## Supporting Information

# Design, synthesis, biological assessment, and In Silico ADME prediction of some new 2-(4-(methyl sulfonyl) phenyl) benzimidazoles as selective cyclooxygenase-2 inhibitors 

Mohamed A. S. Badawy ${ }^{a^{*}}$, Eman K. A. Abdelall ${ }^{\text {b }}$, El-Shaymaa El-Nahass ${ }^{\text {c }}$, Khaled R. A. 

## 1. General Information:

Melting points were detected by Tomas-Hoover capillary melting apparatus without any correction. All solvents, chemical, and reagent supplied from Aldrich chemical company (Milwaukee, WI), and El Nasr pharmaceutical chemical companies, Cairo, Egypt. Infrared (IR) spectra was monitored as films on KBr discs using Schimadzu FT-IR 8400S spectrophotometer and values were presented as $\mathrm{cm}^{-1}$. Purity of the synthesized compounds, and Reaction's progress were checked by using precoated thin layer chromatography (TLC) silica gel plates 60F254 with thickness of 0.25 supplied from MERCK, Darmstadt, Germany. UV lamb was used to monitor reaction process. ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra were carried out on a Bruker avance III 400 MHz spectrophotometer, faculty of pharmacy, Benisuef University and Mansoura University, Egypt in dimethyl sulfoxide (DMSO- $\mathrm{d}_{6}$ ) or $\mathrm{D}_{2} \mathrm{O}$ as a solvent. Chemical shift was estimated in ppm on $\delta$ scale and $J$ (Coupling constant) was estimated in Hertz. Microanalysis for $\mathrm{C}, \mathrm{H}$, and N were performed on perkin-Elmer 2400 analyzer (perkin-Elmer, Norwalk, CT. USA) at the regional center for mycology and Biotechnology, Al-azhar University, Egypt. All results were with in $\pm 0.4 \%$ of the theoretical values.

Table

| Compd. | ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{ppm})$ |  |  |  | S1: ${ }^{1} \mathrm{H}-$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No | $\mathrm{N}=\mathrm{CH}_{3}$ (Ratio \%) | $\mathrm{N}-\mathrm{CH}_{2}\left(\right.$ Ratio \%) ${ }^{\text {a }}$ | $\mathrm{N}=\mathrm{CH}$ (Ratio \%) | CONH(Ratio \%) | NMR |
| 11a |  | 5.14, 5.62 (26:74) | 8.12, 8.28 (74:26) | 11.83, 12.01 (74:26) |  |
| 11b | - | 5.13, 5.62 (26:74) | 8.12, 8.26 (74:26) | 11.88, 12.07 (74:26) | chemic |
| 11c | - | 5.11, 5.58 (26:74) | 8.10, 8.12 (74:26) | 11.60, 11.99 (74:26) | al |
| 11d | - | 5.13, 5.62 (26:74) | 8.11, 8.26 (74:26) | 11.84, 12.03 (74:26) | shifts |
| 11e | - | 5.11, 5.64 (26:74) | 8.13, 8.20 (74:26) | 11.83, 11.98 (74:26) |  |
| 11f | - | 5.61, 5.63 (23:77) | 8.12, 8.27 (77:23) | 11.91, 12.10 (77:23) | and the |
| 11g | - | 5.14, 5.51 (24:76) | 8.06, 8.25 (76:24) | 11.70, 11.82 (76:24) | ratios |
| 11h | - | 5.16, 5.65 (25:75) | 8.12, 8.26 (75:25) | 11.81, 12.01 (75:25) |  |
| 11i | - | 5.24, 5.67 (23:77) | 8.11, 8.26 (77:23) | 11.80, 12.01 (77:23) | of peak |
| 11j | - | 5.48, 5.58 (22:78) | 8.13, 8.27 (78:22) | 11.10, 12.09 (78:24) | intensit |
| 11k | - | 5.58, 5.49 (31:69) | 8.10, 8.25 (69:31) | 11.86, 12.05 (69:31) |  |
| 111 | - | 5.24, 5.56 (29:71) | 8.10, 8.26 (71:29) | 11.78, 12.02 (71:29) |  |
| 12a | 2.37, 2.26 (77:23) | 5.28, 5.64 (23:77) | - | 10.98, 11.08 (23:77) | selecte |
| 12b | 2.29, 2.50 (69:31) | 5.24, 5.59 (31:69) | - | 11.09, 12.02 (31:69) |  |
| 12c | 2.29, 2.35 (77:23) | 5.28, 5.57 (23:77) | - | 10.94, 11.07 (31:69) |  |
| 12d | 2.25, 2.23 (78:22) | 4.93, 5.69 (22:78) | - | 10.99, 11.18 (22:78) | peaks |
| 12f | $\begin{gathered} 2.47,2.56 \\ (62: 38) \\ \hline \end{gathered}$ | 5.26, 6.64 (38:62) | - | 11.07, 11.12 (38:62) |  |

unds
${ }^{\text {a) }}$ Approximate ratio as determined from peak integration.
Isomer

Table S2: The values of the total energies of E and Z isomers of compound $11 \mathrm{~b}^{\mathrm{a}}$
${ }^{\text {a }}$ Total energy $=\mathrm{E}_{\text {Str }}+\mathrm{E}_{\text {Ang }}+\mathrm{E}_{\text {Stb }}+\mathrm{E}_{\text {Oop }}+\mathrm{E}_{\text {Tor }}+\mathrm{E}_{\mathrm{Vdw}}+\mathrm{E}_{\text {Ele }}$

Table S3: Ulcer index, ulcer number, and preventive index of the most potent AI Compounds and relative ulcerogenicity to reference drugs indomethacin and celecoxib.

|  | Ulcer index (mm) |  |  |  | Ulcer number |  | Preventive <br> Index <br> (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group Name |  |  |  |  |  |  |  |


| Compound | Affinity <br> Kcal/mol | Distance (in $\AA$ ) from main residue | Functional <br> Group | Interaction |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Celecoxib | -17.6675 | 3.76 | Ser353 | Diazole ring | pi-H |
|  |  | 2.84 | Arg120 | $-\mathrm{SO}_{2} \mathrm{NH}_{2}-$ | H -acceptor |
| 11b | -16.9546 | 4.09 | Ala527 | $\mathrm{Diazole} \mathrm{ring}^{\text {pi-H }}$ | pi- |
|  |  | 3.26 | Arg120 | $-\mathrm{SO}_{2} \mathrm{CH}_{3}$ | H -acceptor |
| 12b | -15.3202 | 4.04 | Ala527 | Diazole ring | pi-H |

Table S4: Data of molecular modeling for test compounds, and Celecoxib obtained by docking in COX-2(PDB ID: 1CX2) active site.

|  |  | 3.18 | Ser353 | $=\mathrm{N}-\mathrm{NH}$ | H -acceptor |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.28 | Arg 120 | $-\underline{S O}_{2} \mathrm{CH}_{3}$ | H -acceptor |
| 11c | -13.3881 | 4.36 | Gly526 | Ph-ring | pi-H |
|  |  | 3.26 | Arg 120 | $-\mathrm{SO}_{2} \mathrm{CH}_{3}$ | H -acceptor |
| 11f | -12.5111 | 3.27 | Arg 120 | $-\mathrm{SO}_{2} \mathrm{CH}_{3}$ | H -acceptor |
| 11g | -12.1350 | 3.32 | Arg 120 | $-\mathrm{SO}_{2} \mathrm{CH}_{3}$ | H -acceptor |
| 12d | -16.0124 | 4.03 | Ala527 | Diazole ring | pi-H |
|  |  | 3.29 | Arg 120 | $-\underline{S O}_{2} \mathrm{CH}_{3}$ | H -acceptor |
| 11j | -13.4163 | 3.75 | Ala527 | Diazole ring | pi-H |
|  |  | 3.31 | Arg 120 | $-\mathrm{SO}_{2} \mathrm{CH}_{3}-$ | H -acceptor |
| 11k | -16.1407 | 4.17 | Gly526 | Benzo-moiety | pi-H |
|  |  | 3.99 | Ala527 | Diazole ring | pi-H |
|  |  | 3.30 | Ser353 | $=\underline{\mathrm{N}}$ - NH | H -acceptor |
|  |  | 3.29 | Arg 120 | $-\mathrm{SO}_{2} \mathrm{CH}_{3}$ | H -acceptor |

S5: Physicochemical properties and lipophilicity of the most active compounds predicted by swissADME software.

| Code | Lipophilicity consensus $\log P$ | $\begin{aligned} & \text { M.Wáa } \\ & \text { g/mol } \end{aligned}$ | Rot. bond | Physicochemical properties |  |  |  | \% $\mathrm{ABS}^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { H-bond } \\ & \text { acc. } \end{aligned}$ | $\begin{aligned} & \text { H-bond } \\ & \text { don. } \end{aligned}$ | MR ${ }^{\text {b }}$ | $\underset{\left(\mathbf{A}^{2}\right)}{\text { TPSA }^{\mathbf{2}}}$ |  |
| 11a | 3.24 | 432.49 | 7 | 5 | 1 | 120.31 | 101.80 | 73.879 |
| 11b | 3.81 | 466.94 | 7 | 5 | 1 | 125.32 | 101.80 | 73.879 |
| 11c | 3.29 | 462.52 | 8 | 6 | 1 | 126.80 | 111.02 | 70.6981 |
| 11d | 3.57 | 450.49 | 7 | 6 | 1 | 120.27 | 101.80 | 73.879 |
| 11f | 4.37 | 501.38 | 7 | 5 | 1 | 130.33 | 101.80 | 73.879 |
| 11g | 3.83 | 496.97 | 8 | 6 | 1 | 131.81 | 111.03 | 70.6947 |
| 11h | 4.15 | 484.93 | 7 | 6 | 1 | 125.28 | 101.80 | 73.879 |
| 11j | 4.16 | 481.97 | 7 | 5 | 1 | 139.29 | 101.80 | 73.879 |
| 11k | 3.61 | 476.55 | 8 | 6 | 1 | 131.77 | 111.03 | 70.6947 |
| 111 | 3.94 | 464.51 | 7 | 6 | 1 | 125.24 | 101.80 | 73.879 |
| 12a | 3.58 | 446.52 | 7 | 5 | 1 | 125.12 | 101.80 | 73.879 |
| 12b | 4.06 | 480.97 | 7 | 5 | 1 | 130.13 | 101.80 | 73.879 |
| 12d | 4.64 | 515.42 | 7 | 5 | 1 | 135.41 | 104.80 | 72.844 |
| 12 f | 4.45 | 494.99 | 7 | 5 | 1 | 135.10 | 101.80 | 73.879 |

Abbreviation: ${ }^{\text {a }} \mathbf{M W}$, molecular weight; ${ }^{\text {b }} \mathbf{M R}$, molar refractivity; ${ }^{\text {CTPSA, }}$, topological polar surface; $\mathbf{\%} \mathbf{A B S}{ }^{\text {d }}$ : percentage of absorption

| Property |  |  | Compounds |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | celecoxib | 11b | 11k | 12b | 12d |
| Absorption | Water solubility | -3.61 | -2.893 | -2.894 | -2.893 | -2.894 |
|  | (log mol/L) |  |  |  |  |  |
|  | Caco2 permeability | 1.067 | 0.795 | 0.725 | 0.743 | 0.642 |
|  | (log Papp in $\left.10^{-6} \mathrm{~cm} / \mathrm{s}\right)$ |  |  |  |  |  |
|  | Intestinal absorption (\% Absorbed) | 93.126 | 97.683 | 93.231 | 98.485 | 99.577 |
|  | Skin Permeability (log Kp) | -2.755 | -2.735 | -2.735 | -2.735 | -2.735 |
|  | P-glycoprotein substrate | yes | Yes | Yes | Yes | Yes |
|  | P-glycoprotein I inhibitor | no | Yes | Yes | Yes | Yes |
|  | P-glycoprotein II inhibitor | yes | Yes | Yes | Yes | Yes |
| Distribution | VDss (human) (log L/kg) | 0.095 | -0.297 | -0.412 | -0.304 | -0.322 |
|  | Fraction unbound (Fu) | 0.125 | 0.212 | 0.203 | 0.207 | 0.198 |
|  | BBB permeability (log BB) | -0.952 | -0.373 | -0.474 | -0.371 | -0.594 |
|  | CNS permeability (log PS) | -2.086 | -2.169 | -2.374 | -2.083 | -1.963 |
|  | CYP3A4 substrate | yes | Yes | Yes | Yes | Yes |
|  | CYP2C19 inhibitior | Yes | Yes | Yes | Yes | Yes |

Table S6: ADME data of the target synthesized compounds predicted using pkCSM software.

|  | CYP2C9 inhibitior | Yes | Yes | Yes | Yes | Yes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CYP3A4 inhibitior | No | Yes | Yes | Yes | Yes |
| Excretion | Total Clearance ( $\operatorname{log~\mathrm {ml}/\mathrm {min}/\mathrm {kg}\text {)}{}^{\text {a}}\text {(}{}^{\text {a}}\text {(}}$ | 0.472 | 0.528 | 0.614 | 0.518 | 0.45 |
|  | Renal OCT2 substrate | Yes | Yes | Yes | Yes | Yes |
|  | Max. tolerated dose (log $\mathrm{mg} / \mathrm{kg} /$ day) | 0.163 | -0.232 | -0.271 | -0.26 | -0.282 |
|  | hERG I inhibitor | No | No | No | Yes | No |
|  | hERG II inhibitor | No | Yes | Yes | Yes | Yes |
|  | Hepatotoxicity | Yes | No | No | No | No |
|  | Skin Sensitisation | No | No | No | No | No |
|  | T.Pyriformis toxicity(log ug/L) | 0.429 | 0.285 | 0.285 | 0.285 | 0.285 |
|  | Minnow toxicity ( $\log \mathrm{mM}$ ) | 0.658 | -1.695 | -1.878 | -2.167 | -2.746 |




Figure. S1: Histopathological examination of gastric mucosa (A) for negative control group (B) for indomethacin (C) for celecoxib (D) for compounds $\mathbf{1 1 b}$ and $\mathbf{1 2 d}(E)$ for compound 11 k .



Figure. S2: 2D and 3D interaction of compound 12b (a) and (b) compound 12d (c) and (d) compound 11 k (e) and (f)

## 1. ${ }^{1} \mathrm{H}$ Spectra of 7a:

A-1
proton su DMSO \{C:\nmr-data\} Student 9



Act
Got

A-1
proton su DMSO $\{C: \backslash n m r-d a t a\}$ Student 9

## ERUKER



## 2. ${ }^{1}$ H Spectra of 7b:

EX-M. ABOALHASSAN-A2
PROTON_BSU DMSO \{C: \data) abeer 20


EX-M. ABOALHASSAN-A2


## 3. ${ }^{1} \mathrm{H}$ Spectra of 7 c :




## 4. ${ }^{1} \mathrm{H}$ Spectra of 8a:

PROTON_BSU DMSO (C:\data\} abeer 18





Current
Nata Parameters
EXPNO
PROCNO
F2


## 5. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{8 b}$ :

B-2
proton_su DMSO \{C:\nmr-data\} Student 20





## 6. ${ }^{1} \mathrm{H}$ Spectra of 8 c :

ex-m.aboanassan-Bs
PROTON_BSU DMSO \{C: \data\} abeer 17

$\infty \infty \infty \infty \infty \infty \times \dot{\sim} \dot{\sim}$


ex-m.aboalhassan-B3
PROTON_BSU DMSO \{C:\data\} abeer 17


$\begin{array}{lllllllllllllllllllllllllll}8.8 & 8.7 & 8.6 & 8.5 & 8.4 & 8.3 & 8.2 & 8.1 & 8.0 & 7.9 & 7.8 & 7.7 & 7.6 & 7.5 & 7.4 & 7.3 & 7.2 & 7.1 & 7.0 & 6.9 & \mathrm{ppm}\end{array}$


## 7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 9 a :



Martha Moheb-C1-AS-proton




## 8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 9 b



```
MARCO-28
```


9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 9 c :


## 10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 10 a :



## 11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 10 b :




(8) 字


|  | Data Parameters <br> Martha Moheb-E2-WH-prot 10 1 |
| :---: | :---: |
| F2- Acquisition faramoters |  |
| ${ }_{\text {dite }}^{\text {date }}$ |  |
| $\underset{\text { timstum }}{\text { Time }}$ | ${ }_{\text {spect }}^{11.19 \mathrm{~h}}$ |
| ${ }_{\text {Probil }}$ | 2108618_3964, |
| ${ }_{\text {TD }}^{\text {Pupleg }}$ | ${ }_{6} 6536$ |
| svens |  |
| ${ }_{\text {xs }}$ |  |
|  |  |
| PIDRES |  |
|  |  |
| RGDG |  |
|  |  |
| ${ }_{\text {TDO }}^{\text {D1 }}$ ( 1.00000000 sec |  |
|  |  |
|  |  |
|  |  |
| F2-Processing param |  |
| $\underset{\text { wFm }}{\substack{\text { sp }}}$ |  |
|  |  |
| ${ }^{4.8}$ | 0.30 Hz |
| ${ }_{\mathrm{pc}}^{\mathrm{ar}}$ | 1.00 |



## 12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 10 c :



MARCO-53
C13-BSU DMSO $\{C: \backslash d a t a\}$ nmr 1


## 13. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11a:



## 14. ${ }^{1} \mathrm{H}$ and NOESY Spectra of 11 b :

AHMED $\mathrm{S}-1 \mathrm{H}$
PROTON_BSU DMSO $\{\mathrm{C}: \backslash$ data\} abeer 11

## RRUKER



MOHAMED-11B
NOESY DMSO $\{C: \backslash d a t a\}$ abeer 7


ppm



compound 11c


## 16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11 d :


compound 11d


## 17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11 e :



FEBY-CL2
C13-BSU DMSO (C: \data) nmr 20



Current Data Parameters

NAME Feb06-2017-rimr | NAME |
| :--- |
| EXPNO |
| Febo6-2017-rmir |
| 10 |

F2 - Acquisition Parameters
Date_ 20170206

| Date_ |  | 20170206 |
| :---: | :---: | :---: |
| Time |  | 11.12 |
| INSTRUM |  | spect |
| PROBHD | 5 mm | PABBO ${ }^{\text {PE/ }}$ |
| PULPROG |  | zg30 |
| TD |  | 65536 |
| SOLVENT |  | DMSO |
| NS |  | 16 |
| DS |  | 2 |
| SWH |  | 8012.820 |
| FIDRES |  | 0.122266 |
| M0 |  | 4.0894465 |
| RG |  | 102.37 |
| DW |  | 62.400 |
| DE |  | 6.50 |
| TE |  | 313.2 |


| SFO1 |  | 400.1324710 MHz |
| :---: | :---: | :---: |
| NUC1 |  | 1H |
| P1 |  | 10.00 usec |
| PLW1 |  | 16.00000000 W |
| F2 - | - Proces | ing parameters |
| SI |  | 65536 |
| SF |  | 400.1300000 MHz |
| WDW |  | EM |
| SSB | 0 |  |
| LB |  | 0.10 Hz |
| GB | 0 |  |
| PC |  | 1.00 |

FEBY-CL2-D2O
PROTON_BSU DMSO \{C:\data\} nmr 23


## 18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11 f :



19. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11 g :



20. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11 h :



## 21. ${ }^{1}$ H Spectra of 11 i :



AHMED S - M2 (D20)
PROTON_BSU DMSO \{C:\data\} nmr 8


## 22. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11 j :



MOHAMED-11J
C13-BSU DMSO (C: \data) abeer 18

## 23. ${ }^{1} \mathrm{H}$ Spectra of 11 k :



## 24. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 111 :

AHMED S-M 8
PROTON_BSU DMSO \{C:\data\} nmr 19



AHMED S- M8
DEPTQ-BSU DMSO $\{C: \backslash$ data $\}$ nmr 21

BRUKER

25. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 12a:


MOHAMED-12a
DEPTQ-BSU DMSO \{C:\data\} abeer 21


## 26. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 12b:

AHMED-1A
PROTON_BSU DMSO $\{C: \backslash d a t a\} n m r$



AHMED $S-1 A$
C13-BSU DMSO (C: \data) nmr 22


## 27. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 12 c :



28. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 12 d :


29. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 12 e :

JOHN-34




## 30. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 2 f}$ :




