Electronic Supplementary Information (ESI)

Rapid and selective detection of aluminum ion using 1,2,3-triazole-4,5-dicarboxylic acid-functionalized gold nanoparticle-based colorimetric sensor

Shengliang Zhao,^{a, b} Liqiong Chen,^{*a, c} Feiyan Liu,^a Yongyao Fan,^a Yiheng Liu,^a Yulai Han,^a Yunfei Hu,^a Jingyun Su^a and Chunyan Song^c

^a College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong Province, China

^b College of Applied Technology, Shenzhen University, Shenzhen, Nanshan District, Guangdong Province, China

^c Analysis and Testing Center, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong Province, China

* Corresponding author, E-mail address: chenliqiong@sztu.edu.cn

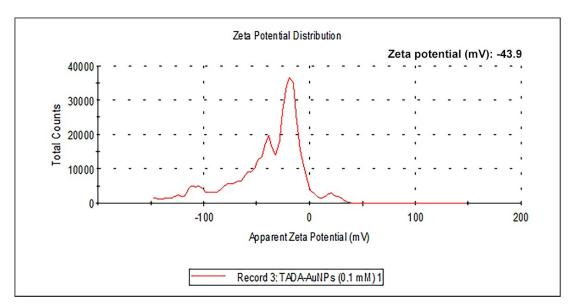


Fig. S1 Zeta potential diagram of TADA-AuNPs (0.1 mM) when pH=6.3.

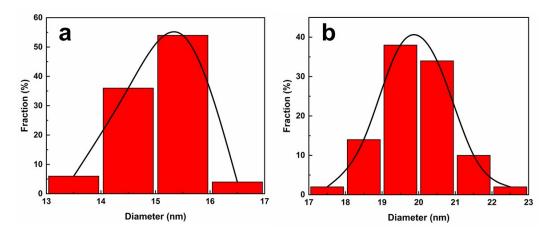


Fig. S2 TEM particle size distribution diagram of TADA-AuNPs with Na3Ct/HAuCl4 molar ratios of 6.4:1 and 12.8:1 (50 particles are randomly selected for measurement).

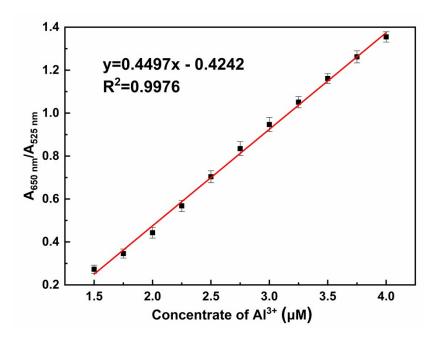


Fig. S3 The standard curve line of TADA-AuNPs in presence of different concentrations of Al³⁺ (1.5-4.0 μ M). The detection limit (DL) of Al³⁺ by TADA-AuNPs was determined from the following equation: DL=3 σ /S, σ is the standard deviation of the blank solution, S is the slope of the standard curve line. DL=3 \times 0.002249/0.4497=15 nM.

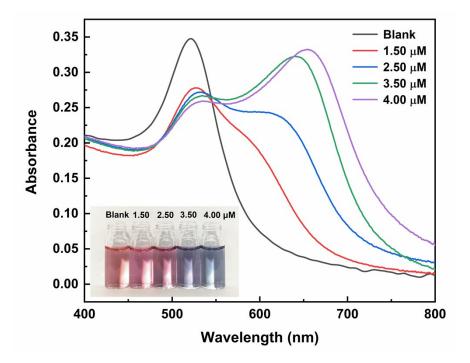


Fig. S4 UV-Vis spectrum and photo (inset) of actual river water sample spiked with Al³⁺ (1.50, 2.50, 3.50, 4.00 μ M) detection.