Supporting Information

Design, synthesis, biological assessment, and *In Silico* ADME prediction of some new 2-(4-(methyl sulfonyl) phenyl) benzimidazoles as selective cyclooxygenase-2 inhibitors

Mohamed A. S. Badawy ^{a*}, Eman K. A. Abdelall^b, El-Shaymaa El-Nahass^c, Khaled R. A. Abdellatif ^{b, d}, Hamdy M. Abdel-Rahman^{a, e}

1. General Information:

Melting points were detected by Tomas-Hoover capillary melting apparatus without any correction. All solvents, chemical, and reagent supplied from Aldrich chemical company (Milwaukee, WI), and El Nasr pharmaceutical chemical companies, Cairo, Egypt. Infrared (IR) spectra was monitored as films on KBr discs using Schimadzu FT-IR 8400S spectrophotometer and values were presented as cm⁻¹. Purity of the synthesized compounds, and Reaction's progress were checked by using precoated thin layer chromatography (TLC) silica gel plates 60F254 with thickness of 0.25 supplied from MERCK, Darmstadt, Germany. UV lamb was used to monitor reaction process. ¹³C NMR and ¹H NMR spectra were carried out on a Bruker avance III 400 MHz spectrophotometer, faculty of pharmacy, Benisuef University and Mansoura University, Egypt in dimethyl sulfoxide (DMSO-d₆) or D₂O as a solvent. Chemical shift was estimated in ppm on δ scale and *J* (Coupling constant) was estimated in Hertz. Microanalysis for C, H, and N were performed on perkin-Elmer 2400 analyzer (perkin-Elmer, Norwalk, CT. USA) at the regional center for mycology and Biotechnology, Al-azhar University, Egypt. All results were with in ± 0.4% of the theoretical values.

Table

Comorod		111 NIN	AD(nnm)		S1
compa.					51
No	N=CH ₃ (Ratio %)	N-CH ₂ (Ratio %) ^a	N=CH (Ratio %)	CONH(Ratio %)	NI
11a	-	5.14, 5.62 (26:74)	8.12, 8.28 (74:26)	11.83, 12.01 (74:26)	- 1-
11b	-	5.13, 5.62 (26:74)	8.12, 8.26 (74:26)	11.88, 12.07 (74:26)	cn
11c	-	5.11, 5.58 (26:74)	8.10, 8.12 (74:26)	11.60, 11.99 (74:26)	al
11d	-	5.13, 5.62 (26:74)	8.11, 8.26 (74:26)	11.84, 12.03 (74:26)	ch
11e	-	5.11, 5.64 (26:74)	8.13, 8.20 (74:26)	11.83, 11.98 (74:26)	511
11f	-	5.61, 5.63 (23:77)	8.12, 8.27 (77:23)	11.91, 12.10 (77:23)	ar
11g	-	5.14, 5.51 (24:76)	8.06, 8.25 (76:24)	11.70, 11.82 (76:24)	ra
11h	-	5.16, 5.65 (25:75)	8.12, 8.26 (75:25)	11.81, 12.01 (75:25)	
11i	-	5.24, 5.67 (23:77)	8.11, 8.26 (77:23)	11.80, 12.01 (77:23)	of
11j	-	5.48, 5.58 (22:78)	8.13, 8.27 (78:22)	11.10, 12.09 (78:24)	in
11k	-	5.58 <i>,</i> 5.49 (31:69)	8.10, 8.25 (69:31)	11.86, 12.05 (69:31)	ia
11	-	5.24, 5.56 (29:71)	8.10, 8.26 (71:29)	11.78, 12.02 (71:29)	le
12a	2.37, 2.26 (77:23)	5.28, 5.64 (23:77)	-	10.98, 11.08 (23:77)	se
12b	2.29, 2.50 (69:31)	5.24 <i>,</i> 5.59 (31:69)	-	11.09, 12.02 (31:69)	d
12c	2.29, 2.35 (77:23)	5.28, 5.57 (23:77)	-	10.94, 11.07 (31:69)	u
12d	2.25, 2.23 (78:22)	4.93 <i>,</i> 5.69 (22:78)	-	10.99, 11.18 (22:78)	pe
12f	2.47, 2.56 (62:38)	5.26, 6.64 (38:62)	-	11.07, 11.12 (38:62)	in

unds

^{a)}Approximate ratio as determined from peak integration.

^a Total energy= $E_{Str} + E_{Ang} + E_{Stb} + E_{Oop} + E_{Tor} + E_{Vdw} + E_{Ele}$

Table S3: Ulcer index, ulcer number, and preventive index of the most potent AI Compounds and relative ulcerogenicity to reference drugs indomethacin and celecoxib.

		Ulcer index (m	m)		Preventive Index (%)		
Group Name	Mean	% to	% to	Mean	% to	% to	% to
		Indomethacin	Celecoxib		Indomethacin	Celecoxit	o normal
							control
Normal Control	0	0	0	0	0	0	100
Indomethacin	13	100	371.4	8	100	200	
(Ulcer Control)							
Celecoxib	3.5	26.9	100	4	50	100	73.0
11b	0.83	6.3	23.7	1	12.5	25	93.5
12d	1	7.6	28.5	0.33	4.1	8.2	92.3
11k	4.5	34.6	128.5	2.67	33.3	66.7	65.3

Compound	Affinity Kcal/mol	Distance (in Å)	from main residue	Functional Group	Interaction
Celecoxib	-17.6675	3.76	Ser353	Diazole ring	pi-H
		2.84	Arg120	- <u>SO</u> 2NH2-	H-acceptor
11b	-16.9546	4.09	Ala527	Diazole ring	pi-H
		3.26	Arg120	$-\underline{SO_2}CH_3$	H-acceptor
12b	-15.3202	4.04	Ala527	Diazole ring	pi-H

Table S4: Data of molecular modeling for test compounds, and Celecoxib obtained by docking inCOX-2(PDB ID: 1CX2) active site.

		3.18	Ser353	= <u>N</u> -NH	H-acceptor	
		3.28	Arg120	- <u>SO</u> 2CH3	H-acceptor	
11c	-13.3881	4.36	Gly526	Ph-ring	pi-H	
		3.26	Arg120	$-\underline{SO}_2CH_3$	H-acceptor	
11f	-12.5111	3.27	Arg120	$-\underline{SO_2CH_3}$	H-acceptor	
11g	-12.1350	3.32	Arg120	$-\underline{SO_2CH_3}$	H-acceptor	
12d	-16.0124	4.03	Ala527	Diazole ring	pi-H	
		3.29	Arg120	- <u>SO</u> 2CH3	H-acceptor	
11j	-13.4163	3.75	Ala527	Diazole ring	pi-H	
		3.31	Arg120	- <u>SO</u> ₂ CH ₃ -	H-acceptor	
11k	-16.1407	4.17	Gly526	Benzo-moiety	pi-H	
		3.99	Ala527	Diazole ring	pi-H	
		3.30	Ser353	= <u>N</u> -NH	H-acceptor	Ta
		3.29	Arg120	$-SO_2CH_3$	H-acceptor	ble

S5: Physicochemical properties and lipophilicity of the most active compounds predicted by swissADME software.

Code	Lipophilicity	Physicochemical properties						
	consensus log P	M.W ^a g/mol	Rot. bond	H-bond acc.	H-bond don.	MR ^b	TPSA ^C (A ²)	%ABS ^d
11a	3.24	432.49	7	5	1	120.31	101.80	73.879
11b	3.81	466.94	7	5	1	125.32	101.80	73.879
11c	3.29	462.52	8	6	1	126.80	111.02	70.6981
11d	3.57	450.49	7	6	1	120.27	101.80	73.879
11f	4.37	501.38	7	5	1	130.33	101.80	73.879
11g	3.83	496.97	8	6	1	131.81	111.03	70.6947
11h	4.15	484.93	7	6	1	125.28	101.80	73.879
11j	4.16	481.97	7	5	1	139.29	101.80	73.879
11k	3.61	476.55	8	6	1	131.77	111.03	70.6947
111	3.94	464.51	7	6	1	125.24	101.80	73.879
12a	3.58	446.52	7	5	1	125.12	101.80	73.879
12b	4.06	480.97	7	5	1	130.13	101.80	73.879
12d	4.64	515.42	7	5	1	135.41	104.80	72.844
12f	4.45	494.99	7	5	1	135.10	101.80	73.879

Abbreviation: **aMW**, molecular weight; **bMR**, molar refractivity; **CTPSA**, topological polar surface; **%ABS^d**: percentage of absorption

Property			Compounds				
		celecoxib	11b	11k	12b	12d	
Absorption	Water solubility	-3.61	-2.893	-2.894	-2.893	-2.894	
	(log mol/L)						
	Caco2 permeability	1.067	0.795	0.725	0.743	0.642	
	$(\log \text{Papp in } 10^{-6} \text{ cm/s})$						
	Intestinal absorption (% Absorbed)	93.126	97.683	93.231	98.485	99.577	
	Skin Permeability (log Kp)	-2.755	-2.735	-2.735	-2.735	-2.735	
	P-glycoprotein substrate	yes	Yes	Yes	Yes	Yes	
	P-glycoprotein I inhibitor	no	Yes	Yes	Yes	Yes	
	P-glycoprotein II inhibitor	yes	Yes	Yes	Yes	Yes	
Distribution	VDss (human) (log L/kg)	0.095	-0.297	-0.412	-0.304	-0.322	
	Fraction unbound (Fu)	0.125	0.212	0.203	0.207	0.198	
	BBB permeability (log BB)	-0.952	-0.373	-0.474	-0.371	-0.594	
	CNS permeability (log PS)	-2.086	-2.169	-2.374	-2.083	-1.963	
Metabolism	CYP3A4 substrate	yes	Yes	Yes	Yes	Yes	
	CYP2C19 inhibitior	Yes	Yes	Yes	Yes	Yes	

Table S6: ADME data of the target synthesized compounds predicted using pkCSM software.

	CYP2C9 inhibitior	Yes	Yes	Yes	Yes	Yes
	CYP3A4 inhibitior	No	Yes	Yes	Yes	Yes
Excretion	Total Clearance (log ml/min/kg)	0.472	0.528	0.614	0.518	0.45
	Renal OCT2 substrate	Yes	Yes	Yes	Yes	Yes
	Max. tolerated dose (log	0.163	-0.232	-0.271	-0.26	-0.282
	mg/kg/day)					
	hERG I inhibitor	No	No	No	Yes	No
	hERG II inhibitor	No	Yes	Yes	Yes	Yes
	Hepatotoxicity	Yes	No	No	No	No
	Skin Sensitisation	No	No	No	No	No
	<i>T.Pyriformis</i> toxicity(log ug/L)	0.429	0.285	0.285	0.285	0.285
	Minnow toxicity (log mM)	0.658	-1.695	-1.878	-2.167	-2.746

Figure. S1: Histopathological examination of gastric mucosa (A) for negative control group (B) for indomethacin (C) for celecoxib (D) for compounds **11b** and **12d** (E) for compound **11k**.

. Figure. S2: 2D and 3D interaction of compound 12b (a) and (b) compound 12d (c) and (d) compound 11k (e) and (f)

1. ¹H Spectra of 7a:

Act

2. ¹H Spectra of 7b:

Go

3. ¹H Spectra of 7c:

4. ¹H Spectra of 8a:

5. ¹H Spectra of 8b:

6. ¹H Spectra of 8c:

7. ¹H and ¹³C NMR Spectra of 9a:

8. ¹H and ¹³C NMR Spectra of 9b

9. ¹H and ¹³C NMR Spectra of 9c:

10. ¹H and ¹³C NMR Spectra of 10a:

11. ¹H and ¹³C NMR Spectra of 10b:

12. ¹H and ¹³C NMR Spectra of 10c:

13. ¹H and ¹³C NMR Spectra of 11a:

СН₃

MOHAMEDA-2 PROTON_BSU DMSO {C:\data} nmr 6

14. ¹H and NOESY Spectra of 11b:

15. ¹H and ¹³C NMR Spectra of 11c:

17. ¹H and ¹³C NMR Spectra of 11e:

18. ¹H and ¹³C NMR Spectra of 11f:

19. ¹H and ¹³C NMR Spectra of 11g:

20. ¹H and ¹³C NMR Spectra of 11h:

22. ¹H and ¹³C NMR Spectra of 11j:

23. ¹H Spectra of 11k:

24. ¹H and ¹³C NMR Spectra of 111:

25. ¹H and ¹³C NMR Spectra of 12a:

26. ¹H and ¹³C NMR Spectra of 12b:

27. ¹H and ¹³C NMR Spectra of 12c:

MARCO-CL3 PROTON_BSU DMSO {C:\data} nmr 13

28. ¹H and ¹³C NMR Spectra of 12d:

30. ¹H and ¹³C NMR Spectra of 12f:

