Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information

Theoretical study of ternary silver fluorides AgMF₄ (M = Cu, Ni, Co) formation at pressures up to 20 GPa

Mateusz A. Domański, a* Mariana Derzsi a, b and Wojciech Grochala a*

^aCentre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097 Warsaw, Poland. E-Mail: m.domanski@cent.uw.edu.pl, w.grochala@cent.uw.edu.pl

^bAdvanced Technologies Research Institute, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24, Trnava, Slovakia.

Table of contents

- S1. Estimated phase-transition pressures for the substrates
- S2. Supplementary Figures
- **S3.** Supplementary Tables
- S4. Γ-point vibration frequencies
- S5. Crystal structures in POSCAR format
- References

S1. Estimated phase-transition pressures for the substrates

The calculations were performed for the pressures up to 20 GPa, thus we considered the known phase transitions (PTs) for AgF₂¹ (sequence $Pbca \rightarrow Pca2_1$ (~8 GPa) $\rightarrow Pbcn$ (~14 GPa)), AgF² (NaCl-type \rightarrow CsCl-type (1-3 GPa)), CoF₂^{3,4} (rutile $\rightarrow Pnnm$ (~4 GPa) $\rightarrow Pbca/Pa\overline{3}$ (~8 GPa) $\rightarrow I4/mmm$ (~12 GPa)), NiF₂⁴ (rutile $\rightarrow Pnnm$ (~4 GPa) $\rightarrow I4/mmm$ (~10 GPa)) and CuF₂⁵ ($P2_1/c \rightarrow Pbca$ (~9 GPa)).

Our results are presented on the **Figure S3** and in the **Table S1**. All of the abovementioned PTs were confirmed using a chosen theoretical approach, resulting in PT pressure differences smaller than 1.0 GPa (the only exception is nearly 2 GPa shift for 3^{rd} PT of CoF₂). We indicate also that the so-called in literature "distorted fluorite" HP polymorph of NiF₂ (assumed *I*4/*mmm*) would have too high enthalpy. Instead, we propose formation of orthorhombic distorted PdF₂ type structure (*Pbca* symmetry), which is consistent with CoF₂ and CuF₂ sequences of pressure-induced PTs.

S2. Supplementary Figures

Figure S1. Performed XtalOpt quests for the lowest-enthalpy structures for the AgCuF₄, AgNiF₄ and AgCoF₄ stoichiometries for Z=4 at 10 GPa (with the exception for AgF₂·CuF₂ systems, studied with Z=2). All structures energies are marked with blue diamonds, while structures with simultaneously the lowest enthalpy & volume are marked with orange squares (they are candidate for higher pressures phases). Brief description of structures not mentioned in the main article: (1) Ag^{II}Cu^{II}F₄ structure with linked pure layers (of AgF₂ and CuF₂); (2) Ag^{II}Ni^{II}F₄ with infinite flat chains [AgF_{4/2}] and [NiF_{4/2}]; (3) Ag^{II}Ni^{II}F₄ flat layers consisting of both Ag(II) and Ni; (4) Ag^{II}Ni^{II}F₄ buckle layers consisting of both Ag and Ni; (5) Ag^{II}Co^{III}F₄ polymorph of distorted KBrF₄ type; (6) AgCoF₄ polymorph with mixed valences Ag(I,II) and Co(II,III) of distorted rutile type; (7) Ag^ICo^{III}F₄ with infinite chains of [CoF_{2/1}F_{4/2}] and Ag(I). All indicated AgF₂ type structures feature Ag^{II}M^{III}F₄ valences, while all KMnF4 feature Ag^{II}M^{III}F₄ valences.

Figure S2. Performed EA quests for the lowest-enthalpy structures for the AgCuF₄, AgNiF₄, AgCoF₄ and NiF₂ stoichiometries for Z=4 (with the exception for AgF₂:CuF₂ systems, studied with Z=2). All structures energies are marked with blue diamonds, while structures with simultaneously the lowest enthalpy & volume are marked with orange squares and are connected with orange lines. During the search for AgCuF₄ at 10 GPa (**b**) many AgF₂ type polymorphs were found of nearly equal energy, so finally application of the lowest-energy antiferromagnetic model was crucial and lead to HP1 polymorph. In the search (**e**) obtained polymorphs' energies were higher than for manually found KFeF₄-LT polymorph (LP). For each composition and pressure the total number (including duplicates, not shown on the plots above) of obtained structures is: (a) 500, (b) 1200, (c) 1000, (d) 1000, (e) 500, (f) 800, and (g) 1000. The number of unique structures obtained is (a) 486, (b) 1102, (c) 614, (d) 574, (e) 336, (f) 753, and (g) 765 structures, for each system respectively.

Figure S3. Enthalpy versus pressure diagrams for parent binary fluorides.

Figure S4. Pressure versus volume plots for the lowest-enthalpy polymorphs of AgCuF4, AgNiF4 and AgCoF4 with respect to the considered substrates.

Figure S5. Structures of AgCuF₄ originating from various substitutions within AgF₂ type structure enabled by its orthorhombic symmetry, after sequential geometry optimization runs: (a) $\pm \vec{b}$ separate layers polymorph, (b) $\pm \vec{a}$ (HP1 polytype), (c) $\pm \vec{a}$ mixed-layers polymorph, and (d) $\pm \vec{c}$ mixed-layers polymorph.

Figure S6. Crystal structures of (a) parent AgF₂, and the lowest-energy predicted (b) AgCuF₄, and (c) AgNiF₄, and metastable (d) Ag^{II}Co^{II}F₄ at 10 GPa (HP1 structure of each). The threshold for Ag-F bond drawing is 2.15 Å in all cases. This view is rotated by 90° along c (in AgF₂ case) or a (in the other cases) with respect to the Figure 3.

Figure S7. Orbital-projected electronic density of states (pDOS) of Ag'Co^{III}F₄ at 0 GPa, calculated on DFT+U (a) HSE06 level (b). Dashed lines indicate total DOS, while silver states are drawn in grey, fluorine in green, and cobalt in magenta.

Figure S8. Atom-projected electronic band structures of the lowest-energy polymorphs of AgF_2 , $AgCuF_4$, $AgNiF_4$ and $Ag^{II}Co^{II}F_4$ (from left to right, respectively) at 0 GPa. Colour intensities relate to atomic contribution to a given band. Dotted line marks the maximum energy of Ag(II) upper Hubbard band, showing the increasing contribution of M^{2+} in valence bands.

Figure S9. Orbital projected electronic density of states (pDOS) of presented here systems, calculated on HSE06 level. From the top to bottom: parent AgF_2 and considered $Ag^{II}M^{II}F_4$ (M = Cu, Ni, Co) compounds. Red arrows indicate lower and upper Hubbard (LHB and UHB) bands of Ag^{2*} . Dashed lines indicate total DOS, while silver states are drawn in grey, fluorine in green, copper in blue, nickel in orange and cobalt in magenta.

S3. Supplementary Tables

Table S1. Phase transition pressures obtained from DFT+U calculations for parent binary fluorides compared with experimental data.

	AgF ₂					
PT	Calc.	Exp.	Ref.			
1	7.3	7.8	1			
П	13.7	14.2	1			
	CoF	2				
PT	Calc.	Exp.	Ref.			
1	4.0	3.6	3			
П	7.0	8	3			
Ш	9.9	12	3			
	NiF	2				
PT	Calc.	Exp.	Ref.			
I	4.4	4-5	4			
П	9.9	10	4			
	CuF	2				
PT	Calc.	Exp.	Ref.			
I.	8.6	9	5			

Substrates phase transitions < 20 GPa

*all data given in GPa

Table S2. Comparison of DFT+U and hybrid HSE06 energies of formation and volume for presented ternary fluorides and parent phases of binary fluorides. ΔEr denotes formation energy with respect to binary fluorides with d-metals at +II oxidation state.

	Structures at 0 GPa	1		DFT+U				HSE06	
System	Structure type	Symmetry	ΔE _f / kJ/mol	V / ų	V_{prod}/V_{substr}	ΔE _f / kJ/mol	V / ų	V _{prod} /V _{substr}	E _{gap} / eV
Ag ^{II} Co ^{II} F ₄	AgF ₂ type (LP)	P21/c	5.7	75.18	100.7%	6.7	77.32	100.1%	1.240
			*-20.2			*-5.6			
Ag ⁱ Co ^{III} F ₄	KFeF₄ type	Pnma	-4.2	76.19	102.0%	-25.1	77.32	103.0%	2.445
			*-30.1			*-37.4			
AgNiF ₄	AgF ₂ type (LP)	P21/c	8.6	72.98	100.2%	12.0	73.38	99.8%	2.238
AgCuF ₄	AgF ₂ type (LP)	P21/c	6.7	74.25	101.4%	6.1	75.78	101.3%	2.501
AgF ₂	LP	Pbca	-	40.48	-	-	41.06	-	2.510
CuF ₂	CuF ₂ type	P21/c	-	32.74	-		33.77		4.556
NiF ₂	Rutile type	P4/mmm	-	32.37	-		32.46		5.538
CoF ₂	Rutile type	P4/mmm	-	34.19	-		34.03		4.360

*with respect to the AgF + CoF_3 reaction

	Structures at 10 GPa	I		DFT+U				HSE06	
System	Structure type	Symmetry	ΔH _f / kJ/mol	V / ų	V_{prod}/V_{substr}	ΔH _f / kJ/mol	V / ų	V_{prod}/V_{substr}	E _{gap} / eV
Ag ^{II} Co ^{II} F ₄	AgF ₂ type (HP1)	P21/c	3.2	64.63	101.6%	5.9	65.02	101.9%	1.275
Ag ⁱ Co ⁱⁱⁱ F ₄	KMnF₄ type (HP1)	P21/m	-12.6	64.49	101.4%	-26.4	65.39	103.0%	2.142
AgNiF ₄	AgF ₂ type (HP1)	P2₁/c	-3.9	63.07	100.2%	-2.1	63.57	100.2%	1.690
AgCuF ₄	AgF ₂ type (HP1)	P2₁/c	-1.9	63.78	100.5%	-3.5	64.94	100.4%	2.433
AgF ₂	HP1	Pca2 ₁	-	35.19	-	-	35.62	-	2.493
CuF ₂	AgF ₂ type	Pbca	-	28.28	-	-	29.06	-	5.542
NiF ₂	AgF ₂ type	Pbca	-	27.73	-	-	27.83	-	5.431
CoF ₂	AgF ₂ type	Pbca	-	28.40	-	-	28.16	-	4.376

		AgF ₂		AgCuF ₄			AgNiF ₄			Ag"Co"	F4		Ag ⁱ Co ^{III}	F4
p / GPa	E _{gap} / eV	Structure	E _{gap} / eV	ΔH _f / kJ/mol	Structure	E _{gap} / eV	ΔH _f / kJ/mol	Structure	E _{gap} / eV	ΔH _f / kJ/mol	Structure	E _{gap} / eV	ΔH _f / kJ/mol	Structure
0	1.334	LP	1.463	6.72	LP	1.091	8.61	LP	0.899	5.66	LP	2.020	-4.25	LP
1	1.302	LP	1.437	7.43	LP	1.094	8.73	LP	0.867	5.98	LP	1.965	-3.34	LP
2	1.307	LP	1.444	6.93	LP	1.079	8.94	LP	0.851	6.43	LP	2.057	-3.73	HP1
3	1.293	LP	1.429	5.83	LP	0.587	8.45	HP1	0.834	6.95	LP	1.991	-5.34	HP1
4	1.277	LP	1.433	4.53	LP	0.589	6.32	HP1	0.836	7.42	HP1	1.961	-7.05	HP1
5	1.281	LP	1.417	3.24	LP	0.590	4.28	HP1	0.812	7.65	HP1	1.911	-8.82	HP1
6	1.266	LP	1.538	1.70	HP1	0.591	2.33	HP1	0.798	5.67	HP1	1.898	-10.49	HP1
7	1.269	LP	1.530	0.24	HP1	0.593	0.49	HP1	0.792	3.82	HP1	1.847	-12.15	HP1
8	1.275	HP1	1.532	-1.11	HP1	0.615	-1.20	HP1	0.772	3.41	HP1	1.833	-12.44	HP1
9	1.282	HP1	1.519	-1.90	HP1	0.596	-2.70	HP1	0.774	3.23	HP1	1.800	-12.59	HP1
10	1.311	HP1	1.522	-1.85	HP1	0.618	-3.90	HP1	0.753	3.24	HP1	1.786	-12.62	HP1
11	1.337	HP1	1.507	-1.69	HP1	0.620	-3.82	HP1	0.756	3.86	HP1	1.753	-12.09	HP1
12	1.341	HP1	1.511	-1.38	HP1	0.620	-3.61	HP1	0.735	4.57	HP1	1.738	-11.47	HP1
13	1.364	HP1	1.495	-0.93	HP1	0.622	-3.25	HP1	0.737	5.46	HP1	1.723	-10.76	HP1
14	1.347	HP2	1.497	0.00	HP1	0.603	-2.41	HP1	0.717	6.82	HP1	1.690	-9.64	HP1
15	1.330	HP2	1.501	1.74	HP1	0.624	-0.79	HP1	0.718	8.96	HP1	2.069	-7.80	HP2
16	1.314	HP2	1.484	3.49	HP1	0.625	0.87	HP1	0.719	11.12	HP1	2.053	-6.59	HP2
17	1.318	HP2	1.505	5.25	HP1	0.606	2.55	HP1	0.699	13.29	HP1	2.058	-5.42	HP2
18	1.301	HP2	1.509	7.01	HP1	0.627	4.23	HP1	0.700	15.44	HP1	2.022	-4.29	HP2
19	1.285	HP2	1.493	8.77	HP1	0.608	5.92	HP1	0.680	17.58	HP1	2.025	-3.19	HP2
20	1.288	HP2	1.495	10.49	HP1	0.629	7.62	HP1	0.681	19.72	HP1	2.009	-2.12	HP2

Table S3. Electronic band gaps dependency on pressure elevation for the lowest-enthalpy structures of AgF₂, AgCuF₄, AgNiF₄, and AgCoF₄ calculated on DFT+U level.

S4. Γ-point vibration frequencies

Γ-point vibration frequencies (in cm⁻¹) calculated at DFT+U level of theory, in each case 3 acoustic modes are omitted.

AgCuF4 LP at 0 GPa (P2_1/c)	23 f = 199
1 f = 526	24 f = 196
2 f = 499	25 f = 192
3 f = 490	26 f = 172
4 f = 461	27 f = 156
5 f = 455	28 f = 129
6f = 444	29f = 127
7f = 375	30f = 126
8f = 361	301 - 120 31 f - 125
0f = 350	311 - 123 22f - 102
10f = 320	32f = 60
101 - 559	551 - 09
11 + 327	
12f = 316	AgNIF4 LP at U GPa (P2_1/c)
13f = 302	1f = 512
14f = 2/2	2f = 512
15† = 263	3 f = 488
16 f = 235	4 f = 453
17 f = 233	5 f = 407
18 f = 231	6 f = 405
19 f = 212	7 f = 398
20 f = 206	8 f = 358
21 f = 200	9 f = 356
22 f = 190	10 f = 341
23 f = 185	11 f = 318
24 f = 169	12 f = 314
25 f = 165	13 f = 313
26 f = 156	14 f = 308
27 f = 140	15 f = 263
28f = 120	16 f = 252
20f = 120	17f = 232
251 - 112 30f - 104	177 - 245 18 f - 728
301 - 104	101 - 230
511 - 75	191 - 220
32f = 70	20f = 207
331 = 58	21f = 202
	22f = 1/4
AgCuF4 HP1 at 10 GPa (P2_1/c)	23 f = 172
1 f = 572	24 f = 166
2 f = 565	25 f = 165
3 f = 529	26 f = 159
4 f = 520	27 f = 150
5 f = 499	28 f = 136
6 f = 455	29 f = 129
7 f = 453	30 f = 123
8 f = 409	31f = 83
9 f = 406	32 f = 75
10 f = 378	33 f = 64
11 f = 372	
12 f = 355	AgNiF4 HP1 at 10 GPa (P2 1/c)
13 f = 352	1f = 533
14 f = 313	2 f = 531
15 f = 300	3f = 508
16 f = 296	4f = 493
17f = 259	5f = 472
18f = 246	6f = 452
10f = 230	7f = 455
101 - 202	$\gamma_1 = +52$
201 - 223	$\delta I = 445$
211 - 214	91 = 455
22T = 212	10T = 395

11 f = 380	3 f = 497
12 f = 364	4 f = 484
13 f = 357	5 f = 457
14 f = 326	6 f = 421
15 f = 314	7 f = 407
16 f = 294	8 f = 404
17 f = 286	9 f = 395
18 f = 252	10 f = 381
19 f = 241	11 f = 375
20 f = 240	12 f = 355
21 f = 238	13 f = 351
22 f = 220	14 f = 323
23 f = 217	15 f = 288
24 f = 204	16 f = 277
25 f = 204	17 f = 253
26 f = 172	18 f = 246
27 f = 151	19 f = 244
28 f = 142	20 f = 237
29 f = 141	21 f = 232
30 f = 138	22 f = 209
31 f = 129	23 f = 209
32 f = 91	24 f = 197
33 f = 86	25 f = 184
	26 f = 166
Ag(II)Co(II)F4 LP at 0 GPa (P2_1/c)	27 f = 164
1 f = 496	28 f = 142
2 f = 495	29 f = 141
3 f = 480	30 f = 122
4 f = 430	31 f = 106
5 f = 393	32 f = 104
6 f = 393	33 f = 58
7 f = 369	
8 f = 355	Ag(I)Co(III)F4 LP at 0 GPa (Pnma)
9 f = 350	1 f = 614
10 f = 329	2 f = 564
11 f = 313	3 f = 564
12 f = 309	4 f = 549
13 f = 295	5 f = 547
14 f = 287	6 f = 546
15 f = 258	7 f = 545
16 f = 245	8 f = 544
17 f = 236	9 f = 535
18 f = 230	10f = 530
19 f = 219	11f = 529
20 f = 181	12f = 521
21 f = 181	13 f = 520
22 f = 164	14 f = 513
23 f = 163	15 f = 498
24 f = 161	16f = 498
25 f = 161	17 f = 491
26 f = 150	18 t = 491
27 f = 147	19 f = 487
28 f = 131	20 f = 483
291 = 128	21t = 4/3
30 t = 125	22 t = 470
311 = 80	23 ± 469
3/T = 14	
	24 f = 468
33 f = 66	24 f = 468 25 f = 426
33 f = 66	24 f = 468 25 f = 426 26 f = 426
33 f = 66 Ag(II)Co(II)F4 HP1 at 10 GPa (P2_1/c)	24 f = 468 25 f = 426 26 f = 426 27 f = 419 20 f = 419
33 f = 66 Ag(II)Co(II)F4 HP1 at 10 GPa (P2_1/c) 1 f = 557	24 f = 468 25 f = 426 26 f = 426 27 f = 419 28 f = 418 20 f = 418

30 f = 389	92 f = 174
31 f = 388	93 f = 171
32 f = 385	94 f = 170
33 f = 379	95 f = 168
34 f = 378	96f = 166
35 f = 376	97 f = 166
36 f = 372	98 f = 163
37 f = 356	99 f = 141
38 f = 355	100 f = 139
39 f = 340	101 f = 138
40 f = 340	102 f = 138
41 f = 311	103 f = 124
42 f = 297	104 f = 122
43 f = 297	105 f = 121
44 f = 296	106 f = 116
45 f = 288	107 f = 111
46 f = 288	108 f = 109
47 f = 288	109 f = 103
48 f = 280	110 f = 99
49 f = 269	111 f = 99
50 f = 269	112 f = 98
51 f = 267	113 f = 95
52 f = 265	114 f = 95
53 f = 257	115 f = 94
54 f = 257	116 f = 92
55 f = 255	117 f = 88
56 f = 253	118 f = 88
57 f = 251	119 f = 88
58 f = 250	120 f = 87
59 f = 243	121 f = 86
60 f = 243	122 f = 79
61 f = 241	123 f = 79
62 f = 238	124 f = 78
63 f = 238	125 f = 77
64 f = 235	126 f = 75
65 f = 235	127 f = 72
66 f = 232	128 f = 70
67 f = 223	129 f = 70
68 f = 222	130 f = 69
69 f = 213	131 f = 68
70 f = 210	132 f = 63
71 f = 209	133 f = 63
72 f = 204	134 f = 62
73 f = 204	135 f = 57
74 f = 203	136 f = 46
75 f = 201	137 f = 45
76 f = 200	138 f = 42
77 f = 199	139 f = 41
78 f = 198	140 f = 30
79 f = 196	141 f = 27
80 f = 195	
81 f = 191	Ag(I)Co(III)F4 HP1 at 10 GPa (P2 1/m)
82 f = 187	1 f = 634
83 f = 187	2 f = 619
84 f = 186	3 f = 601
85 f = 185	4 f = 587
86 f = 183	5 f = 582
87 f = 183	6 f = 565
88 f = 181	7 f = 564
89 f = 181	8 f = 543
90 f = 179	9 f = 518
91 f = 175	10f = 512

11 f = 504	2f = 647
12 f = 500	3f = 634
13 f = 464	4 f = 623
14 f = 464	5f = 619
15 f = 450	6f = 616
16f = 446	7f = 602
17f = 300	8f = 563
10f = 307	0f = 503
101 - 507	91 - 502
19f = 3/9	10f = 562
201 = 378	11f = 560
21 f = 350	12f = 548
22 f = 348	13f = 498
23 f = 332	14 f = 498
24 f = 332	15f = 488
25 f = 318	16f = 480
26 f = 299	17f = 458
27 f = 288	18f = 447
28 f = 287	19f = 438
29 f = 283	20 f = 436
30 f = 272	21 f = 386
31 f = 265	22 f = 384
32f = 253	22f = 304 23f = 350
32f = 233	231 = 330 24f = 249
331 - 249	241 - 340
541 - 245	251 - 547
351 = 244	261 = 345
36 f = 244	2/f = 342
3/f = 242	28f = 325
38 f = 240	29 f = 321
39 f = 235	30f = 318
40 f = 231	31f = 314
41 f = 211	32 f = 305
42 f = 208	33 f = 274
43 f = 205	34 f = 269
44 f = 197	35 f = 266
45 f = 194	36f = 256
46 f = 191	37 f = 253
47 f = 178	38f = 248
48 f = 178	39f = 246
49 f = 173	40 f = 233
-155	401 = 233 41f = 230
507 - 155	411 - 230 42f - 220
511 - 147	421 - 229
52T = 143	43 f = 228
53 f = 132	44f = 211
54 f = 130	45f = 210
55 f = 130	46 f = 198
56 f = 127	47 f = 197
57 f = 119	48f = 187
58 f = 116	49f = 184
59 f = 112	50f = 183
60 f = 109	51f = 175
61 f = 99	52 f = 174
62 f = 99	53f = 171
63 f = 96	54 f = 158
64 f = 91	55 f = 158
65 f = 79	56f = 152
66 f = 78	57f = 107
67 f - 73	571 - 127 58f - 117
671 - 73	501 - 117
001 - 12	551 - III
1 = 11	507 = 111
	61T = 109
Ag(I)CO(III)F4 HP2 at 20 GPa HP2 (C2/c)	621 = 105
1† = 728	63 f = 102

64 f	= 100
65 f	= 88
66 f	= 76
67 f	= 69
68 f	= 61
69 f	= 55

S5. Crystal structures in POSCAR format

```
AgCuF4 LP at 0 GPa (P2 1/c)
 1.00000000000000
 5.3901036487284317 0.7313930884644128 0.0000000000000000
 0.7999934734740585 5.8918165998868357 0.0000000000000000
 0.0000000000000 0.000000000000 4.7638498089899999
 Ag Cu F
 2
   2
      8
Direct
0.3610222200924554 0.8549158998614186 0.1646245680338823
0.6389777799075446 0.1450840701385790 0.8353754559661197
0.1389777799075446 0.1450840701385790 0.6646245910338806
0.8610222630924554 0.8549158998614186 0.3353754559661197
0.7865728171829347 0.3876784498046880 0.2457279423781989
0.2134271828170653 0.6123215501953191 0.7542721046218013
0.7134272258170653 0.6123215501953191 0.7457279423781991
0.2865728171829346 0.3876784498046880 0.2542720816218031
AgCuF4 HP1 at 10 GPa (P2_1/c)
 1.00000000000000
 4.9274005811963182 0.00000000000000 -0.0515194211623682
 0.0000000000000 5.1535447840790782 0.0000000000000000
 -0.0654618047501239 0.000000000000000 5.0237402810958489
 Ag Cu F
 2 2 8
Direct
0.3389463792717425 0.8347599318493771 0.1960332912334153
0.6610536207282576 0.1652400381506133 0.8039667327665866
0.1779727376733418 0.1555907884328188 0.5930914897534010
0.8220273053266582 0.8444091815671787 0.4069085572465994
0.6610536207282576 0.3347599718493946 0.3039667327665866
0.3389463792717425 0.6652400281506196 0.6960333142334137
0.8220273053266582 0.6555907784328180 0.9069085572465994
0.1779727376733418 0.3444092215671749 0.0930914667534026
```

AgNiF4 LP at 0 GPa (1.0	(P2_1/c)		
5.6236634254	0.000000000	0.0000	000000
0.0000000000	4.8052668572	L 0.0000	000000
-1.6601559382	0.000000000	5.4010	045697
Ag Ni F			
2 2 8			
Direct			
0.000000000	0.000000000	0.0000000	00
0.00000010	0.500000000	0.5000000	21
0.50000000	0.500000000	0.0000000	00
0.50000021	-0.00000000	0.5000000	21
0.631682708	0.291337303	0.3167540	88
0.368317340	0.708662772	0.6832459	75
0.827889647	0.830939754	0.5992131	42
0.172110334	0.169060234	0.4007869	43
0.368316524	0.791337526	0.1832449	83
0.631683475	0.208662449	0.8167550	58
0.172111236	0.330939109	0.9007848	88
0.827888830	0.669060842	0.0992151	64
AgNiF4 HP1 at 10 Gi 1.0000000000000 5.088678207370 0.000000000000 -0.819402289205 Ag Ni F 2 2 8	Pa (P2_1/c) 0 7630 0.0000000 0000 4.8499977 5097 0.0000000	00000000 824595426 00000000	0.1368241482182605 0.00000000000000000 5.0886650244517631
Direct			
0.500000100000	0000000000 800	000000 0.5	000000000000000000000000000000000000000
0.5000000000000000	00 0.500000000	0.0 000000	000000000000000000000000000000000000000
-0.00000000000000	000 0.00000000	0000000 -0.0	000000000000000000000000000000000000000
0.999999999900000	035 0.500000000	0000000 0.5	000000000000000000000000000000000000000
0.86909031363600	084 0.178193438	9142069 0.2	948350645973958
0.13090963536399	09 0.821806573	0857941 0.7	051649114026022
0.13090964036398	378 0.678193426	9142059 0.2	051649344026005
0.86909032763600	096 0.321806573	0857941 0.7	948350875973942
0.34417851842725	516 0.350992288	8094633 0.6	260187667631506
0.65582149657274	161 0.649007687	1905347 0.3	739812102368510
0.65582151057274	173 0.850992263	8094648 0.8	3739812322368529
0.34417851142725	546 0.149007723	1905305 0.1	260187787631515

Ag(II)Co(II)F4 LP at 0 GPa	(P2_1/c)	
1.00000000000000	0 0000000000000000000000000000000000000	0 9705550942004501
5.048/181814348008	0.000000000000000000	0.8705559842994591
0.000000000000000000	4./966123818///63/	
	0.0000000000000000000000000000000000000	5.0//5525020/55011
Ag CU F		
Z Z O		
	0000000018358820 0.0	000000122601072
	/19999999999999999999999020 0.0	000000122031372
	/00000000/05/1215 0.0	000000147838131
0.5000000078270150 0	999999999999999999999999999999999999999	000000131427555
0.3646845072837090 0	7090677643434778 0 3	187136694565240
0.5040045072057050 0	2909322259645061 0.6	8128635/3366817
0.0555155100420505 0	17601/5372191981 0.6	083881821922573
0.1715074050000552 0	8239854571578935 0.3	916118382755302
0.6353162529146947 0	2090675199736202 0.1	812853857767081
0.3646837610545115 0	7909324710898554 0.8	187146334764420
0.8286116307139949 0	6760151514236366 0.8	916097905991763
0 1713883808882088 0	3239848357435638 0 1	083902324505387
Ag(II)Co(II)F4 HP1 at 10 G	Pa (P2_1/c)	
1.00000000000000		
5.0113510437132049	0.00000000000000000	-0.0120514716588119
0.00000000000000000	5.1217300185273924	0.0000000000000000000000000000000000000
-0.0030819420495324	0.00000000000000000	5.0359640778897736
Ag Co F		
2 2 8		
Direct		
0.000000079369471 0	.99999999948358820 0.0	000000122691972
0.0000000070824271 0	.4999999937418309 0.5	000000147838151
0.500000078270190 0	.49999999940541215 0.0	000000151427599
0.500000088426475 0	.99999999944523950 0.5	000000132403599
0.3520378802523892 0	.6758580122448016 0.3	217449400954530
0.6479621376739787 0	.3241419780631823 0.6	782550836977527
0.1670019561746445 0	.1576663222419242 0.4	020726368552900
0.8329980546385439 0	.8423336721351674 0.5	979273836124974
0.6479628799460145 0	.1758577678749439 0.1	782541151377791
0.3520371340231916 0	.8241422231885317 0.8	217459041153711
0.8329971602274494 0	.6576669364463626 0.0	979253359361436
0.1670028513747541 0	.3423330507208378 0.9	020746871135714

Ag(I)Co(III)F4 LP at 0 GPa (Pnma)
11.0229778442210424 0.000000000000000 0.000000000000000
0.000000000000000 7.3311291705040329 0.00000000000000000
0.00000000000000 -0.00000000000000 7.5425856227456265
Ag Co F
8 8 32
Direct
0.9683188982466118 0.250000000000000 0.1255183651661389
0.0316810847533832 0.7500000160000013 0.8744816728338642
0.9837239260802026 0.250000000000000 0.6228451327222728
0.0162760599197891 0.7500000160000013 0.3771549282777215
0.5316811017533882 0.7500000160000013 0.6255183571661382
0.4683188982466118 0.250000000000000 0.3744816428338617
0.5162760739197974 0.7500000160000013 0.1228450867222762
0.4837239260802098 0.250000000000000 0.8771548982777262
0.7467105127796945 0.4990345616993822 0.3738868254660963
0.7532894872203055 0.9990345616993822 0.8738868864660977
0.7532894872203055 0.5009654383006178 0.8738868864660977
0.7467105127796945 0.0009654253006132 0.3738868254660963
0.2532895072203000 0.9990345616993822 0.6261131435339048
0.2467105127797016 0.4990345616993822 0.1261131665339031
0.2467105127797016 0.0009654253006132 0.1261131665339031
0.2532895072203000 0.5009654383006178 0.6261131435339048
0.7539609126181328 0.0535814051346022 0.1238451037124495
0.2460390493818711 0.9464186048653986 0.8761549272875495
0.7460390873818672 0.9464186048653986 0.6238451037124495
0 2539608926181312 0 0535814051346022 0 3761548962875505
0 2460390493818711 0 5535814261346075 0 8761549272875495
0.7539609126181328 0.4464185738653925 0.1238451037124495
0.7539609120101320 0.4404105738653025 0.1250451037124455
0.23535000520101512 0.4404103750055525 0.5701540502075505
0.1400350873818072 0.5555814201540075 0.0258451057124455
0.1505200150047450 0.2500000000000000000 0.0755025127220840
0.8036793849332344 0.7500000160000013 0.9204370722779112
0.3030793049332328 0.7300000100000013 0.3793028977220804
0.6963206150647456 0.250000000000000 0.4204370722779112
0.2938130443724235 0.7500000160000013 0.1739096856442099
0.7061869556275694 0.250000000000000 0.8260903443557925
0.2061869556275765 0.250000000000000 0.6739096856442099
0.7938130443724306 0.7500000160000013 0.3260903143557901
0.4070914288000720 0.0605024491404656 0.1132071308650861
0.5929085711999279 0.9394975318595364 0.8867929071349100
0.0929085711999280 0.9394975318595364 0.6132071228650925
0.9070913908000761 0.0605024491404656 0.3867928771349146
0.5929085711999279 0.5605025001404662 0.8867929071349100
0.4070914288000720 0.4394975628595353 0.1132071308650861
0.9070913908000761 0.4394975628595353 0.3867928771349146
0.0929085711999280 0.5605025001404662 0.6132071228650925
0.0859978345849887 0.9426344231570277 0.1375159744150148
0.9140022044150110 0.0573655528429703 0.8624839795849886
0.4140021654150113 0.0573655528429703 0.6375159894150124
0.5859977955849890 0.9426344231570277 0.3624840105849875
0.9140022044150110 0.4426343921570288 0.8624839795849886
0.0859978345849887 0.5573655448429696 0.1375159744150148
0.5859977955849890 0.5573655448429696 0.3624840105849875
0.4140021654150113 0.4426343921570288 0.6375159894150124

Ag(I)Co(III)F4 HP1 at 10	GPa (P2_1/m)	
1.00000000000000		
5.164558160420130	1 -0.00000000000000	00 -0.000000000000000000000000000000000
-0.0000000000000000	0 7.12882080077609	36 -0.0000000000000000
-0.268168618355352	2 -0.00000000000000000000000000000000000	00 7.0060921224724524
Ag Co F		
4 4 16		
Direct		
0.5012381913199817	0.7500003415348069	0.1765428341331357
0.4987584773613909	0.2499994627704109	0.8234548225013257
0.5381112012013892	0.7499996533152838	0.6908786788800290
0.4618853107046126	0.2500005035353399	0.3091227344654247
-0.0000080995564997	-0.0000008442355662	0.4999975127345845
-0.0000136385151722	0.4999966396965198	0.0000037605234955
-0.0000053607764640	0.5000003312156946	0.4999980065919969
-0.0000158398237898	0.0000035478031278	0.0000043805271134
0.8618168068943673	0.7499999387999645	0.9640632722255620
0.1381785410167011	0.2499997827395836	0.0359365976662595
0.0792269506274666	0.7500002627852215	0.5860037788829671
0.9207721279647567	0.2499998008160619	0.4139949585530782
0.8640631688274300	0.0550811181571014	0.7465654681665583
0.3048455422020692	0.9313245384715036	0.9115906634229285
0.3172011439669050	0.4282452760175758	0.5771973510137838
0.8640608187847351	0.4449219082362519	0.7465646471760112
0.6951527704141568	0.4313202880577797	0.0884028473736006
0.1359367482347910	0.5550776190818745	0.2534349664641848
0.1359326286795765	0.9449190249828796	0.2534343815857265
0.6827992686805414	0.9282422440873904	0.4228086446263350
0.6828011167966012	0.5717550420208358	0.4228025545828132
0.3048465151447165	0.5686799473612165	0.9115951781725444
0.3172010542296453	0.0717584667452880	0.5771919250978584
0.6951523036200709	0.0686742860038426	0.0884073746326691

Ag(I)Co(III)F4 HP2 at 20 GPa (C2/c)

1.0000000000000		
11.0812628404247011	0.0000000000000000	-0.0059732377468867
0.0000000000000000000000000000000000000	4.4484920880475007	0.0000000000000000000000000000000000000
-1.5545900041669392	0.0000000000000000000000000000000000000	4.7871892623391794
Ag Co F		
4 4 16		

Direct

-0.0000000000000000	0.9854499414981792	-0.000000000000000
0.5000000000000000	0.4854499414981792	-0.0000000000000000
0.000000049999969	0.6930680766525872	0.500000189999980
0.50000026000022	0.1930680386525841	0.500000189999980
0.7499826645943405	0.0891191538441723	0.2499874905508578
0.2499826645943404	0.5891191278441701	0.2499874905508578
0.7500173424056565	0.5891191278441701	0.7500125234491434
0.2500173524056575	0.0891191538441723	0.7500125234491434
0.9046789962279855	0.4494612861620155	0.7950579031525441
0.4046789542279891	0.9494613381620199	0.7950579031525441
0.9046364545787734	0.2288860483661350	0.2951229472303552
0.4046364965787698	0.7288860743661372	0.2951229472303552
0.0953635414212262	0.2288860483661350	0.7048770657696495
0.5953635514212271	0.7288860743661372	0.7048770657696495
0.0953210617720122	0.4494612861620155	0.2049421348474519
0.5953210977720151	0.9494613381620199	0.2049421348474519
0.6901823796910656	0.4408622789629895	0.3802029965247833
0.1901823796910656	0.9408622789629895	0.3802029965247833
0.6901711840959881	0.2374122220893062	0.8801913918524845
0.1901711530959890	0.7374122220893062	0.8801913918524845
0.8098288629040051	0.7374122220893062	0.1198086101475157
0.3098288409040105	0.2374122220893062	0.1198086101475157
0.8098176273089386	0.9408622789629895	0.6197970174752178
0.3098176273089385	0.4408622789629895	0.6197970174752178

NiF2 orthorhombic PdF2-type at 20 GPa (Pbca)
1.000000000000
4.7184679081789511 -0.00000000000000 0.0000000000000000
0.00000000000000 4.7140006131837016 0.00000000000000000
0.00000000000000 0.0000000000000 4.7425333960465874
Ni F
4 8
Direct
-0.00000000000000 -0.00000000000000 -0.00000000
0.50000000000000 -0.00000000000000 0.50000000000
0.00000000000000 0.50000000000000 0.500000000
0.50000000000000 0.50000000000000 -0.0000000000
0.3483211307683596 0.3482448345408198 0.3468214467687561
0.6516788462316349 0.6517551424591748 0.6531785302312455
0.1516788692316403 0.6517551424591748 0.8468214697687545
0.8483211537683651 0.3482448345408198 0.1531785532312439
0.6516788462316349 0.8482448575408252 0.1531785532312439
0.3483211307683596 0.1517551654591802 0.8468214697687545
0.8483211537683651 0.1517551654591802 0.6531785302312455
0.1516788692316403 0.8482448575408252 0.3468214467687561

References

- 1 A. Grzelak, J. Gawraczyński, T. Jaroń, D. Kurzydłowski, A. Budzianowski, Z. Mazej, P. J. Leszczyński, V. B. Prakapenka, M. Derzsi, V. V. Struzhkin and W. Grochala, *Inorg. Chem.*, 2017, **56**, 14651–14661.
- 2 S. Hull and P. Berastegui, J. Phys.: Condens. Matter, 1998, 10, 7945–7955.
- 3 J. A. Barreda-Argüeso, S. López-Moreno, M. N. Sanz-Ortiz, F. Aguado, R. Valiente, J. González, F. Rodríguez, A. H. Romero, A. Muñoz, L. Nataf and F. Baudelet, *Phys. Rev. B*, 2013, **88**, 214108.
- 4 L. C. Ming, M. H. Manghnani, T. Matsui and J. C. Jamieson, *Phys. Earth Planet. Inter.*, 1980, 23, 276–285.
- 5 D. Kurzydłowski, *Crystals*, 2018, **8**, 140.