0.67425 Excited State 24: Singlet-A 4.4871 eV 276.31 nm f=0.0033 <S**2>=0.000 111 ->117 -0.11582111 ->118 0.64608 113 ->119 -0.12271Excited State 25: Singlet-A 4.5981 eV 269.64 nm f=0.0558 <S**2>=0.000 103 ->114 0.56617 105 ->114 0.14260 107 ->115 0.11061 109 ->115 0.24862 113 ->119 0.14037 4.6295 eV 267.81 nm f=0.0029 <S**2>=0.000 Excited State 26: Singlet-A 103 ->114 -0.31111 109 ->115 0.55523 113 ->119 0.13118 Excited State 27: Singlet-A 4.6418 eV 267.10 nm f=0.0615 <S**2>=0.000 109 ->115 -0.14256 111 ->118 0.10484 111 ->121 0.11979 112 ->119 -0.10786

113 ->119 0.61608

4.7577 eV 260.59 nm f=0.0236 <S**2>=0.000 Excited State 28: Singlet-A 109 ->116 0.27602 111 ->121 0.16228 112 ->119 0.46782 113 ->120 -0.34471 4.7731 eV 259.76 nm f=0.0089 <S**2>=0.000 Excited State 29: Singlet-A 107 ->115 0.21167 109 ->116 0.51861 112 ->119 -0.31514 113 ->119 -0.10042Singlet-A 4.8107 eV 257.73 nm f=0.0291 <S**2>=0.000 Excited State 30: 109 ->116 0.27787 111 ->119 0.10900 111 ->121 -0.20458112 ->119 0.21631 113 ->119 0.14494 113 ->120 0.47616 113 ->121 -0.12391 Excited State 31: 4.8633 eV 254.94 nm f=0.0077 <S**2>=0.000 Singlet-A 105 ->115 -0.11500106 ->115 0.34877 107 ->115 0.49262 107 ->116 -0.14406112 ->119 0.13687 113 ->121 0.11561 Excited State 32: Singlet-A 4.8841 eV 253.85 nm f=0.0383 <S**2>=0.000 110 ->117 0.67121 112 ->119 0.11108 Excited State 33: 5.0164 eV 247.16 nm f=0.0154 <S**2>=0.000 Singlet-A 105 ->115 0.15455 106 ->115 0.50334 107 ->115 -0.22939108 ->115 -0.30955Excited State 34: Singlet-A 5.0802 eV 244.05 nm f=0.0153 <S**2>=0.000 110 ->118 -0.15050111 ->119 0.52546 113 ->121 -0.34854

Excited State	35: Singlet-A	5.1479 eV 240.85 nm f=0.0589 <s**2>=0.000</s**2>
106 ->115	0.23033	
107 ->115	-0.14084	
108 ->115	0.45922	
110 ->118	-0.22321	
111 ->119	0.10786	
113 ->121	0.27042	
Excited State	36: Singlet-A	5.1506 eV 240.72 nm f=0.0061 <s**2>=0.000</s**2>
106 ->115	0.14635	
106 ->116	-0.17265	
108 ->115	0.23890	
109 ->118	0.11669	
110 ->118	0.56891	
	0.00072	
Excited State	37: Singlet-A	5.2094 eV 238.00 nm f=0.0348 <s**2>=0.000</s**2>
106 ->116	0.30341	
107 ->116	0.31467	
108 ->115	0.11999	
108 ->116	-0.12356	
109 ->115	-0.11319	
109 ->117	0.36216	
111 ->119	-0 17508	
111 ->120	-0.13526	
113 ->120	-0.16640	
115 - 121	0.10010	
Excited State	38: Singlet-A	5.2194 eV 237.54 nm f=0.0081 <s**2>=0.000</s**2>
106 ->116	0.15554	
107 ->116	0 10114	
108 ->115	-0 25468	
109 ->117	0 20857	
110 ->118	0.20007	
111 ->119	0.31816	
111 ->120	0.17045	
112 ->120	-0 12246	
112 ->120	-0.10969	
112 ->121	0.10707	
113-2121	0.30144	
Excited State	39. Sinolet-A	5 2623 eV 235 61 nm f=0 0072 <\$**2>=0 000
107 ->116	0 11426	5.2020 CV 200.01 mm 1-0.0072 \5 2/-0.000
108 ->116	0 11285	
	0.1205	
111 ->120	0.13037	
112 \110	-0.10202	
112 -2119	-0.12330	
112 ->12U	0.00004	
113 ->120	-0.10003	

Excited State	40:	Singlet-A	5.2988 eV	233.99 nm	f=0.0160	<s**2>=0.000</s**2>
104 ->115	0.	15956				
105 ->116	0.	15174				
106 ->116	0.	42719				
107 ->116	-0	.27396				
108 ->116	-0	.29159				
109 ->117	-0	.13034				
110 ->118	0.	11539				
112 ->120	0.	18514				
Excited State	41:	Singlet-A	5.3569 eV	231.45 nm	f=0.0043	<s**2>=0.000</s**2>
106 ->116	0.	23066				
108 ->116	0.	32084				
111 ->120	0.	20483				
112 ->120	-0	.10581				
112 ->121	0.	48865				
Excited State	42·	Singlet-A	5 3827 eV	230 34 nm	f=0 0046	<\$**2>=0.000
106 ->116	0	19008	0.0027 01	200.01 1111	1 0.0010	
107 ->117	-0	11211				
108 ->116	0	47604				
112 ->121	-0	.39969				
Excited State	43:	Singlet-A	5.4083 eV	229.25 nm	f=0.1751	<s**2>=0.000</s**2>
104 ->115	0.	38268				
105 ->115	0.	10464				
106 ->116	-0	.16401				
107 ->116	-0	.17642				
107 ->117	-0	.11803				
109 ->117	0.	31810				
109 ->118	-0	.28836				
Excited State	44:	Singlet-A	5.4326 eV	228.22 nm	f=0.0101	<s**2>=0.000</s**2>
102 ->114	0.	16363				
105 ->115	0.	57934				
107 ->115	0.	20014				
109 ->117	-0	.11005				
111 ->120	-0	.11958				
Excited State	4 .	Singlot-A	5.4489 eV	227.54 nm	f=0.0006	<\$**2>=0 000
102 ->114	45:	01112151-4				
	45: በ	64540			1 010000	5 _ 0.000
102 >114	45: 0. -0	64540 .12692			1 010000	2 _ 0.000
102 >114 105 ->115 111 ->120	45: 0. -0 0	64540 .12692 16194				
102 >114 105 ->115 111 ->120	45: 0. -0 0.	64540 .12692 16194			1 010000	

100 ->114	-0.23961	
101 ->114	0.19987	
102 ->114	0.13808	
103 ->115	-0.10328	
104 ->115	-0.19897	
109 ->118	-0.18857	
111 ->120	-0.10507	
111 ->121	0.16781	
113 ->122	0.43012	
Excited State	47: Singlet-A	5.5015 eV 225.37 nm f=0.0621 <s**2>=0.000</s**2>
100 ->114	0.23975	
101 ->114	-0.17767	
103 ->115	0.12739	
106 ->117	-0.10970	
107 ->116	0.16829	
109 ->118	0.13177	
111 ->120	0.21300	
111 ->121	0.10324	
112 ->122	-0.10107	
113 ->122	0.42764	
Excited State	48: Singlet-A	5.5346 eV 224.02 nm f=0.0222 <s**2>=0.000</s**2>
104 ->115	-0.26849	
105 ->115	0.16586	
107 ->117	-0.22299	
108 ->116	-0.11954	
111 ->120	0.41425	
112 ->121	-0.14051	
113 ->121	-0.13108	
113 ->122	-0.11303	
113 ->123	0.10605	
Excited State	49: Singlet-A	5.5548 eV 223.20 nm f=0.0278 <s**2>=0.000</s**2>
100 ->114	-0.24516	
101 ->114	0.29052	
104 ->115	0.34898	
107 ->116	0.10953	
107 ->117	0.12770	
110 ->119	-0.14344	
111 ->120	0.24071	
113 ->121	-0.10523	
Excited State	50: Singlet-A	5.5971 eV 221.52 nm f=0.3068 <s**2>=0.000</s**2>
105 ->116	-0.23973	
107 ->117	0.16790	

110 ->119	0.15418	
111 ->121	0.34851	
113 ->120	0.15887	
113 ->122	-0.13031	
113 ->123	0.38273	
Excited State	51: Singlet-A	$5.6245 \text{ eV} 220.44 \text{ nm} \text{ f}=0.0377 < S^{**2} >= 0.000$
105 ->116	0.27856	
107 ->117	0.25760	
110 ->119	0.25134	
111 ->121	-0.19794	
112 ->122	-0.16703	
113 ->120	-0.10374	
113 ->122	0.11229	
113 ->123	0.29587	
113 ->124	0.21572	
Evoited State	E2. Singlat A	E 6242 oV 220.0E nm f = 0.0022 oV * 2 ov = 0.000
	0 1 2 2 E 0	5.0345 ev 220.05 mm 1-0.0052 <5 22-0.000
105 ->115	-0.13330	
103 - 2110 107 > 117	-0.10029	
10/->11/	0.19520	
110 ->119	0.43097	
111 ->120	0.10085	
113 ->123	-0.3/643	
113 ->124	-0.15653	
Excited State	53: Singlet-A	5.6411 eV 219.79 nm f=0.3031 <s**2>=0.000</s**2>
103 ->115	-0.13789	
105 ->116	0.22921	
109 ->117	0.16348	
109 ->118	0.37368	
111 ->121	0.13076	
112 ->122	0.28176	
112 ->125	-0.10729	
113 ->122	0.10099	
113 ->124	0.21434	
	54: Singlet-A	5.0004 ev 218.27 mm I=0.0302 <5***2>=0.000
104 ->110	0.19/42	
105 -> 116	0.2/118	
107 ->116	0.11384	
10/->11/	0.16546	
109 ->118	-0.2039/	
112 ->122	0.35/66	
113 ->124	-0.32231	

Excited State	55: Singlet-A	5.6932 eV 217.77 nm f=0.1248 <s**2>=0.000</s**2>
101 ->114	0.13860	
103 ->115	-0.12258	
104 ->116	0.21958	
105 ->116	0.14729	
106 ->117	-0.19196	
106 ->118	0.11019	
107 ->117	-0.14419	
107 ->118	0.13816	
108 ->117	0.24140	
109 ->118	0.17675	
111 ->121	0.13873	
112 ->122	-0.15132	
113 ->122	-0.11436	
113 ->123	0.13431	
113 ->124	-0.20188	
Excited State	56: Singlet-A	5.7106 eV 217.11 nm f=0.0709 <s**2>=0.000</s**2>
104 ->116	-0.18794	
105 ->116	0.23858	
106 ->117	0.39136	
107 ->117	-0.14292	
108 ->117	-0.16357	
110 ->119	0.13909	
112 ->122	-0.21471	
113 ->124	-0.22602	
Excited State	57: Singlet-A	5.7214 eV 216.70 nm f=0.0515 <s**2>=0.000</s**2>
101 ->114	0.19353	
103 ->115	0.19094	
104 ->116	0.43783	
106 ->117	0.17131	
108 ->117	-0.22790	
110 ->119	0.15879	
113 ->123	-0.10885	
113 ->124	0.19923	
Excited State	58: Singlet-A	5.7396 eV 216.01 nm f=0.0513 <s**2>=0.000</s**2>
99 ->114	0.13143	
100 ->114	0.24059	
101 ->114	0.29713	
103 ->115	0.23650	
104 ->116	-0.24899	
107 ->117	-0.12148	
110 ->119	0.16992	
112 ->122	0.23811	

Excited State	59:	Singlet
99 ->114	0.20	373
100 ->114	0.3	7849
101 ->114	0.23	3903
103 ->115	-0.2	5745
106 ->118	-0.1	2772
107 ->118	-0.1	2166
110 ->119	-0.1	4531
111 ->121	0.1^{4}	4409
112 ->122	-0.1	0573
113 ->123	-0.1	1229

t-A 5.7444 eV 215.84 nm f=0.1251 <S**2>=0.000

Excited State 60: Singlet-A 5.7640 eV 215.10 nm f=0.0240 <S**2>=0.000

103 ->115	0.29635
106 ->117	0.16461
108 ->117	0.46809
108 ->118	0.13178
111 ->121	0.15247
113 ->123	-0.12717
113 ->124	0.17370