Electronic Supplementary Information

Hybrid compound based on diethylenetriaminecopper(II) cations and scarce V-monosubstituted β-octamolybdate as water oxidation catalyst

Halyna I. Buvailo,^a Valeriya G. Makhankova,^{*b} Vladimir N. Kokozay,^a Irina V. Omelchenko,^c Svitlana V. Shishkina,^c Alina Bieńko,^d Mariia V. Pavliuk,^e and Sergii I. Shylin^{*e}

^a Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kyiv, Ukraine. E-mail: leram@univ.kiev.ua

^b Institute of High Technologies, Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 4g, 03022, Kyiv, Ukraine, E-mail: leram@univ.kiev.ua

^c Institute for Single Crystals, National Academy of Sciences of Ukraine, Nauky Ave 60, 61001 Kharkiv, Ukraine.

^d Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.

^e Department of Chemistry – Ångström Laboratory, Uppsala University, P.O. Box 523, 75120 Uppsala, Sweden. E-mail: sergii.shylin@kemi.uu.se

Table of Contents

Crystallography details	S2
Figure S1: IR spectra	S 8
Figure S2: Crystal structure	S 9
Figure S3: Photocatalysis scheme	S10
Figure S4. UV-Vis spectra of [Ru(bpy)] ^{2+/3+}	S11
Figure S5. Cyclic voltammograms	S12
Figure S6. Bulk electrolysis	S13

Crystallography details

 Table S1. Crystal data and structure refinement for 1.

$C_8H_{41}Cu_2Mo_7N_7O_{31.5}V$
1589.08
298
monoclinic
P2 ₁ /n
9.8374(5)
13.8773(7)
14.1652(8)
90
93.260(5)
90
1930.65(17)
2
2.734
3.609
1530.0
0.6 imes 0.5 imes 0.4
MoK α ($\lambda = 0.71073$)
6.466 to 64.96
$-14 \le h \le 13, -19 \le k \le 18, -12 \le 1 \le 21$
12738
$6128 [R_{int} = 0.0414, R_{sigma} = 0.0623]$
6128/0/259
1.054
$R_1 = 0.0573, wR_2 = 0.1405$
$R_1 = 0.0879, wR_2 = 0.1721$
1.98/-2.02

Atom	x	v	z	U(eq)
Mo1	1170.9(7)	-279.1(5)	974.3(5)	30.48(17)
Mo2	1482.2(6)	-1411.7(4)	-976.2(4)	34.43(15)
Mo3	1816.0(6)	636.4(4)	-2045.3(5)	38.89(16)
Mo4	1490.9(6)	1735.1(4)	-62.8(4)	34.15(15)
V1	1170.9(7)	-279.1(5)	974.3(5)	30.48(17)
O1	851(5)	-1503(3)	328(3)	33.5(10)
02	492(5)	-598(3)	2025(4)	38.8(10)
03	840(5)	1083(3)	1068(3)	34.4(9)
04	2828(5)	-318(4)	1230(4)	41.8(11)
05	1070(5)	-2525(4)	-1401(4)	46.5(12)
O6	1447(5)	-717(4)	-2136(4)	40.7(11)
07	3200(5)	-1459(4)	-685(4)	43.6(12)
08	3530(6)	572(4)	-1762(4)	49.3(13)
O9	1694(7)	953(4)	-3213(4)	56.9(14)
O10	1446(5)	1808(3)	-1405(4)	40.5(11)
O11	3196(5)	1639(4)	214(4)	44.7(12)
012	1119(6)	2916(3)	190(4)	49.0(13)
O13	1197(5)	167(3)	-490(3)	34.4(10)
N1S	5000	0	0	41.1(19)
Cu1	2687.5(12)	689.5(7)	3664.4(9)	56.3(3)
O1S	2219(10)	-659(5)	3943(7)	97(3)
O2S	3548(7)	820(4)	5234(5)	63.9(17)
N1	4486(9)	309(6)	3187(6)	66(2)
N2	3167(10)	1995(5)	3202(6)	68(2)
N3	813(10)	1208(7)	3667(7)	79(3)
C1	5236(12)	1167(8)	2907(8)	73(3)
C2	4206(13)	1870(7)	2526(7)	74(3)
C3	1928(13)	2468(7)	2818(8)	75(3)
C4	876(12)	2271(7)	3495(8)	74(3)
O3S	-168(9)	1636(6)	5549(6)	66(2)

Table S2. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for **1**.

Atom	U11	U22	U33	U23	U13	U12
Mo1	26.1(3)	27.0(3)	38.3(4)	1.9(3)	1.3(3)	0.5(2)
Mo2	29.6(3)	30.2(3)	43.8(3)	-0.7(2)	5.4(2)	2.1(2)
Mo3	36.2(3)	37.2(3)	44.3(4)	1.7(2)	11.1(2)	-3.1(2)
Mo4	30.1(3)	27.3(3)	45.4(3)	0.0(2)	4.6(2)	-3.32(19)
V1	26.1(3)	27.0(3)	38.3(4)	1.9(3)	1.3(3)	0.5(2)
01	35(2)	25(2)	41(3)	3.8(18)	1.5(19)	-2.5(16)
02	36(3)	40(3)	41(3)	1(2)	6(2)	-1.9(19)
O3	31(2)	33(2)	39(2)	-1.4(19)	5.4(18)	-3.3(18)
O4	34(3)	42(3)	50(3)	4(2)	5(2)	3(2)
05	41(3)	36(3)	63(3)	-6(2)	7(2)	1(2)
06	35(3)	44(3)	44(3)	-2(2)	10(2)	5(2)
07	32(2)	50(3)	50(3)	1(2)	10(2)	3(2)
08	39(3)	48(3)	61(4)	-5(3)	14(2)	-5(2)
O9	64(4)	59(3)	50(3)	3(3)	15(3)	-4(3)
O10	39(3)	35(2)	47(3)	4(2)	6(2)	-2.0(19)
011	38(3)	44(3)	52(3)	0(2)	3(2)	-7(2)
012	51(3)	28(2)	69(4)	-3(2)	12(3)	-2(2)
O13	33(2)	33(2)	39(3)	0.5(19)	5.4(18)	0.1(17)
N1S	16(3)	44(4)	64(6)	-1(4)	6(3)	-1(3)
Cu1	61.1(7)	42.0(5)	65.3(7)	-2.9(5)	-1.7(5)	-0.9(4)
O1S	110(7)	49(4)	131(8)	-1(4)	2(6)	-15(4)
O2S	68(4)	59(4)	66(4)	-10(3)	18(3)	0(3)
N1	73(6)	61(4)	67(5)	-3(4)	23(4)	4(4)
N2	98(7)	41(4)	61(5)	-5(3)	-27(5)	-5(4)
N3	88(7)	77(6)	71(6)	-2(5)	-9(5)	-6(5)
C1	86(8)	66(6)	67(6)	-10(5)	13(5)	-15(5)
C2	117(10)	55(5)	53(6)	-5(4)	25(6)	-33(6)
C3	109(9)	47(5)	65(6)	-4(4)	-22(6)	-8(5)
C4	89(8)	57(5)	73(7)	-18(5)	-34(6)	22(5)
O3S	73(6)	54(5)	72(6)	6(4)	9(5)	5(4)

Table S3. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for **1**.

Mo1	Mo2	3.2084(10)	Mo4	O10	1.902(5)
Mo1	Mo4	3.1817(9)	Mo4	011	1.706(5)
Mo1	01	1.946(4)	Mo4	O12	1.721(5)
Mo1	O2	1.723(5)	Mo4	O13	2.273(4)
Mo1	03	1.924(5)	V1	01	1.946(4)
Mo1	O4	1.650(5)	V1	O2	1.723(5)
Mo1	O13 ¹	2.396(5)	V1	03	1.924(5)
Mo1	013	2.166(5)	V1	O4	1.650(5)
Mo2	01	1.985(5)	V1	013	2.166(5)
Mo2	O3 ¹	2.326(5)	V1	O13 ¹	2.396(5)
Mo2	05	1.698(5)	Cu1	O1S	1.972(7)
Mo2	O6	1.904(5)	Cu1	O2S	2.341(7)
Mo2	07	1.718(5)	Cu1	N1	2.001(8)
Mo2	013	2.318(4)	Cu1	N2	1.993(8)
Mo3	$O2^1$	2.273(5)	Cu1	N3	1.979(10)
Mo3	O6	1.916(5)	N1	C1	1.467(13)
Mo3	08	1.713(6)	N2	C2	1.449(14)
Mo3	O9	1.709(6)	N2	C3	1.462(13)
Mo3	O10	1.907(5)	N3	C4	1.496(13)
Mo3	O13	2.409(5)	C1	C2	1.486(16)
Mo4	O1 ¹	2.336(4)	C3	C4	1.476(17)
Mo4	03	1.977(5)			

Table S4. Bond lengths (Å) for 1.

¹-X,-Y,-Z

 Table S5. Bond angles (°) for 1.

Mo4	Mo1	Mo2	90.92(2)	O10	Mo4	O3	147.54(19)
01	Mo1	Mo2	35.72(14)	O10	Mo4	O13	77.86(19)
01	Mo1	Mo4	124.52(14)	011	Mo4	Mo1	86.96(18)
01	Mo1	013	78.99(18)	011	Mo4	O1 ¹	166.9(2)
01	Mo1	O13 ¹	78.08(17)	011	Mo4	O3	97.9(2)
O2	Mo1	Mo2	132.73(16)	011	Mo4	O10	101.6(2)
O2	Mo1	Mo4	132.66(16)	011	Mo4	O12	104.2(3)
O2	Mo1	01	97.0(2)	011	Mo4	O13	95.4(2)
O2	Mo1	03	96.8(2)	012	Mo4	Mo1	135.5(2)
O2	Mo1	013	157.9(2)	012	Mo4	O1 ¹	86.9(2)
O2	Mo1	O13 ¹	81.1(2)	012	Mo4	O3	100.7(2)
03	Mo1	Mo2	124.42(14)	012	Mo4	O10	99.4(3)
03	Mo1	Mo4	35.91(14)	012	Mo4	O13	160.3(2)
03	Mo1	01	150.0(2)	013	Mo4	Mo1	42.88(12)
O3	Mo1	O13 ¹	77.90(17)	013	Mo4	O1 ¹	73.47(16)

03	Mo1	013	78.24(18)	01	V1	O13 ¹	78.08(17)
O4	Mo1	Mo2	91.79(19)	01	V1	013	78.99(18)
04	Mo1	Mo4	90.45(18)	02	V1	01	97.0(2)
04	Mo1	01	101.9(2)	02	V1	03	96.8(2)
04	Mo1	O2	103.2(3)	02	V1	O13 ¹	81.1(2)
04	Mo1	03	100.7(2)	02	V1	013	157.9(2)
04	Mo1	013	98.9(2)	03	V1	01	150.0(2)
04	Mo1	O13 ¹	175.6(2)	03	V1	013	78.24(18)
013	Mo1	Mo2	46.26(12)	03	V1	O13 ¹	77.90(17)
O13 ¹	Mo1	Mo2	85.64(11)	04	V1	01	101.9(2)
013	Mo1	Mo4	45.57(12)	04	V1	02	103.2(3)
O13 ¹	Mo1	Mo4	86.03(11)	04	V1	03	100.7(2)
013	Mo1	O13 ¹	76.78(19)	04	V1	013	98.9(2)
01	Mo2	Mol	34.91(12)	04	V1	O13 ¹	175.6(2)
01	Mo2	O3 ¹	72.92(18)	013	V1	O13 ¹	76.78(19)
01	Mo2	013	74.58(17)	Mo1	01	Mo2	109.4(2)
O3 ¹	Mo2	Mol	79.07(12)	Mo2	01	Mo4 ¹	102.53(19)
05	Mo2	Mol	135.9(2)	V1	01	Mo2	109.4(2)
05	Mo2	01	101.0(2)	Mo1	03	Mo4	109.3(2)
05	Mo2	O3 ¹	86.8(2)	Mo4	O3	Mo2 ¹	103.15(19)
05	Mo2	06	99.4(3)	V1	03	Mo4	109.3(2)
05	Mo2	07	105.2(3)	Mo2	06	Mo3	116.4(3)
05	Mo2	013	159.1(2)	Mo4	O10	Mo3	115.8(2)
06	Mo2	Mo1	119.83(15)	Mo1	O13	Mo2	91.30(16)
06	Mo2	01	147.55(19)	Mo1	O13	Mo3	166.0(2)
06	Mo2	O3 ¹	83.30(19)	Mo1 ¹	O13	Mo3	90.72(16)
06	Mo2	013	77.39(19)	Mo1	O13	Mo4	91.56(17)
O7	Mo2	Mo1	87.29(18)	Mo2	O13	Mo1 ¹	96.22(16)
O7	Mo2	01	97.4(2)	Mo2	O13	Mo3	86.70(16)
O7	Mo2	O3 ¹	166.1(2)	Mo4	O13	Mo1 ¹	96.95(17)
O7	Mo2	06	101.3(2)	Mo4	O13	Mo2	165.5(2)
O7	Mo2	013	95.7(2)	Mo4	O13	Mo3	87.10(15)
013	Mo2	Mo1	42.44(12)	V1	O13	Mo2	91.30(16)
013	Mo2	O3 ¹	72.32(16)	V1	O13	Mo3	166.0(2)
$O2^1$	Mo3	013	71.16(17)	V1	O13	Mo4	91.56(17)
06	Mo3	O2 ¹	78.02(19)	O1S	Cu1	O2S	87.7(3)
O6	Mo3	013	74.92(19)	O1S	Cu1	N1	92.2(4)
08	Mo3	O2 ¹	165.1(2)	O1S	Cu1	N2	172.2(4)
08	Mo3	06	98.3(2)	O1S	Cu1	N3	96.7(4)
08	Mo3	O10	98.4(2)	N1	Cu1	O2S	93.6(3)
08	Mo3	013	93.9(2)	N2	Cu1	O2S	99.4(3)
09	Mo3	O2 ¹	90.2(2)	N2	Cu1	N1	84.2(4)
09	Mo3	06	100.6(3)	N3	Cu1	O2S	104.9(3)
09	Mo3	08	104.7(3)	N3	Cu1	N1	159.8(4)
09	Mo3	<u>O1</u> 0	103.7(3)	N3	Cu1	N2	84.7(4)

09	Mo3	013	161.3(2)	C1	N1	Cu1	110.2(7)
O10	Mo3	$O2^1$	78.22(19)	C2	N2	Cu1	107.3(6)
O10	Mo3	06	145.8(2)	C2	N2	C3	114.4(9)
O10	Mo3	013	74.37(19)	C3	N2	Cu1	108.8(7)
O1 ¹	Mo4	Mo1	80.22(11)	C4	N3	Cu1	108.1(7)
O3	Mo4	Mo1	34.81(13)	N1	C1	C2	106.7(9)
O3	Mo4	O1 ¹	72.84(17)	N2	C2	C1	109.3(8)
O3	Mo4	013	74.64(18)	N2	C3	C4	106.0(9)
O10	Mo4	Mo1	120.73(14)	C3	C4	N3	109.0(9)
O10	Mo4	O1 ¹	83.11(19)				

¹-X,-Y,-Z

Table S6. H atoms coordinates ($Å \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for **1**.

Atom	x	v	z	U(eq)
H1SC	5624.4	-410.1	130.8	62
H1SD	4376.4	-59.5	387.2	62
H1SE	5331.6	565.7	43.3	62
H1SF	4669.6	-93.6	-558.9	62
H1SA	2874.53	-963.78	4269.4	146
H1SB	2147.83	-933.48	3406.6	146
H2SA	4432.46	985.67	5207.52	96
H2SB	3186.46	1315.57	5507.52	96
H1A	4971.62	-6.77	3637.06	79
H1B	4355.29	-82.86	2692.27	79
H2	3549.29	2374.39	3736.84	81
H3A	286.78	926.53	3215.69	95
H3B	463.19	1092.1	4221.47	95
H1C	5863.54	1003.23	2427.66	87
H1D	5751.37	1437.21	3448	87
H2A	4639.65	2483.42	2411.54	89
H2B	3793.91	1636.97	1930.82	89
H3C	1656.04	2210.11	2199.92	90
H3D	2072.46	3156.62	2759.7	90
H4A	-2.04	2500.02	3241	89
H4B	1096.26	2604.8	4085.53	89
H3SA	-411.9	2104.13	5866.96	99
H3SB	-879.3	1235.93	5553.26	99

 Table S7. Atomic occupancy for 1.

Atom	Mo1	V1	H1SC	H1SD	H1SE	H1SF	O3S	H3SA	H3SB
Occupacy	0.5	0.5	0.5	0.5	0.5	0.5	0.75	0.75	0.75

Figure S1. FTIR spectra of the title compound recorded in KBr pellets.

Figure S2. Fragment of the crystal structure of the title compound showing intermolecular contacts Cu–O…O–Cu as dashed blue lines responsible for the weak antiferromagnetic exchange.

Figure S3. Scheme of the water oxidation catalysis using persulfate as electron acceptor, tris(bipyridine)ruthenium(II) as light harvester and the title compound as a water oxidation catalyst (WOC).

Figure S4. Left: steady-state UV-Vis absorption spectrum of the solution containing $[Ru(bpy)_3](ClO_4)_2$ (0.05 mM), $Na_2S_2O_8$ (1 mM) in borate buffer (pH 8.0) (black). After illumination of the cuvette at 450 nm during 10 s, the spectrum was recorded showing oxidation of Ru^{II} to Ru^{III} (red) as evidenced by the disappearance of the Ru^{II} band at $\lambda_{max} = 453$ nm. Right: the spectra of the solution containing $[Ru(bpy)_3](ClO_4)_2$ (0.05 mM), $Na_2S_2O_8$ (1 mM), and 1 (0.004 mM) in borate buffer (pH 8.0) before and after illumination. Accumulation of Ru^{III} is not observed.

Figure S5. Cyclic voltammograms of **1** (black) and Cu(dien)(ClO₄)₂ (red), 0.25 mM, recorded at a scan rate of 100 mV s⁻¹ in borate buffer (0.04 M, pH = 8.0) with supporting electrolyte KClO₄ (0.1 M).

Figure S6. (a) Controlled potential electrolysis of the aqueous solution containing 1 (0.1 mM) and supporting electrolyte KClO₄ (0.1 M) in borate buffer (0.04 M, pH 8.0) with electric current shown in black and evolved oxygen in red. (b) Controlled potential electrolysis of the aqueous solution containing supporting electrolyte KClO₄ (0.1 M) in borate buffer (0.04 M, pH 8.0) only carried out using the working electrode transferred from the solution "a" after 45 min of electrolysis. The potential in all experiments was 1.55 V vs NHE.