Synthesis, structure and *in vitro* antiproliferative effect of alkyne-linked 1,2,4-thiadiazole hybrids including Erlotinib- and ferrocene-containing derivatives

Mohammed Boulhaoua,^a Tibor Pasinszki,^{*b} Ana Torvisco,^c Rita Oláh-szabó,^d Szilvia Bősze ^d and Antal Csámpai ^{*e}

^a ELTE Eötvös Loránd University, Institute of Chemistry, Department of Inorganic Chemistry, H-1117 Budapest, Hungary.

^b Fiji National University, College of Engineering, Science and Technology, Department of Chemistry, P.O.Box 3722, Samabula, Suva, Fiji.

^c Graz University of Technology, Institute of Inorganic Chemistry, Stremayrgasse 9/V, 8010 Graz, Austria.

^d MTA-ELTE Research Group of Peptide Chemistry, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary.

^e ELTE Eötvös Loránd University, Institute of Chemistry, Department of Organic Chemistry, H-1117 Budapest, Hungary.

* Corresponding authors e-mail addresses: tibor.pasinszki@fnu.ac.fj, antal.csampai@ttk.elte.hu

Supporting material

Content:

Table S1. Reaction of 3,5-dihalogeno-1,2,4-thiadiazoles (2,3) with ethynylferrocene	page 2
Table S2. Reaction of 3,5-dihalogeno-1,2,4-thiadiazole (2,3) with erlotinib	page 3
Table S3. Reaction of 3,5-dichloro-1,2,4-thiadiazole (2) with ferroceneboronic acid	page 4
Figure S1-9. Mass spectra of compounds 4, 5, 6, 8, 10, 11, 12, 13, and 14/15	page 5–9
Figure S10. ATR-IR spectra of compounds 4, 5, 6, 8, 10, 11, 12, 13, and 14/15	page 10
Figure S11–16. Structure and crystal packing of 4, 5, 6, 8, 10, and 11	page 11–16
Table S4-6. Geometric parameters of 4, 5, and 6	page 17-26
Table S7-9. Geometric parameters of 8, 10, and 11	page 27-36
Table S10. van der Waals radii (r_w) and values of experimental halide interactions	page 37
Table S11. Intermolecular interactions of 4, 5, and 6	page 37
Table S12. Intermolecular interactions of 8, 10, and 11	page 38
Figure S17-22. ¹ H NMR spectra of compounds 4, 5, 6, 8, 10, 13	page 39-41
Figure S23-30. ¹³ C NMR spectra of compounds 4, 5, 6, 8, 10, 11, 13, and 14/15	page 42-45
Figure S31-34. HMBC NMR spectra of compounds 8, 10, 13, and 14/15	page 46–47
Figure S35-37. HSQC NMR spectra of compounds 8, 10, and 14/15	page 48–49
Figure S38-43. HR-MS spectra of compounds 12, 13, and 14/15	page 50–55

XN N 2: X= 3: X:	-S =CI =I	+ Fe	<u></u>	onditions ^a	5: X=CI 6: X=I	FFe
Entry	X	Catalyst	Base	Solvent	Temp (°C)	Yield (%) ^b
1	Ι	Pd(PPh ₃) ₄ /CuI	K ₃ PO ₄	THF	50	0
2	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	K ₃ PO ₄	THF	50	15
3	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	Et ₃ N	THF	50	44
4	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	Et ₃ N	Et ₃ N	50	62
5	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	Et ₃ N	Toluene	50	70
6	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	NH(i-Pr) ₂	Toluene	50	87
7	Cl	PdCl ₂ (PPh ₃) ₂ /CuI	NH(i-Pr) ₂	Toluene	50	82

Table S1: Sonogashira coupling reaction of 3,5-dihalogeno-1,2,4-thiadiazole withethynylferrocene

^{*a*} Reaction conditions: A mixture of **2** or **3** (1 mmol), ethynylferrocene (1.1 mmol), catalyst (3 mol%), CuI (3 mol%), and base (1.1 mmol) was reacted in THF, Et₃N, or toluene (5 ml) at 50 °C for 6 h under a nitrogen atmosphere.

^b Isolated yield.

Table 2: Sonogashira coupling reaction of 3,5-dihalogeno-1,2,4-thiadiazole with erlotinib

Entry	X	Catalyst	Base	Solvent	Temp (°C)	Yield (%) ^b
1	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	DIPA	Toluene	50	0
2	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	DIPA	Toluene	80	13
3	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	DIPA	DMF	80	22
4	Ι	PdCl ₂ (PPh ₃) ₂ /CuI	K ₃ PO ₄	DMF	80	48
5	Ι	Pd[P(t-Bu) ₃] ₂ /CuI	K ₃ PO ₄	DMF	80	75
6	Cl	Pd[P(t-Bu) ₃] ₂ /CuI	K ₃ PO ₄	DMF	80	71

^{*a*}Reaction conditions: A mixture of **2** or **3** (1 mmol), **1** (1.1 mmol), catalyst (10 mol%), CuI (10 mol%), and base (1.1 mmol) was reacted in toluene or DMF (3 ml) at 80 °C for 12 h under a nitrogen atmosphere.

^b Isolated yield.

Table 3: Suzuki coupling reaction of 3,5-dichloro-1,2,4-thiadiazole with ferroceneboronic acid

Entry	Catalyst	Ligand	Base	Solvent	Temp (°C)	Yield $(\%)^b$
1	Pd(PPh ₃) ₄	-	K ₂ CO ₃	Toluene	Reflux	0
2	Pd(PPh ₃) ₄	-	K ₂ CO ₃	Dioxane	Reflux	0
3	PdCl ₂ (PPh ₃) ₂	-	K ₂ CO ₃ (2M)	Toluene	RT	0
4	PdCl ₂ (PPh ₃) ₂	-	K ₂ CO ₃ (2M)	Toluene	Reflux	22
5	PdCl ₂ (PPh ₃) ₂	-	K ₂ CO ₃	THF	Reflux	0
6	PdCl ₂ (PPh ₃) ₂	-	KHCO ₃	Dioxane/H ₂ O (4 :1)	Reflux	0
7	PdCl ₂ (PPh ₃) ₂	-	K ₂ CO ₃	Dioxane	Reflux	48
6	Pd(dppf)Cl ₂	-	K ₂ CO ₃	Dioxane	Reflux	56
7	Pd(OAc) ₂	PPh ₃	K ₂ CO ₃	Dioxane	Reflux	78

^a Reaction conditions: a mixture of 2 (1 mmol), ferroceneboronic acid (1.5 mmol), catalyst (5 mol%), PPh₃ (15 mol%), and base (3 mmol) was refluxed in toluene, THF, or dioxane (5 ml) for 14 h under a nitrogen atmosphere.
^b Isolated yield.

Figure S1. Mass spectrum of 4 (mass of the most abundant isotope: 303.95 Da)

Figure S2. Mass spectrum of 5 (mass of the most abundant isotope: 327.95 Da)

Figure S3. Mass spectrum of 6 (mass of the most abundant isotope: 419.89 Da)

Figure S4. Mass spectrum of 8 (mass of the most abundant isotope: 501.99 Da)

Figure S5. Mass spectrum of 10 (mass of the most abundant isotope: 394.02 Da)

Figure S6. Mass spectrum of 11 (mass of the most abundant isotope: 394.02 Da)

Figure S7. Mass spectrum of 12 (mass of the most abundant isotope: 511.11 Da)

Figure S8. Mass spectrum of 13 (mass of the most abundant isotope: 603.04 Da)

Figure S9. Mass spectrum of 14/15 (mass of the most abundant isotope: 868.30 Da)

Figure S10. ATR-FTIR spectra of synthesized compounds (neat, solid)

Figure S11. Structure and crystal packing of 4. All atoms are shown as 30% shaded ellipsoids.

Figure S12. Structure and crystal packing of 5. All atoms are shown as 30% shaded ellipsoids.

Figure S13. Structure and crystal packing of 6. All atoms are shown as 30% shaded ellipsoids.

Figure S14. Structure and crystal packing of 8. All atoms are shown as 30% shaded ellipsoids.

Figure S15. Structure and crystal packing of 10. All atoms are shown as 30% shaded ellipsoids. MPF

Figure S16. Structure and crystal packing of 11. All atoms are shown as 30% shaded ellipsoids. MFA

Fe1—C7	2.0362 (11)	Fe2—C27	2.0389 (12)
Fe1—C8	2.0452 (12)	Fe2—C18	2.0408 (11)
Fe1—C11	2.0474 (11)	Fe2—C19	2.0411 (11)
Fe1—C4'	2.0497 (12)	Fe2—C26	2.0424 (11)
Fe1—C1'	2.0520 (12)	Fe2—C22	2.0451 (11)
Fe1—C5'	2.0533 (12)	Fe2—C23	2.0502 (12)
Fe1—C2'	2.0559 (11)	Fe2—C21	2.0551 (11)
Fe1—C10	2.0573 (12)	Fe2—C20	2.0552 (11)
Fe1—C3'	2.0575 (12)	Fe2—C24	2.0560 (12)
Fe1—C9	2.0594 (12)	Fe2—C25	2.0602 (11)
S1—N2	1.6635 (11)	S12—N13	1.6608 (11)
S1—C5	1.7267 (11)	S12-C16	1.7240 (11)
N2—C3	1.3089 (15)	N13—C14	1.3077 (15)
C3—N4	1.3589 (14)	C14—N15	1.3601 (14)
C3—Cl6	1.7209 (12)	C14—C117	1.7199 (12)
N4—C5	1.3192 (14)	N15—C16	1.3249 (15)
C5—C7	1.4487 (15)	C16—C18	1.4483 (15)
С7—С8	1.4368 (15)	C18—C19	1.4382 (15)
C7—C11	1.4389 (16)	C18—C22	1.4403 (16)
C8—C9	1.4243 (17)	C19—C20	1.4235 (16)
С8—Н8	1.0000	C19—H19	1.0000

C9—C10	1.4268 (19)	C20—C21	1.4278 (17)
С9—Н9	1.0000	С20—Н20	1.0000
C10-C11	1.4272 (17)	C21—C22	1.4269 (16)
С10—Н10	1.0000	C21—H21	1.0000
C11—H11	1.0000	C22—H22	1.0000
C1'—C5'	1.4248 (17)	C23—C27	1.422 (2)
C1'—C2'	1.4271 (17)	C23—C24	1.429 (2)
C1'—H1'	1.0000	С23—Н23	1.0000
C2'—C3'	1.4225 (17)	C24—C25	1.4234 (17)
C2'—H2'	1.0000	C24—H24	1.0000
C3'—C4'	1.424 (2)	C25—C26	1.4233 (17)
С3'—Н3'	1.0000	C25—H25	1.0000
C4'—C5'	1.423 (2)	C26—C27	1.4175 (18)
C4'—H4'	1.0000	C26—H26	1.0000
С5'—Н5'	1.0000	C27—H27	1.0000
C7—Fe1—C8	41.22 (4)	C27—Fe2—C18	155.14 (5)
C7—Fe1—C11	41.26 (5)	C27—Fe2—C19	118.04 (5)
C8—Fe1—C11	69.36 (5)	C18—Fe2—C19	41.26 (4)
C7—Fe1—C4'	165.45 (6)	C27—Fe2—C26	40.65 (5)
C8—Fe1—C4'	151.72 (6)	C18—Fe2—C26	163.81 (5)
C11—Fe1—C4'	126.65 (5)	C19—Fe2—C26	152.84 (5)
C7—Fe1—C1'	119.48 (5)	C27—Fe2—C22	160.30 (5)
C8—Fe1—C1'	108.26 (5)	C18—Fe2—C22	41.28 (4)
C11—Fe1—C1'	153.61 (5)	C19—Fe2—C22	69.38 (5)
C4'—Fe1—C1'	68.15 (5)	C26—Fe2—C22	125.03 (5)
C7—Fe1—C5'	152.97 (5)	C27—Fe2—C23	40.71 (6)
C8—Fe1—C5'	118.13 (5)	C18—Fe2—C23	121.83 (5)
C11—Fe1—C5'	164.27 (5)	C19—Fe2—C23	106.61 (5)
C4'—Fe1—C5'	40.59 (6)	C26—Fe2—C23	68.35 (5)
C1'—Fe1—C5'	40.62 (5)	C22—Fe2—C23	158.39 (5)
C7—Fe1—C2'	108.71 (5)	C27—Fe2—C21	122.26 (5)
C8—Fe1—C2'	128.45 (5)	C18—Fe2—C21	68.75 (4)
C11—Fe1—C2'	119.11 (5)	C19—Fe2—C21	68.64 (5)
C4'—Fe1—C2'	68.21 (5)	C26—Fe2—C21	106.17 (5)
C1'—Fe1—C2'	40.66 (5)	C22—Fe2—C21	40.73 (4)
C5'—Fe1—C2'	68.44 (5)	C23—Fe2—C21	159.30 (6)
C7—Fe1—C10	68.73 (5)	C27—Fe2—C20	104.18 (5)
C8—Fe1—C10	68.68 (5)	C18—Fe2—C20	68.81 (4)
C11—Fe1—C10	40.69 (5)	C19—Fe2—C20	40.67 (5)
C4'—Fe1—C10	107.06 (5)	C26—Fe2—C20	118.04 (5)
C1'—Fe1—C10	164.82 (5)	C22—Fe2—C20	68.82 (5)
C5'—Fe1—C10	126.54 (5)	C23—Fe2—C20	122.78 (5)
C2'—Fe1—C10	152.60 (5)	C21—Fe2—C20	40.65 (5)
C7—Fe1—C3'	127.99 (5)	C27—Fe2—C24	68.59 (5)
C8—Fe1—C3'	166.41 (5)	C18—Fe2—C24	110.09 (5)

C11—Fe1—C3'	107.64 (5)	C19—Fe2—C24	126.12 (5)
C4'—Fe1—C3'	40.58 (6)	C26—Fe2—C24	68.45 (5)
C1'—Fe1—C3'	68.17 (5)	C22—Fe2—C24	123.55 (5)
C5'—Fe1—C3'	68.36 (6)	C23—Fe2—C24	40.73 (6)
C2'—Fe1—C3'	40.46 (5)	C21—Fe2—C24	157.76 (5)
C10—Fe1—C3'	118.27 (5)	C20—Fe2—C24	161.27 (5)
C7—Fe1—C9	68.59 (5)	C27—Fe2—C25	68.26 (5)
C8—Fe1—C9	40.61 (5)	C18—Fe2—C25	127.91 (5)
C11—Fe1—C9	68.59 (5)	C19—Fe2—C25	164.39 (5)
C4'—Fe1—C9	117.91 (5)	C26—Fe2—C25	40.60 (5)
C1'—Fe1—C9	127.65 (5)	C22—Fe2—C25	109.77 (5)
C5'—Fe1—C9	107.33 (5)	C23—Fe2—C25	68.11 (5)
C2'—Fe1—C9	166.01 (5)	C21—Fe2—C25	121.56 (5)
C10—Fe1—C9	40.56 (5)	C20—Fe2—C25	154.65 (5)
C3'—Fe1—C9	151.89 (5)	C24—Fe2—C25	40.46 (5)
N2—S1—C5	93.16 (5)	N13—S12—C16	93.06 (5)
C3—N2—S1	105.60 (8)	C14—N13—S12	105.95 (8)
N2-C3-N4	122.38 (10)	N13-C14-N15	122.23 (10)
N2-C3-C16	120.04 (9)	N13-C14-C117	119.59 (9)
N4-C3-C16	117.58 (9)	N15-C14-C117	118.18 (8)
C5—N4—C3	107.57 (9)	C16—N15—C14	107.31 (9)
N4—C5—C7	123.36 (10)	N15-C16-C18	123.63 (10)
N4C5S1	111.29 (8)	N15-C16-S12	111.44 (8)
C7—C5—S1	125.29 (8)	C18-C16-S12	124.91 (9)
C8-C7-C11	108.14 (10)	C19-C18-C22	107.80 (9)
C8—C7—C5	123.58 (10)	C19—C18—C16	124.02 (10)
C11—C7—C5	128.26 (10)	C22-C18-C16	128.15 (10)
C8-C7-Fe1	69.72 (6)	C19—C18—Fe2	69.38 (6)
C11-C7-Fe1	69.79 (6)	C22-C18-Fe2	69.52 (6)
C5-C7-Fe1	124.74 (8)	C16-C18-Fe2	124.96 (8)
C9—C8—C7	107.53 (10)	C20-C19-C18	107.94 (10)
C9-C8-Fe1	70.23 (7)	C20-C19-Fe2	70.20 (6)
C7—C8—Fe1	69.05 (6)	C18-C19-Fe2	69.36 (6)
С9—С8—Н8	126.2	C20-C19-H19	126.0
С7—С8—Н8	126.2	C18—C19—H19	126.0
Fe1—C8—H8	126.2	Fe2-C19-H19	126.0
C8—C9—C10	108.53 (10)	C19—C20—C21	108.20 (10)
C8—C9—Fe1	69.16 (6)	C19-C20-Fe2	69.13 (6)
C10-C9-Fe1	69.64 (7)	C21-C20-Fe2	69.67 (6)
С8—С9—Н9	125.7	С19—С20—Н20	125.9
С10—С9—Н9	125.7	C21—C20—H20	125.9
Fe1—C9—H9	125.7	Fe2—C20—H20	125.9
C9—C10—C11	108.34 (10)	C22—C21—C20	108.53 (10)
C9-C10-Fe1	69.80 (7)	C22—C21—Fe2	69.26 (6)
C11-C10-Fe1	69.28 (6)	C20—C21—Fe2	69.68 (6)
C9—C10—H10	125.8	C22—C21—H21	125.7

C11-C10-H10	125.8	C20-C21-H21	125.7
Fe1-C10-H10	125.8	Fe2—C21—H21	125.7
C10-C11-C7	107.45 (10)	C21—C22—C18	107.52 (10)
C10-C11-Fe1	70.03 (7)	C21—C22—Fe2	70.01 (6)
C7-C11-Fe1	68.95 (6)	C18—C22—Fe2	69.20 (6)
C10-C11-H11	126.3	C21—C22—H22	126.2
C7—C11—H11	126.3	C18—C22—H22	126.2
Fe1—C11—H11	126.3	Fe2—C22—H22	126.2
C5'—C1'—C2'	108.25 (11)	C27—C23—C24	108.03 (11)
C5'—C1'—Fe1	69.74 (7)	C27—C23—Fe2	69.22 (7)
C2'-C1'-Fe1	69.82 (7)	C24—C23—Fe2	69.85 (7)
C5'—C1'—H1'	125.9	С27—С23—Н23	126.0
C2'—C1'—H1'	125.9	C24—C23—H23	126.0
Fe1—C1'—H1'	125.9	Fe2—C23—H23	126.0
C3'—C2'—C1'	107.85 (11)	C25—C24—C23	107.61 (11)
C3'—C2'—Fe1	69.83 (7)	C25—C24—Fe2	69.93 (6)
C1'-C2'-Fe1	69.52 (6)	C23—C24—Fe2	69.42 (7)
C3'—C2'—H2'	126.1	C25—C24—H24	126.2
C1'—C2'—H2'	126.1	C23—C24—H24	126.2
Fe1—C2'—H2'	126.1	Fe2—C24—H24	126.2
C2'—C3'—C4'	107.92 (12)	C26—C25—C24	108.14 (11)
C2'—C3'—Fe1	69.71 (7)	C26—C25—Fe2	69.03 (6)
C4'—C3'—Fe1	69.42 (7)	C24—C25—Fe2	69.61 (6)
С2'—С3'—Н3'	126.0	C26—C25—H25	125.9
C4'—C3'—H3'	126.0	C24—C25—H25	125.9
Fe1—C3'—H3'	126.0	Fe2—C25—H25	125.9
C5'—C4'—C3'	108.39 (11)	C27—C26—C25	108.12 (11)
C5'—C4'—Fe1	69.84 (7)	C27—C26—Fe2	69.54 (7)
C3'—C4'—Fe1	70.00 (7)	C25—C26—Fe2	70.37 (6)
C5'—C4'—H4'	125.8	С27—С26—Н26	125.9
C3'—C4'—H4'	125.8	C25—C26—H26	125.9
Fe1—C4'—H4'	125.8	Fe2—C26—H26	125.9
C4'—C5'—C1'	107.59 (12)	C26—C27—C23	108.10 (11)
C4'—C5'—Fe1	69.57 (7)	C26—C27—Fe2	69.81 (7)
C1'—C5'—Fe1	69.64 (7)	C23—C27—Fe2	70.07 (7)
C4'—C5'—H5'	126.2	С26—С27—Н27	126.0
C1'—C5'—H5'	126.2	С23—С27—Н27	126.0
Fe1—C5'—H5'	126.2	Fe2—C27—H27	126.0
C5—S1—N2—C3	0.37 (9)	C16—S12—N13—C14	0.22 (9)
S1—N2—C3—N4	-0.08 (14)	S12—N13—C14—N15	0.12 (14)
S1—N2—C3—Cl6	-179.70 (6)	S12-N13-C14-C117	-179.59 (6)
N2—C3—N4—C5	-0.38 (15)	N13-C14-N15-C16	-0.50 (15)
Cl6—C3—N4—C5	179.25 (8)	Cl17—C14—N15—C16	179.21 (8)
C3—N4—C5—C7	177.97 (10)	C14—N15—C16—C18	179.28 (10)
C3—N4—C5—S1	0.63 (11)	C14—N15—C16—S12	0.62 (11)

N2-S1-C5-N4	-0.62 (9)	N13-S12-C16-N15	-0.52 (9)
N2—S1—C5—C7	-177.90 (10)	N13-S12-C16-C18	-179.16 (10)
N4C5C7C8	-9.96 (17)	N15-C16-C18-C19	-1.36 (17)
S1—C5—C7—C8	167.01 (9)	S12-C16-C18-C19	177.13 (8)
N4-C5-C7-C11	168.06 (11)	N15-C16-C18-C22	176.34 (10)
S1—C5—C7—C11	-14.97 (16)	S12-C16-C18-C22	-5.18 (16)
N4-C5-C7-Fe1	77.41 (13)	N15-C16-C18-Fe2	85.98 (13)
S1-C5-C7-Fe1	-105.62 (10)	S12-C16-C18-Fe2	-95.54 (11)
C11—C7—C8—C9	0.53 (12)	C22-C18-C19-C20	0.73 (12)
С5—С7—С8—С9	178.90 (10)	C16-C18-C19-C20	178.82 (10)
Fe1—C7—C8—C9	59.96 (8)	Fe2-C18-C19-C20	59.83 (8)
C11-C7-C8-Fe1	-59.43 (8)	C22-C18-C19-Fe2	-59.11 (7)
C5-C7-C8-Fe1	118.94 (10)	C16-C18-C19-Fe2	118.99 (10)
C7—C8—C9—C10	-0.55 (13)	C18-C19-C20-C21	-0.42 (13)
Fe1-C8-C9-C10	58.65 (8)	Fe2-C19-C20-C21	58.88 (8)
C7-C8-C9-Fe1	-59.21 (8)	C18-C19-C20-Fe2	-59.31 (7)
C8-C9-C10-C11	0.37 (13)	C19—C20—C21—C22	-0.04 (13)
Fe1-C9-C10-C11	58.73 (8)	Fe2-C20-C21-C22	58.51 (8)
C8-C9-C10-Fe1	-58.36 (8)	C19-C20-C21-Fe2	-58.55 (8)
C9-C10-C11-C7	-0.04 (13)	C20-C21-C22-C18	0.49 (12)
Fe1-C10-C11-C7	59.01 (8)	Fe2-C21-C22-C18	59.26 (7)
C9-C10-C11-Fe1	-59.05 (8)	C20-C21-C22-Fe2	-58.77 (8)
C8-C7-C11-C10	-0.30 (12)	C19—C18—C22—C21	-0.75 (12)
C5-C7-C11-C10	-178.57 (11)	C16-C18-C22-C21	-178.74 (10)
Fe1—C7—C11—C10	-59.69 (8)	Fe2-C18-C22-C21	-59.77 (8)
C8-C7-C11-Fe1	59.39 (8)	C19-C18-C22-Fe2	59.02 (7)
C5-C7-C11-Fe1	-118.88 (11)	C16-C18-C22-Fe2	-118.97 (11)
C5'—C1'—C2'—C3'	0.18 (13)	C27—C23—C24—C25	0.87 (13)
Fe1—C1'—C2'—C3'	59.54 (8)	Fe2—C23—C24—C25	59.75 (8)
C5'—C1'—C2'—Fe1	-59.36 (8)	C27—C23—C24—Fe2	-58.87 (8)
C1'—C2'—C3'—C4'	-0.25 (13)	C23—C24—C25—C26	-1.00 (13)
Fe1—C2'—C3'—C4'	59.10 (8)	Fe2-C24-C25-C26	58.43 (8)
C1'-C2'-C3'-Fe1	-59.35 (8)	C23-C24-C25-Fe2	-59.43 (8)
C2'—C3'—C4'—C5'	0.22 (14)	C24—C25—C26—C27	0.74 (13)
Fe1—C3'—C4'—C5'	59.50 (9)	Fe2—C25—C26—C27	59.53 (8)
C2'—C3'—C4'—Fe1	-59.28 (8)	C24—C25—C26—Fe2	-58.79 (8)
C3'—C4'—C5'—C1'	-0.11 (14)	C25—C26—C27—C23	-0.20 (13)
Fe1—C4'—C5'—C1'	59.50 (8)	Fe2—C26—C27—C23	59.85 (8)
C3'—C4'—C5'—Fe1	-59.61 (9)	C25—C26—C27—Fe2	-60.05 (8)
C2'-C1'-C5'-C4'	-0.05 (13)	C24—C23—C27—C26	-0.42 (14)
Fe1—C1'—C5'—C4'	-59.45 (8)	Fe2-C23-C27-C26	-59.69 (8)
C2'-C1'-C5'-Fe1	59.40 (8)	C24—C23—C27—Fe2	59.27 (8)

Table 5. Geometric parameters of 5 (bond lengths in Å and bond angles in °) MGC

C10—Fe1—C5'	125.33 (6)	C3'-C4'-Fe1	69.61 (8)
C3'—Fe1—C5'	68.47 (7)	C5'-C4'-Fe1	69.66 (9)
C4'—Fe1—C5'	40.86 (6)	C3'—C4'—H4'	126.1
C13—Fe1—C1'	159.05 (6)	C5'—C4'—H4'	126.1
C9—Fe1—C1'	123.52 (6)	Fe1—C4'—H4'	126.1
C10—Fe1—C1'	108.54 (6)	N4—C5—C7	124.99 (13)
C3'—Fe1—C1'	68.65 (6)	N4—C5—S1	111.77 (11)
C4'—Fe1—C1'	68.80 (7)	C7—C5—S1	123.23 (11)
C5'—Fe1—C1'	40.77 (7)	C1'—C5'—C4'	108.20 (14)
C13—Fe1—C12	40.64 (6)	C1'	69.67 (9)
C9—Fe1—C12	68.75 (6)	C4'—C5'—Fe1	69.48 (9)
C10—Fe1—C12	68.87 (6)	C1'—C5'—H5'	125.9
C3'—Fe1—C12	105.43 (6)	C4'—C5'—H5'	125.9
C4'—Fe1—C12	120.15 (6)	Fe1—C5'—H5'	125.9
C5'—Fe1—C12	156.94 (7)	C8—C7—C5	178.02 (16)
C1'—Fe1—C12	159.72 (7)	С7—С8—С9	178.28 (15)
C13—Fe1—C2'	158.04 (6)	C8—C9—C13	126.16 (13)
C9—Fe1—C2'	159.02 (6)	C8—C9—C10	125.88 (13)
C10—Fe1—C2'	122.02 (6)	С13—С9—С10	107.94 (12)
C3'—Fe1—C2'	40.86 (6)	C8—C9—Fe1	125.63 (10)
C4'—Fe1—C2'	68.65 (7)	C13-C9-Fe1	69.25 (8)
C5'—Fe1—C2'	68.46 (7)	C10-C9-Fe1	69.43 (8)
C1'—Fe1—C2'	40.70 (7)	C11—C10—C9	107.18 (13)
C12—Fe1—C2'	122.34 (7)	C11-C10-Fe1	70.08 (8)
C13—Fe1—C11	68.75 (6)	C9-C10-Fe1	69.10 (8)
C9—Fe1—C11	68.70 (6)	C11-C10-H10	126.4
C10—Fe1—C11	40.68 (6)	С9—С10—Н10	126.4
C3'—Fe1—C11	120.66 (6)	Fe1-C10-H10	126.4
C4'—Fe1—C11	155.90 (6)	C12—C11—C10	108.69 (13)
C5'—Fe1—C11	161.67 (7)	C12-C11-Fe1	69.49 (8)
C1'—Fe1—C11	124.44 (7)	C10-C11-Fe1	69.23 (8)
C12—Fe1—C11	40.60 (6)	C12—C11—H11	125.6
C2'—Fe1—C11	107.15 (7)	C10-C11-H11	125.6
N2—S1—C5	92.72 (7)	Fe1—C11—H11	125.6
C3—N2—S1	106.27 (10)	C13—C12—C11	108.77 (13)
C5—N4—C3	106.93 (12)	C13-C12-Fe1	69.29 (8)
C2'—C1'—C5'	107.83 (14)	C11—C12—Fe1	69.92 (9)
C2'-C1'-Fe1	69.70 (9)	C13—C12—H12	125.6
C5'—C1'—Fe1	69.56 (9)	C11—C12—H12	125.6
C2'—C1'—H1'	126.1	Fe1—C12—H12	125.6
C5'—C1'—H1'	126.1	C12—C13—C9	107.40 (13)
Fe1—C1'—H1'	126.1	C12-C13-Fe1	70.07 (8)
C1'—C2'—C3'	107.91 (14)	C9-C13-Fe1	69.27 (8)
C1'—C2'—Fe1	69.60 (8)	C12—C13—H13	126.3
C3'—C2'—Fe1	69.32 (8)	С9—С13—Н13	126.3
C1'—C2'—H2'	126.0	Fe1—C13—H13	126.3

C5—S1—N2—C3	0.44 (11)	Fe1—C4'—C5'—C1'	59.10 (10)
C5'—C1'—C2'—C3'	-0.40 (17)	C3'—C4'—C5'—Fe1	-59.40 (10)
Fe1—C1'—C2'—C3'	58.93 (10)	C8-C9-C10-C11	-179.79 (13)
C5'—C1'—C2'—Fe1	-59.33 (10)	C13—C9—C10—C11	-1.30 (15)
S1—N2—C3—N4	-0.50 (17)	Fe1-C9-C10-C11	-60.02 (10)
S1—N2—C3—C16	179.65 (8)	C8-C9-C10-Fe1	-119.77 (14)
C5—N4—C3—N2	0.25 (18)	C13-C9-C10-Fe1	58.71 (9)
C5—N4—C3—Cl6	-179.89 (10)	C9—C10—C11—C12	0.98 (16)
C1'—C2'—C3'—C4'	0.22 (17)	Fe1-C10-C11-C12	-58.41 (10)
Fe1—C2'—C3'—C4'	59.32 (10)	C9-C10-C11-Fe1	59.39 (10)
C1'-C2'-C3'-Fe1	-59.11 (10)	C10-C11-C12-C13	-0.29 (16)
C2'—C3'—C4'—C5'	0.05 (16)	Fe1-C11-C12-C13	-58.54 (10)
Fe1—C3'—C4'—C5'	59.43 (10)	C10-C11-C12-Fe1	58.25 (10)
C2'-C3'-C4'-Fe1	-59.38 (10)	C11—C12—C13—C9	-0.53 (16)
C3—N4—C5—C7	-179.19 (13)	Fe1-C12-C13-C9	-59.45 (9)
C3—N4—C5—S1	0.13 (14)	C11-C12-C13-Fe1	58.92 (10)
N2—S1—C5—N4	-0.35 (11)	C8—C9—C13—C12	179.61 (13)
N2—S1—C5—C7	178.99 (12)	C10-C9-C13-C12	1.13 (15)
C2'—C1'—C5'—C4'	0.43 (17)	Fe1—C9—C13—C12	59.96 (10)
Fe1—C1'—C5'—C4'	-58.99 (10)	C8—C9—C13—Fe1	119.66 (14)
C2'—C1'—C5'—Fe1	59.42 (10)	C10-C9-C13-Fe1	-58.82 (10)
C3'—C4'—C5'—C1'	-0.30 (16)		

Table 6. Geometric parameters of 6 (bond lengths in Å and bond angles in $^{\circ}$) MGI

I6—C3	2.083 (5)	C9—C13	1.436 (6)
Fe1—C10	2.032 (5)	C9—C10	1.446 (6)
Fe1—C9	2.037 (4)	C10-C11	1.410 (7)
Fe1—C13	2.038 (5)	C10—H10	1.0000
Fe1—C17	2.040 (4)	C11—C12	1.428 (7)
Fe1—C16	2.042 (5)	C11—H11	1.0000
Fe1—C14	2.049 (5)	C12—C13	1.417 (7)
Fe1—C15	2.053 (5)	С12—Н12	1.0000

Fe1—C12	2.054 (5)	С13—Н13	1.0000
Fe1—C11	2.060 (5)	C14—C15	1.416 (7)
Fe1—C18	2.060 (5)	C14—C18	1.429 (7)
S1—N2	1.664 (4)	C14—H14	1.0000
S1—C5	1.723 (5)	C15—C16	1.423 (7)
N2—C3	1.306 (6)	C15—H15	1.0000
N4—C5	1.329 (6)	C16—C17	1.425 (7)
N4—C3	1.366 (6)	C16—H16	1.0000
C5—C7	1.422 (6)	C17—C18	1.423 (7)
C7—C8	1.199 (6)	С17—Н17	1.0000
C8—C9	1.423 (7)	C18—H18	1.0000
C10—Fe1—C9	41.64 (18)	C13—C9—C10	107.3 (4)
C10—Fe1—C13	69.56 (19)	C8—C9—Fe1	125.8 (3)
C9—Fe1—C13	41.26 (18)	C13-C9-Fe1	69.4 (3)
C10—Fe1—C17	122.16 (19)	C10-C9-Fe1	69.0 (2)
C9—Fe1—C17	160.55 (19)	C11—C10—C9	107.7 (4)
C13—Fe1—C17	155.80 (19)	C11-C10-Fe1	70.9 (3)
C10—Fe1—C16	158.51 (19)	C9—C10—Fe1	69.3 (3)
C9—Fe1—C16	157.87 (19)	C11-C10-H10	126.1
C13—Fe1—C16	121.01 (19)	С9—С10—Н10	126.1
C17—Fe1—C16	40.85 (18)	Fe1-C10-H10	126.1
C10—Fe1—C14	123.1 (2)	C10-C11-C12	108.7 (4)
C9—Fe1—C14	109.37 (19)	C10-C11-Fe1	68.8 (3)
C13—Fe1—C14	125.7 (2)	C12—C11—Fe1	69.5 (3)
C17—Fe1—C14	68.35 (19)	C10-C11-H11	125.6
C16—Fe1—C14	68.11 (19)	C12—C11—H11	125.6
C10—Fe1—C15	159.2 (2)	Fe1—C11—H11	125.6
C9—Fe1—C15	123.06 (19)	C13—C12—C11	108.2 (4)
C13—Fe1—C15	108.2 (2)	C13-C12-Fe1	69.1 (3)
C17—Fe1—C15	68.60 (19)	C11-C12-Fe1	69.9 (3)
C16—Fe1—C15	40.66 (19)	C13—C12—H12	125.9
C14—Fe1—C15	40.37 (19)	C11—C12—H12	125.9
C10—Fe1—C12	68.68 (19)	Fe1—C12—H12	125.9
C9—Fe1—C12	68.68 (18)	C12—C13—C9	108.0 (4)
C13—Fe1—C12	40.50 (18)	C12-C13-Fe1	70.4 (3)
C17—Fe1—C12	119.94 (19)	C9-C13-Fe1	69.3 (3)
C16—Fe1—C12	106.26 (19)	C12—C13—H13	126.0
C14—Fe1—C12	161.2 (2)	С9—С13—Н13	126.0
C15—Fe1—C12	123.8 (2)	Fe1—C13—H13	126.0
C10—Fe1—C11	40.30 (19)	C15—C14—C18	108.7 (4)
C9—Fe1—C11	68.55 (19)	C15—C14—Fe1	70.0 (3)
C13—Fe1—C11	68.4 (2)	C18—C14—Fe1	70.1 (3)
C17—Fe1—C11	105.82 (19)	C15—C14—H14	125.6
C16—Fe1—C11	122.49 (19)	C18—C14—H14	125.6
C14—Fe1—C11	157.6 (2)	Fe1—C14—H14	125.6
C15—Fe1—C11	159.6 (2)	C14-C15-C16	107.6 (4)

C12—Fe1—C11	40.61 (19)	C14-C15-Fe1	69.7 (3)
C10—Fe1—C18	107.2 (2)	C16-C15-Fe1	69.2 (3)
C9—Fe1—C18	125.1 (2)	C14—C15—H15	126.2
C13—Fe1—C18	162.5 (2)	C16-C15-H15	126.2
C17—Fe1—C18	40.61 (19)	Fe1—C15—H15	126.2
C16—Fe1—C18	68.38 (19)	C15-C16-C17	108.2 (4)
C14—Fe1—C18	40.68 (19)	C15-C16-Fe1	70.1 (3)
C15—Fe1—C18	68.4 (2)	C17-C16-Fe1	69.5 (3)
C12—Fe1—C18	155.8 (2)	C15-C16-H16	125.9
C11—Fe1—C18	120.9 (2)	C17—C16—H16	125.9
N2—S1—C5	93.0 (2)	Fe1—C16—H16	125.9
C3—N2—S1	106.0 (3)	C18-C17-C16	108.1 (4)
C5—N4—C3	107.0 (4)	C18—C17—Fe1	70.4 (3)
N2-C3-N4	122.3 (4)	C16-C17-Fe1	69.6 (3)
N2—C3—I6	119.6 (3)	C18—C17—H17	126.0
N4—C3—I6	118.0 (3)	C16—C17—H17	126.0
N4—C5—C7	124.4 (4)	Fe1—C17—H17	126.0
N4C5S1	111.6 (3)	C17-C18-C14	107.3 (4)
C7—C5—S1	123.9 (4)	C17-C18-Fe1	69.0 (3)
C8—C7—C5	177.5 (5)	C14-C18-Fe1	69.3 (3)
С7—С8—С9	177.6 (5)	C17-C18-H18	126.3
C8—C9—C13	126.2 (4)	C14-C18-H18	126.3
C8-C9-C10	126.5 (4)	Fe1—C18—H18	126.3
C5 S1 N2 C2	0.2.(2)	C11 C12 C12 Ep1	50.2 (2)
$C_3 = S_1 = N_2 = C_3$	0.3 (5)	$C^{8} = C^{0} = C^{12} = C^{12}$	-39.2 (3)
S1 = N2 = C3 = I6	-0.3 (3)	C_{3} C_{3} C_{13} C_{12} C_{12}	-179.9 (4)
S1 - N2 - C3 - 10	-1/8.1 (2)	En1 C0 C12 C12	-1.2 (3)
C5 N4 C3 K	0.1 (6)	FeI = C9 = C13 = C12	-00.0 (3)
C_{3} N4 C_{5} C_{7}	177.5 (4)	$C_{0} = C_{0} = C_{10} = F_{0}$	-119.9 (3)
$C_3 = N_4 = C_5 = C_7$	-1/7.3 (4)	C10-C9-C13-Fel	38.8 (5)
C3—N4—C5—SI	0.1 (5)	C18-C14-C15-C16	-0.5 (5)
N2—S1—C5—N4	-0.2 (4)	FeI—CI4—CI5—CI6	59.0 (3)
N2—S1—C5—C7	177.4 (4)	C18—C14—C15—Fei	-59.6 (3)
	-1/9.5 (4)		0.0 (5)
C13-C9-C10-C11	1.8 (5)	Fel—C15—C16—C17	59.3 (3)
FeI-C9-CI0-CII	00.8 (3)	C14—C15—C16—Fei	-59.3 (3)
C8-C9-C10-Fel	119.7 (5)	C15-C16-C17-C18	0.6 (5)
C13—C9—C10—Fe1	-59.1 (3)	Fel—C16—C17—C18	60.2 (3)
C9—C10—C11—C12	-1.7 (5)	C15—C16—C17—Fe1	-59.6 (3)
Fe1—C10—C11—C12	58.1 (3)	C16—C17—C18—C14	-0.9 (5)
C9—C10—C11—Fe1	-59.8 (3)	Fel—C17—C18—C14	58.8 (3)
C10-C11-C12-C13	1.0 (5)	C16-C17-C18-Fe1	-59.7 (3)
Fe1—C11—C12—C13	58.7 (3)	C15—C14—C18—C17	0.9 (5)
C10-C11-C12-Fe1	-57.7 (3)	Fe1—C14—C18—C17	-58.6 (3)
C11—C12—C13—C9	0.2 (5)	C15-C14-C18-Fe1	59.5 (3)
Fe1-C12-C13-C9	59.3 (3)		

Table 7. Geometric parameters of 8 (bond lengths in Å and bond angles in °) MGD

Fe1—C9	2.0400 (12)	C10—H10	0.9500
Fe1—C8	2.0413 (12)	C11—C12	1.4224 (17)
Fe1—C15	2.0423 (12)	C11—H11	0.9500
Fe1—C12	2.0428 (12)	C12—H12	0.9500
Fe1—C14	2.0437 (12)	C13—C14	1.4224 (19)
Fe1—C11	2.0498 (12)	C13—C17	1.4255 (18)
Fe1—C10	2.0498 (12)	C13—H13	0.9500
Fe1—C16	2.0509 (12)	C14—C15	1.4262 (18)
Fe1—C17	2.0520 (12)	C14—H14	0.9500
Fe1—C13	2.0524 (12)	C15—C16	1.4298 (18)
Fe2—C20	2.0249 (12)	C15—H15	0.9500
Fe2—C21	2.0281 (12)	C16—C17	1.4227 (19)
Fe2—C25	2.0377 (12)	C16—H16	0.9500
Fe2—C26	2.0439 (12)	C17—H17	0.9500
Fe2—C29	2.0442 (12)	C18—C19	1.2032 (17)
Fe2—C24	2.0458 (12)	C19—C20	1.4220 (16)
Fe2—C27	2.0463 (13)	C20—C21	1.4406 (17)
Fe2—C28	2.0496 (13)	C20—C24	1.4411 (17)
Fe2—C22	2.0525 (12)	C21—C22	1.4240 (17)
Fe2—C23	2.0597 (12)	C21—H21	0.9500
S1—N2	1.653 (6)	C22—C23	1.4264 (18)
S1—C5	1.7059 (16)	C22—H22	0.9500
N2—C3	1.381 (7)	C23—C24	1.4233 (17)
N4—C5	1.3368 (16)	C23—H23	0.9500
N4—C3	1.3589 (17)	C24—H24	0.9500
C3—C6	1.4237 (17)	C25—C26	1.4226 (19)
C3—S1A	1.609 (5)	C25—C29	1.4268 (17)
C5—N2A	1.374 (9)	C25—H25	0.9500
C5—C18	1.4176 (17)	C26—C27	1.427 (2)
C6—C7	1.2075 (17)	C26—H26	0.9500

C7—C8	1.4219 (16)	C27—C28	1.426 (2)
C8—C9	1.4378 (17)	С27—Н27	0.9500
C8-C12	1.4396 (17)	C28—C29	1.4247 (19)
C9—C10	1.4226 (18)	C28—H28	0.9500
С9—Н9	0.9500	С29—Н29	0.9500
C10—C11	1.4258 (19)	S1A—N2A	1.644 (10)
C0 Es1 C8	41.26 (5)	C2 C0 U0	126.1
C_9 —rei— C_8	41.20 (3)	Co-Co-H9	126.0
C9—Fe1—C15	100.07 (5)	геі—С9—п9	120.0
C8—Fe1—C13	122.55 (5)	C9—C10—C11	108.38 (11)
C9—Fe1—C12	69.38 (5)	C9—C10—Fe1	69.28 (7)
C8—Fe1—C12	41.28 (5)	CII—CI0—Fel	69.64 (7)
C15—Fe1—C12	159.85 (5)	C9—C10—H10	125.8
C9—Fe1—C14	121.59 (5)	С11—С10—Н10	125.8
C8—Fe1—C14	107.05 (5)	Fe1—C10—H10	126.8
C15—Fe1—C14	40.86 (5)	C12-C11-C10	108.41 (11)
C12—Fe1—C14	123.65 (5)	C12-C11-Fe1	69.40 (7)
C9—Fe1—C11	68.78 (5)	C10-C11-Fe1	69.65 (7)
C8—Fe1—C11	68.80 (5)	C12—C11—H11	125.8
C15—Fe1—C11	157.65 (5)	C10-C11-H11	125.8
C12—Fe1—C11	40.68 (5)	Fe1—C11—H11	126.7
C14—Fe1—C11	160.35 (5)	C11—C12—C8	107.72 (11)
C9—Fe1—C10	40.71 (5)	C11—C12—Fe1	69.93 (7)
C8—Fe1—C10	68.79 (5)	C8-C12-Fe1	69.30 (7)
C15—Fe1—C10	121.37 (5)	C11—C12—H12	126.1
C12—Fe1—C10	68.74 (5)	C8—C12—H12	126.1
C14—Fe1—C10	157.47 (6)	Fe1—C12—H12	126.2
C11—Fe1—C10	40.71 (5)	C14—C13—C17	108.06 (11)
C9—Fe1—C16	122.33 (5)	C14-C13-Fe1	69.35 (7)
C8—Fe1—C16	159.15 (5)	C17—C13—Fe1	69.66 (7)
C15—Fe1—C16	40.89 (5)	C14—C13—H13	126.0
C12—Fe1—C16	158.06 (5)	C17—C13—H13	126.0
C14—Fe1—C16	68.57 (5)	Fe1—C13—H13	126.6
C11—Fe1—C16	122.19 (5)	C13-C14-C15	108.15 (11)
C10—Fe1—C16	107.02 (5)	C13-C14-Fe1	70.01 (7)
C9—Fe1—C17	159.06 (5)	C15-C14-Fe1	69.52 (7)
C8—Fe1—C17	158.65 (5)	C13-C14-H14	125.9
C15—Fe1—C17	68.64 (5)	C15-C14-H14	125.9
C12—Fe1—C17	122.53 (5)	Fe1-C14-H14	126.1
C14—Fe1—C17	68.49 (5)	C14-C15-C16	107.72 (11)
C11—Fe1—C17	107.98 (5)	C14-C15-Fe1	69.62 (7)
C10—Fe1—C17	123.43 (5)	C16-C15-Fe1	69.88 (7)
C16—Fe1—C17	40.58 (5)	C14—C15—H15	126.1
C9—Fe1—C13	158.16 (5)	C16—C15—H15	126.1
C8—Fe1—C13	122.47 (5)	Fe1—C15—H15	125.9
C15—Fe1—C13	68.57 (5)	C17—C16—C15	108.06 (11)
C12—Fe1—C13	107.96 (5)	C17-C16-Fe1	69.75 (7)

C14—Fe1—C13	40.64 (5)	C15-C16-Fe1	69.23 (7)
C11—Fe1—C13	124.18 (5)	C17—C16—H16	126.0
C10—Fe1—C13	160.20 (5)	C15-C16-H16	126.0
C16—Fe1—C13	68.34 (5)	Fe1—C16—H16	126.6
C17—Fe1—C13	40.65 (5)	C16—C17—C13	108.01 (11)
C20—Fe2—C21	41.64 (5)	C16-C17-Fe1	69.67 (7)
C20—Fe2—C25	119.71 (5)	C13-C17-Fe1	69.69 (7)
C21—Fe2—C25	104.09 (5)	C16—C17—H17	126.0
C20—Fe2—C26	106.44 (5)	С13—С17—Н17	126.0
C21—Fe2—C26	121.71 (5)	Fe1—C17—H17	126.2
C25—Fe2—C26	40.80 (5)	C19—C18—C5	178.54 (14)
C20—Fe2—C29	155.46 (5)	C18—C19—C20	179.02 (13)
C21—Fe2—C29	118.99 (5)	C19—C20—C21	126.46 (11)
C25—Fe2—C29	40.92 (5)	C19—C20—C24	125.81 (11)
C26—Fe2—C29	68.69 (5)	C21—C20—C24	107.61 (10)
C20—Fe2—C24	41.46 (5)	C19—C20—Fe2	122.86 (8)
C21—Fe2—C24	69.61 (5)	C21-C20-Fe2	69.30 (7)
C25—Fe2—C24	157.52 (5)	C24—C20—Fe2	70.05 (7)
C26—Fe2—C24	123.08 (5)	C22—C21—C20	107.75 (10)
C29—Fe2—C24	161.03 (5)	C22—C21—Fe2	70.50 (7)
C20—Fe2—C27	124.34 (5)	C20-C21-Fe2	69.06 (7)
C21—Fe2—C27	159.91 (5)	C22—C21—H21	126.1
C25—Fe2—C27	68.73 (6)	C20—C21—H21	126.1
C26—Fe2—C27	40.85 (6)	Fe2—C21—H21	125.9
C29—Fe2—C27	68.62 (5)	C21—C22—C23	108.46 (11)
C24—Fe2—C27	109.48 (5)	C21—C22—Fe2	68.66 (7)
C20—Fe2—C28	161.90 (5)	C23—C22—Fe2	69.97 (7)
C21—Fe2—C28	155.93 (5)	C21—C22—H22	125.8
C25—Fe2—C28	68.72 (5)	С23—С22—Н22	125.8
C26—Fe2—C28	68.65 (6)	Fe2—C22—H22	127.2
C29—Fe2—C28	40.73 (5)	C24—C23—C22	108.35 (10)
C24—Fe2—C28	125.52 (5)	C24—C23—Fe2	69.19 (6)
C27—Fe2—C28	40.74 (6)	C22—C23—Fe2	69.44 (7)
C20—Fe2—C22	69.14 (5)	C24—C23—H23	125.8
C21—Fe2—C22	40.84 (5)	С22—С23—Н23	125.8
C25—Fe2—C22	121.40 (5)	Fe2—C23—H23	127.1
C26—Fe2—C22	158.12 (5)	C23—C24—C20	107.83 (10)
C29—Fe2—C22	105.98 (5)	C23—C24—Fe2	70.24 (7)
C24—Fe2—C22	68.63 (5)	C20—C24—Fe2	68.49 (6)
C27—Fe2—C22	158.87 (5)	C23—C24—H24	126.1
C28—Fe2—C22	121.99 (5)	C20—C24—H24	126.1
C20—Fe2—C23	69.04 (5)	Fe2—C24—H24	126.7
C21—Fe2—C23	68.91 (5)	C26—C25—C29	108.08 (11)
C25—Fe2—C23	158.92 (5)	C26—C25—Fe2	69.84 (7)
C26—Fe2—C23	159.66 (5)	C29—C25—Fe2	69.78 (7)
C29—Fe2—C23	123.74 (5)	C26—C25—H25	126.0

C24—Fe2—C23	40.57 (5)	С29—С25—Н25	126.0
C27—Fe2—C23	124.28 (5)	Fe2—C25—H25	126.0
C28—Fe2—C23	109.16 (5)	C25—C26—C27	107.96 (11)
C22—Fe2—C23	40.59 (5)	C25—C26—Fe2	69.37 (7)
N2—S1—C5	94.1 (3)	C27—C26—Fe2	69.67 (7)
C3—N2—S1	105.7 (5)	C25—C26—H26	126.0
C5—N4—C3	108.01 (11)	C27—C26—H26	126.0
N4—C3—N2	119.7 (3)	Fe2—C26—H26	126.5
N4—C3—C6	120.68 (12)	C28—C27—C26	108.00 (12)
N2—C3—C6	119.6 (3)	C28—C27—Fe2	69.75 (7)
N4—C3—S1A	112.40 (19)	C26—C27—Fe2	69.49 (7)
C6-C3-S1A	126.9 (2)	С28—С27—Н27	126.0
N4—C5—N2A	118.8 (4)	С26—С27—Н27	126.0
N4C5C18	123.42 (11)	Fe2—C27—H27	126.3
N2A-C5-C18	117.8 (4)	C29—C28—C27	107.96 (12)
N4C5S1	112.43 (10)	C29—C28—Fe2	69.43 (7)
C18—C5—S1	124.14 (10)	C27—C28—Fe2	69.50 (7)
C7—C6—C3	177.62 (14)	C29—C28—H28	126.0
C6—C7—C8	178.93 (14)	C27—C28—H28	126.0
С7—С8—С9	125.37 (11)	Fe2—C28—H28	126.6
C7—C8—C12	126.89 (11)	C28—C29—C25	107.99 (11)
C9—C8—C12	107.71 (10)	C28—C29—Fe2	69.84 (7)
C7-C8-Fe1	125.35 (8)	C25—C29—Fe2	69.30 (7)
C9-C8-Fe1	69.33 (7)	С28—С29—Н29	126.0
C12-C8-Fe1	69.41 (7)	С25—С29—Н29	126.0
С10—С9—С8	107.78 (11)	Fe2—C29—H29	126.4
C10-C9-Fe1	70.01 (7)	C3—S1A—N2A	96.1 (4)
C8-C9-Fe1	69.42 (7)	C5—N2A—S1A	104.7 (7)
С10—С9—Н9	126.1		
C5 81 N2 C2	0.2 (5)	C14 C12 C17 C16	0.42 (14)
$C_5 = N_4 = C_2 = N_2$	-0.5 (5)	C14C13C17C16	-0.43 (14)
$C_5 = N_4 = C_3 = C_6$	-1.0 (4)	FeI-CI3-CI7-CI0	-39.34 (9)
$C_{5} N_{4} C_{2} S_{1A}$	1 2 (2)	C14 - C13 - C17 - Fe1	176.28 (11)
C_3 N_4 C_3 N_4	-1.5 (5)	C19 - C20 - C21 - C22	-170.38 (11)
S1 = N2 = C3 = C6	178.9 (2)	E_{24} C_{20} C_{21} C_{22}	-0.33 (13)
S1 = N2 = C5 = C0	17(6)	C19_C20_C21_Ee2	-116 23 (12)
C3_N4_C5_C18	-177 80 (12)	C24_C20_C21_Fe2	59.82 (8)
C3_N4_C5_\$1	0.74 (14)	$C_{24} - C_{20} - C_{21} - C_{22} - C_{23}$	0.45(13)
N2_S1_C5_N4	-0.3 (3)	Ee2C21C22C23	-58 80 (8)
N2_\$1_C5_C18	178 2 (3)	C20_C21_C22_Ee2	59 24 (8)
C7_C8_C9_C10	-179 12 (11)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0 40 (14)
$C_{12} = C_{8} = C_{9} = C_{10}$	-0.74 (13)	Fe2_C22_C23_C24	-58 39 (8)
Fe1_C8_C9_C10	-59 75 (8)	$C_{21} = C_{22} = C_{23} = C_{24}$	57 99 (8)
C7_C8_C9_Fe1	-119 37 (12)	$C_{22} = C_{23} = C$	0.19(13)
$C_1^{-1} = C_2^{-1} $	59 00 (8)	Fe2C23C24C20	-58.35 (8)
C8_C9_C10_C11	0 54 (14)	$C^{22} = C^{23} = C^{24} = C^{20}$	58 54 (8)
	(11)	022 023 -027-102	55.54 (0)

Fe1—C9—C10—C11	-58.83 (9)	C19—C20—C24—C23	176.17 (11)
C8-C9-C10-Fe1	59.37 (8)	C21—C20—C24—C23	0.08 (13)
C9-C10-C11-C12	-0.13 (14)	Fe2—C20—C24—C23	59.44 (8)
Fe1—C10—C11—C12	-58.73 (8)	C19—C20—C24—Fe2	116.73 (12)
C9-C10-C11-Fe1	58.60 (9)	C21-C20-C24-Fe2	-59.35 (8)
C10—C11—C12—C8	-0.33 (13)	C29—C25—C26—C27	0.35 (14)
Fe1—C11—C12—C8	-59.22 (8)	Fe2—C25—C26—C27	-59.17 (9)
C10-C11-C12-Fe1	58.89 (8)	C29-C25-C26-Fe2	59.53 (8)
C7—C8—C12—C11	179.01 (11)	C25—C26—C27—C28	-0.34 (14)
C9-C8-C12-C11	0.66 (13)	Fe2—C26—C27—C28	-59.33 (9)
Fe1—C8—C12—C11	59.61 (8)	C25—C26—C27—Fe2	58.99 (9)
C7-C8-C12-Fe1	119.39 (12)	C26—C27—C28—C29	0.20 (14)
C9-C8-C12-Fe1	-58.95 (8)	Fe2—C27—C28—C29	-58.97 (9)
C17—C13—C14—C15	0.16 (14)	C26-C27-C28-Fe2	59.16 (9)
Fe1-C13-C14-C15	59.26 (9)	C27—C28—C29—C25	0.02 (14)
C17—C13—C14—Fe1	-59.10 (8)	Fe2—C28—C29—C25	-58.99 (8)
C13—C14—C15—C16	0.17 (14)	C27—C28—C29—Fe2	59.01 (9)
Fe1-C14-C15-C16	59.74 (9)	C26—C25—C29—C28	-0.23 (14)
C13-C14-C15-Fe1	-59.57 (8)	Fe2—C25—C29—C28	59.33 (9)
C14—C15—C16—C17	-0.44 (14)	C26—C25—C29—Fe2	-59.56 (8)
Fe1—C15—C16—C17	59.14 (9)	N4—C3—S1A—N2A	0.5 (5)
C14-C15-C16-Fe1	-59.58 (9)	C6-C3-S1A-N2A	-179.5 (4)
C15-C16-C17-C13	0.54 (14)	N4—C5—N2A—S1A	-1.3 (9)
Fe1—C16—C17—C13	59.36 (8)	C18—C5—N2A—S1A	178.2 (4)
C15-C16-C17-Fe1	-58.82 (9)	C3—S1A—N2A—C5	0.4 (7)

Table 8. Geometric parameters of 10 (bond lengths in Å and bond angles in °) MPF

Fe1—C9	2.040 (3)	C11—H11	1.0000
Fe1—C15	2.043 (3)	C12—H12	1.0000
Fe1—C8	2.046 (2)	C13—C14	1.420 (4)
Fe1—C16	2.046 (2)	C13—C17	1.422 (4)
Fe1—C12	2.049 (3)	С13—Н13	1.0000
Fe1—C17	2.054 (3)	C14—C15	1.424 (4)
Fe1—C10	2.057 (3)	C14—H14	1.0000

Fe1—C14	2.059 (3)	C15-C16	1.434 (4)
Fe1—C11	2.059 (2)	C15—H15	1.0000
Fe1—C13	2.059 (3)	C16—C17	1.421 (4)
S1—N2	1.649 (2)	C16—H16	1.0000
S1—C5	1.727 (3)	С17—Н17	1.0000
N2—C3	1.329 (3)	C18—C19	1.195 (4)
N4—C5	1.321 (3)	C19—C20	1.434 (4)
N4—C3	1.376 (3)	C20—C25	1.397 (4)
C3—C6	1.431 (4)	C20—C21	1.402 (4)
C5—C18	1.424 (4)	C21—C22	1.385 (4)
C6—C7	1.202 (4)	C21—H21	0.9500
C7—C8	1.428 (4)	C22—C23	1.389 (4)
C8—C9	1.440 (4)	С22—Н22	0.9500
C8—C12	1.441 (3)	C23—C24	1.389 (4)
C9—C10	1.424 (4)	С23—Н23	0.9500
С9—Н9	1.0000	C24—C25	1.387 (4)
C10-C11	1.422 (4)	C24—H24	0.9500
С10—Н10	1.0000	С25—Н25	0.9500
C11-C12	1.421 (4)		
C9—Fe1—C15	122.22 (11)	C11-C10-C9	108.4 (2)
C9—Fe1—C8	41.28 (10)	C11-C10-Fe1	69.86 (14)
C15—Fe1—C8	159.70 (10)	C9-C10-Fe1	69.05 (14)
C9—Fe1—C16	158.10 (10)	C11-C10-H10	125.8
C15—Fe1—C16	41.06 (10)	С9—С10—Н10	125.8
C8—Fe1—C16	158.43 (10)	Fe1—C10—H10	125.8
C9—Fe1—C12	69.21 (10)	C12-C11-C10	108.5 (2)
C15—Fe1—C12	157.04 (11)	C12-C11-Fe1	69.36 (14)
C8—Fe1—C12	41.22 (10)	C10-C11-Fe1	69.71 (14)
C16—Fe1—C12	121.26 (11)	C12-C11-H11	125.7
C9—Fe1—C17	160.04 (11)	C10-C11-H11	125.7
C15—Fe1—C17	68.39 (11)	Fe1—C11—H11	125.7
C8—Fe1—C17	123.53 (11)	C11—C12—C8	107.9 (2)
C16—Fe1—C17	40.56 (11)	C11-C12-Fe1	70.14 (14)
C12—Fe1—C17	107.79 (11)	C8-C12-Fe1	69.29 (14)
C9—Fe1—C10	40.66 (10)	C11-C12-H12	126.1
C15—Fe1—C10	106.29 (11)	C8—C12—H12	126.1
C8—Fe1—C10	68.70 (10)	Fe1—C12—H12	126.1
C16—Fe1—C10	121.61 (10)	C14—C13—C17	108.3 (2)
C12—Fe1—C10	68.40 (10)	C14-C13-Fe1	69.81 (15)
C17—Fe1—C10	158.19 (11)	C17—C13—Fe1	69.58 (15)
C9—Fe1—C14	107.89 (11)	C14—C13—H13	125.9
C15—Fe1—C14	40.62 (10)	C17—C13—H13	125.9
C8—Fe1—C14	124.26 (10)	Fe1—C13—H13	125.9
C16—Fe1—C14	68.61 (11)	C13—C14—C15	107.9 (2)
C12—Fe1—C14	160.93 (10)	C13-C14-Fe1	69.84 (15)

C17—Fe1—C14	68.13 (11)	C15-C14-Fe1	69.11 (15)
C10—Fe1—C14	122.47 (11)	C13-C14-H14	126.1
C9—Fe1—C11	68.53 (11)	C15-C14-H14	126.1
C15—Fe1—C11	121.12 (11)	Fe1-C14-H14	126.1
C8—Fe1—C11	68.63 (10)	C14-C15-C16	108.1 (2)
C16—Fe1—C11	106.01 (11)	C14—C15—Fe1	70.27 (15)
C12—Fe1—C11	40.49 (10)	C16-C15-Fe1	69.58 (14)
C17—Fe1—C11	122.81 (11)	C14—C15—H15	126.0
C10—Fe1—C11	40.43 (10)	C16-C15-H15	126.0
C14—Fe1—C11	157.55 (11)	Fe1—C15—H15	126.0
C9—Fe1—C13	123.92 (11)	C17—C16—C15	107.5 (2)
C15—Fe1—C13	68.16 (11)	C17—C16—Fe1	70.02 (14)
C8—Fe1—C13	109.12 (10)	C15-C16-Fe1	69.37 (14)
C16—Fe1—C13	68.31 (11)	C17—C16—H16	126.2
C12—Fe1—C13	124.56 (11)	C15-C16-H16	126.2
C17—Fe1—C13	40.46 (11)	Fe1-C16-H16	126.2
C10—Fe1—C13	159.12 (11)	C16—C17—C13	108.3 (2)
C14—Fe1—C13	40.35 (11)	C16-C17-Fe1	69.42 (14)
C11—Fe1—C13	159.81 (11)	C13-C17-Fe1	69.96 (15)
N2—S1—C5	92.77 (12)	C16—C17—H17	125.9
C3—N2—S1	107.66 (17)	C13—C17—H17	125.9
C5—N4—C3	108.2 (2)	Fe1—C17—H17	125.9
N2-C3-N4	119.5 (2)	C19—C18—C5	173.8 (3)
N2-C3-C6	119.1 (2)	C18—C19—C20	178.3 (3)
N4-C3-C6	121.4 (2)	C25—C20—C21	119.6 (2)
N4C5C18	127.3 (2)	C25—C20—C19	121.5 (2)
N4C5S1	111.88 (19)	C21—C20—C19	118.9 (2)
C18—C5—S1	120.86 (19)	C22—C21—C20	119.8 (2)
С7—С6—С3	173.5 (3)	C22—C21—H21	120.1
С6—С7—С8	178.7 (3)	C20—C21—H21	120.1
С7—С8—С9	125.3 (2)	C21—C22—C23	120.4 (3)
C7—C8—C12	127.3 (2)	C21—C22—H22	119.8
C9—C8—C12	107.4 (2)	C23—C22—H22	119.8
C7—C8—Fe1	124.65 (18)	C22—C23—C24	120.1 (3)
C9—C8—Fe1	69.16 (14)	C22—C23—H23	120.0
C12-C8-Fe1	69.49 (14)	C24—C23—H23	120.0
С10—С9—С8	107.8 (2)	C25—C24—C23	120.1 (3)
C10-C9-Fe1	70.29 (15)	C25—C24—H24	120.0
C8—C9—Fe1	69.56 (14)	C23—C24—H24	120.0
С10—С9—Н9	126.1	C24—C25—C20	120.1 (3)
С8—С9—Н9	126.1	C24—C25—H25	119.9
Fe1—C9—H9	126.1	C20—C25—H25	119.9

Table 9. Geometric parameters of 11 (bond lengths in Å and bond angles in $^{\circ}$) MFA

Fe1—C24	2.037 (8)	C11—H11	0.9500
Fe1—C20	2.037 (8)	C12—C13	1.372 (12)
Fe1—C25	2.043 (8)	C12—H12	0.9500
Fe1—C22	2.046 (8)	C13—H13	0.9500
Fe1—C17	2.046 (8)	C14—C15	1.210 (10)
Fe1—C16	2.049 (8)	C15—C16	1.406 (11)
Fe1—C19	2.049 (8)	C16—C17	1.439 (11)
Fe1—C21	2.054 (8)	C16—C20	1.454 (10)
Fe1—C18	2.057 (8)	C17—C18	1.418 (11)
Fe1—C23	2.063 (8)	C17—H17	1.0000
S1—N2	1.655 (6)	C18—C19	1.408 (11)
S1—C5	1.730 (8)	C18—H18	1.0000
N2—C3	1.330 (10)	C19—C20	1.415 (11)
N4—C5	1.299 (9)	C19—H19	1.0000
N4—C3	1.357 (9)	С20—Н20	1.0000
C3—C6	1.444 (11)	C21—C22	1.408 (12)
C5-C14	1.434 (11)	C21—C25	1.413 (11)
C6—C7	1.190 (11)	C21—H21	1.0000
С7—С8	1.430 (11)	C22—C23	1.438 (12)
C8—C9	1.380 (11)	C22—H22	1.0000
C8—C13	1.431 (12)	C23—C24	1.409 (12)
C9—C10	1.371 (11)	С23—Н23	1.0000
С9—Н9	0.9500	C24—C25	1.418 (12)
C10-C11	1.395 (12)	C24—H24	1.0000
C10—H10	0.9500	C25—H25	1.0000
C11—C12	1.392 (12)		
C24—Fe1—C20	121.2 (3)	C13—C12—C11	120.3 (9)
C24—Fe1—C25	40.7 (3)	C13—C12—H12	119.9
C20—Fe1—C25	158.0 (3)	C11—C12—H12	119.9
C24—Fe1—C22	68.1 (3)	C12—C13—C8	119.9 (8)

C20—Fe1—C22	122.3 (3)	C12-C13-H13	120.0
C25—Fe1—C22	67.8 (3)	C8—C13—H13	120.0
C24—Fe1—C17	157.6 (3)	C15—C14—C5	179.1 (9)
C20—Fe1—C17	69.5 (3)	C14—C15—C16	178.0 (9)
C25—Fe1—C17	122.8 (3)	C15—C16—C17	126.1 (8)
C22—Fe1—C17	125.2 (3)	C15—C16—C20	126.7 (8)
C24—Fe1—C16	159.0 (4)	C17—C16—C20	107.2 (7)
C20—Fe1—C16	41.7 (3)	C15-C16-Fe1	126.5 (6)
C25—Fe1—C16	159.1 (3)	C17—C16—Fe1	69.3 (5)
C22—Fe1—C16	108.5 (3)	C20-C16-Fe1	68.7 (4)
C17—Fe1—C16	41.1 (3)	C18—C17—C16	107.6 (7)
C24—Fe1—C19	106.1 (3)	C18—C17—Fe1	70.2 (5)
C20—Fe1—C19	40.5 (3)	C16—C17—Fe1	69.5 (5)
C25—Fe1—C19	122.9 (3)	C18—C17—H17	126.2
C22—Fe1—C19	157.4 (3)	C16—C17—H17	126.2
C17—Fe1—C19	68.3 (3)	Fe1—C17—H17	126.2
C16—Fe1—C19	68.6 (3)	C19—C18—C17	108.9 (7)
C24—Fe1—C21	68.1 (3)	C19-C18-Fe1	69.7 (4)
C20—Fe1—C21	159.0 (3)	C17—C18—Fe1	69.4 (5)
C25—Fe1—C21	40.3 (3)	C19—C18—H18	125.6
C22—Fe1—C21	40.2 (3)	C17—C18—H18	125.6
C17—Fe1—C21	109.3 (3)	Fe1-C18-H18	125.6
C16—Fe1—C21	123.6 (3)	C18—C19—C20	109.1 (7)
C19—Fe1—C21	160.0 (3)	C18-C19-Fe1	70.2 (5)
C24—Fe1—C18	121.5 (3)	C20-C19-Fe1	69.3 (4)
C20—Fe1—C18	68.3 (3)	C18-C19-H19	125.4
C25—Fe1—C18	108.2 (3)	C20-C19-H19	125.4
C22—Fe1—C18	161.5 (3)	Fe1-C19-H19	125.4
C17—Fe1—C18	40.4 (3)	C19—C20—C16	107.2 (7)
C16—Fe1—C18	68.3 (3)	C19—C20—Fe1	70.2 (4)
C19—Fe1—C18	40.1 (3)	C16-C20-Fe1	69.6 (4)
C21—Fe1—C18	125.2 (3)	C19—C20—H20	126.4
C24—Fe1—C23	40.2 (3)	C16—C20—H20	126.4
C20—Fe1—C23	105.9 (3)	Fe1—C20—H20	126.4
C25—Fe1—C23	68.1 (4)	C22—C21—C25	108.0 (8)
C22—Fe1—C23	41.0 (3)	C22—C21—Fe1	69.6 (5)
C17—Fe1—C23	161.4 (3)	C25—C21—Fe1	69.4 (5)
C16—Fe1—C23	123.7 (4)	C22—C21—H21	126.0
C19—Fe1—C23	120.6 (3)	C25—C21—H21	126.0
C21—Fe1—C23	68.2 (3)	Fe1—C21—H21	126.0
C18—Fe1—C23	156.2 (3)	C21—C22—C23	108.4 (7)
N2—S1—C5	92.3 (3)	C21—C22—Fe1	70.2 (5)
C3—N2—S1	106.5 (5)	C23—C22—Fe1	70.1 (5)
C5—N4—C3	108.3 (7)	C21—C22—H22	125.8
N2—C3—N4	120.6 (7)	C23—C22—H22	125.8
N2—C3—C6	120.2 (7)	Fe1—C22—H22	125.8

N4—C3—C6	119.2 (7)	C24—C23—C22	106.8 (8)
N4C5C14	124.6 (7)	C24—C23—Fe1	68.9 (5)
N4C5S1	112.3 (5)	C22—C23—Fe1	68.9 (5)
C14—C5—S1	123.1 (6)	C24—C23—H23	126.6
С7—С6—С3	174.8 (8)	C22—C23—H23	126.6
C6—C7—C8	179.8 (9)	Fe1—C23—H23	126.6
С9—С8—С7	122.2 (8)	C23—C24—C25	108.7 (8)
C9—C8—C13	117.9 (8)	C23-C24-Fe1	70.9 (5)
C7—C8—C13	119.9 (7)	C25-C24-Fe1	69.9 (5)
С10—С9—С8	122.6 (8)	C23—C24—H24	125.6
С10—С9—Н9	118.7	C25—C24—H24	125.6
С8—С9—Н9	118.7	Fe1—C24—H24	125.6
C9-C10-C11	118.8 (8)	C21—C25—C24	108.1 (8)
С9—С10—Н10	120.6	C21-C25-Fe1	70.3 (5)
С11—С10—Н10	120.6	C24-C25-Fe1	69.4 (5)
C12-C11-C10	120.4 (8)	C21—C25—H25	126.0
C12-C11-H11	119.8	C24—C25—H25	126.0
C10-C11-H11	119.8	Fe1—C25—H25	126.0
C5—S1—N2—C3	0.2 (6)	Fe1—C18—C19—C20	58.5 (5)
S1—N2—C3—N4	-0.2 (9)	C17—C18—C19—Fe1	-58.5 (6)
S1—N2—C3—C6	-179.1 (6)	C18—C19—C20—C16	1.0 (9)
C5—N4—C3—N2	0.0 (10)	Fe1—C19—C20—C16	60.1 (5)
C5—N4—C3—C6	178.9 (7)	C18—C19—C20—Fe1	-59.1 (5)
C3—N4—C5—C14	178.2 (7)	C15—C16—C20—C19	179.2 (8)
C3—N4—C5—S1	0.2 (8)	C17—C16—C20—C19	-1.6 (8)
N2—S1—C5—N4	-0.3 (6)	Fe1—C16—C20—C19	-60.5 (5)
N2—S1—C5—C14	-178.3 (7)	C15—C16—C20—Fe1	-120.3 (8)
C7—C8—C9—C10	177.9 (8)	C17—C16—C20—Fe1	58.8 (5)
C13—C8—C9—C10	-1.0 (13)	C25—C21—C22—C23	1.0 (9)
C8-C9-C10-C11	0.5 (13)	Fe1—C21—C22—C23	60.0 (6)
C9-C10-C11-C12	-0.5 (13)	C25-C21-C22-Fe1	-59.0 (6)
C10-C11-C12-C13	1.0 (14)	C21—C22—C23—C24	-1.4 (9)
C11—C12—C13—C8	-1.4 (14)	Fe1—C22—C23—C24	58.7 (6)
C9-C8-C13-C12	1.4 (13)	C21-C22-C23-Fe1	-60.1 (6)
C7—C8—C13—C12	-177.5 (8)	C22—C23—C24—C25	1.2 (9)
C15—C16—C17—C18	-179.2 (8)	Fe1-C23-C24-C25	59.9 (6)
C20-C16-C17-C18	1.7 (9)	C22-C23-C24-Fe1	-58.7 (6)
Fe1-C16-C17-C18	60.1 (5)	C22—C21—C25—C24	-0.2 (9)
C15-C16-C17-Fe1	120.7 (8)	Fe1-C21-C25-C24	-59.3 (6)
C20-C16-C17-Fe1	-58.4 (5)	C22-C21-C25-Fe1	59.1 (6)
C16—C17—C18—C19	-1.1 (9)	C23—C24—C25—C21	-0.6 (9)
Fe1-C17-C18-C19	58.6 (6)	Fe1-C24-C25-C21	59.9 (6)
C16-C17-C18-Fe1	-59.7 (6)	C23-C24-C25-Fe1	-60.5 (6)
C17—C18—C19—C20	0.0 (9)		

	r_{w}^{1} (Cl = 1.75) (Å)	$ \begin{array}{c} \Sigma \left(r_{\rm WN} + r_{\rm WI} \right) \\ (\rm Cl \cdots N) \\ (\rm \AA) \end{array} $	$ \begin{array}{c} \Sigma \left(r_{\rm wS} + r_{\rm wI} \right) \\ ({\bf Cl} \cdots {\bf S}) \\ ({\bf \dot{A}}) \end{array} $	$ \begin{array}{c} \Sigma \left(r_{\rm wI} + r_{\rm wI} \right) \\ (\rm Cl \cdots \rm Cl)^{2-4} \\ (\rm \mathring{A}) \end{array} $	Experimental Range ^a (Å) (Cl····N) (Å)	Experimental Range ^a (Å) (Cl···S) (Å)	Experimental Range ^a (Å) (Cl···Cl) (Å)
Ν	1.55	3.30	—	—	2.08 - 3.29	—	—
S	1.80	—	3.55	—	—	3.23 - 3.53	—
Cl	1.75	—	—	3.52	—	—	3.05 - 3.5

Table 10. van der Waals radii (r_w) and values of experimental halide interactions.

^a based on a CCDC search⁴

	r_{w}^{1} (I = 1.98) (Å)	$ \begin{array}{c} \Sigma \left(r_{\rm WN} + r_{\rm WI} \right) \\ (\mathbf{I} \cdots \mathbf{N}) \\ (\mathbf{\dot{A}}) \end{array} $	$ \begin{array}{c} \Sigma \left(r_{\rm wS} + r_{\rm wI} \right) \\ (I \cdots S) \\ (\dot{A}) \end{array} $	$ \begin{array}{c} \Sigma \left(r_{\rm wI} + r_{\rm wI} \right) \\ (\mathbf{I} \cdots \mathbf{I}) \\ (\mathbf{\dot{A}}) \end{array} $	Experimental Range ^a (Å) (I…N) (Å)	Experimental Range (Å) (I···S) (Å)	Experimental Range (Å) (I…I) (Å)
Ν	1.55	3.53	—	_	2.78 - 3.52	_	_
S	1.80	—	3.78	—	—	3.16 - 3.76	_
Ι	1.98	—		3.96		—	3.15 - 3.96

^a based on a CCDC search⁵

[1] Mantina, M.; Chamberlin, A.C.; Valero, L.; Cramer, C.J.; Truhlar, D.G., J. Phys. Chem. A 2009, 113, 5806.

[2] Desiraju, G. R.; Parthasarathy, R., The nature of halogen.cntdot..cntdot..cntdot.halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J. Am. Chem. Soc. 1989, 111 (23), 8725-8726.

[3] Desiraju Gautam, R.; Ho, P. S.; Kloo, L.; Legon Anthony, C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K., Definition of the halogen bond (IUPAC Recommendations 2013). In *Pure Appl. Chem.*, 2013; Vol. 85, p 1711.

[4] Metrangolo, P.; Resnati, G., Type II halogen...halogen contacts are halogen bonds. *IUCrJ* 2014, 1 (1), 5-7.

[5] Allen, F. H., The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr., Sect. B **2002**, B58, 380-388.

	4	5	6
	$\mathbf{X} = \mathbf{C}\mathbf{I}$	$\mathbf{X} = \mathbf{C}\mathbf{I}$	$\mathbf{X} = \mathbf{I}$
X…N (Å)	Closest is 3.72 (above	Closest is 3.57 (above	Closest is 4.05 (above
	average)	average)	average)
X…S (Å)	Closest is 4.05 (above		
	average)		
X…X (Å)	Closest is 3.79 (above	Closest is 3.58 (above	Closest is 4.64 (above
	average)	average)	average)
S ···· N (Å) (2.78–3.35 Å) ^a	Closest is 3.57 (above	Closest is 3.70 (above	Closest is 4.17 (above
	average)	average)	average)
S····S (Å) (3.15–3.69 Å) ^a	Closest is 3.89 (above	3.59	Closest is 3.97 (above
	average)		average)
Distance between planes (Å)	3.61	3.48	3.46
	3.38		
Tdzi to Fc (centroid to	d = 3.94, R = 2.02	d = 3.67, R = 1.17	d = 3.67, R = 1.22
centroid) distance (Å)	d = 3.56, R = 1.12		
$C \equiv C$ to $C \equiv C$ (centroid to		d = 3.71, R = 1.29	d = 3.68, R = 1.25
centroid) Distance (Å)			
Edge to Face	2.69		2.77
(Fc)C-H…π (Fc) (Å)			
Edge to Face		2.96, 3.01, 3.22	2.99, 3.01, 3.23
(Fc)C−H…π (C≡C) (Å)			
С–Н…Х (Å)	2.75 - 3.41	2.95	3.17-3.20, 3.33, 3.39
C-H···N (Å)	2.45 - 3.03	2.79, 2.80	2.92, 2.94
C-H···S (Å)	2.95		2.98
Closest H····H Contacts (Å)	2.19, 2.24, 2.38	2.29	2.39

Table 11. Intermolecular interactions of 4, 5, and 6

^a based on a CCDC search

	8	10	11
S····N (Å) (2.78–3.35 Å) ^a	Closest is 3.94 (above	Closest is 3.52 (above	
	average)	average)	
S····S (Å) (3.15–3.69 Å) ^a	Closest is 3.92 (above	Closest is 3.86 (above	Closest is 3.82 (above
	average)	average)	average)
Distance between planes (Å)	3.66	3.31	3.50
Tdzi to Fc (centroid to centroid)	d = 3.84, R =1.16	d = 3.71, R = 1.68	d = 3.82, R =1.52
distance (Å)			
$C \equiv C$ to $C \equiv C$ (centroid to	d = 3.77, R =0.90	d = 3.67, R = 1.59	d = 3.87, R = 1.65
centroid) Distance (Å)			
Edge to Face	2.87, 3.08, 3.12		
(Fc)C-H…π (Fc) (Å)			
Edge to Face	2.93, 2.98, 3.02, 3.05, 3.12	2.80, 2.93, 3.05, 3.18	2.99, 3.38
(Fc)С−H…π (С≡С) (Å)			
Edge to Face		2.82	Closest is 3.73 (above
(Fc)C-H··· π (Ph) (Å)			average)
Edge to Face		2.85, 2.93, 3.26	Closest is 3.71 (above
(Ph)C−H…π (C≡C) (Å)			average)
Edge to Face		2.78	2.73, 3.49
$(Ph)C-H\cdots\pi$ (Ph) $(Å)$			
C-H···N (Å)			
C-H····S (Å)	2.98		
Closest H····H Contacts (Å)		2.27, 2.38	2.29, 2.36

Table 12. Intermolecular interactions of 8, 10, and 11

^a based on a CCDC search

Figure S17. ¹H NMR spectrum of compound 4 in CDCl₃

Figure S18. ¹H NMR spectrum of compound 5 in $CDCl_3$

Figure S19. ¹H NMR spectrum of compound 6 in CDCl₃

Figure S20. ¹H NMR spectrum of compound 8 in CDCl₃

Figure S21. ¹H NMR spectrum of compound 10 in CDCl₃

Figure S22. ¹H NMR spectrum of compound 13 in DMSO-d₆

Figure S24. ¹³C NMR spectrum of compound 5 in CDCl₃

Figure S26. ¹³C NMR spectrum of compound 8 in CDCl₃

Figure S28. ¹³C NMR spectrum of compound 11 in CDCl₃

Figure S30. ¹³C NMR spectrum of compounds 14/15 in DMSO-d₆

Figure S31. HMBC NMR spectrum of compound 8 in CDCl₃

Figure S32. HMBC NMR spectrum of compound 10 in CDCl₃

Figure S33. HMBC NMR spectrum of compound 13 DMSO-d₆

Figure S34. HMBC NMR spectrum of compounds 14/15 in DMSO-d₆

Figure S35. HSQC NMR spectrum of compound 8 in CDCl₃

Figure S36. HSQC NMR spectrum of compound 10 in CDCl₃

Figure S37. HSQC NMR spectrum of compound 14/15 in DMSO-d₆

Boulhaoua, COMPOUND 12 21 (0.219) Cm (21-5x2.000)	2		QTof	Premier HAB	321				1: TOF MS ES+
100	512.0480								586
-	534.0	302							
-									
~									
-	536.0	438							
-									
	550.	0369							
	552	.0196	ut - 1 - man man yan ya da bu a dita di sa sa sa sa sa sa						
200 400	60	00 800	1000	1200	1400	1600	1800	2000	2200 m/z

Elemental Composition Report

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1403 formula(e) evaluated with 31 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-80 H: 0-50 N: 0-8 O: 0-8 S: 0-1 CI: 0-1 Boulhaoua, COMPOUND 12 QTof Premier HAB321 43 (0.447) AM (Cen,4, 70.00, Ht,10000.0,556.28,0.70,LS 10); Cm (43:46)

43 (0.447) AM	(Cen,4, 70.00, H	lt,10000.0,556.28,0).70,LS 10); C	m (43:46)					1: TOF MS E	ES+
100		512.1155							2.26e+	002
100						534	.0963			
-										
%		514	.1136				536.0943			
- _ 50	2.9470	510.9316	515.1014	521.3270	528.9	9048 531.3853	5	37.0975	544.8920	
500.0	505.0	510.0	515.0	520.0	525.0	530.0	535.0	540).0 545.0	m/z
Minimum: Maximum:		5.0	20.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (No:	rm) Form	ula		
512.1155	512.1159 512.1146 512.1126 512.1112 512.1119 512.1166 512.1200 512.1085 512.1225 512.1225 512.1238 512.1238 512.1060 512.1206 512.1206	$\begin{array}{c} -0.4 \\ 0.9 \\ 2.9 \\ 4.3 \\ 3.6 \\ -1.1 \\ -4.5 \\ 7.0 \\ -7.0 \\ 6.8 \\ -8.3 \\ 9.5 \\ -5.1 \\ 10.2 \\ -8.5 \\ \end{array}$	$\begin{array}{c} -0.8\\ 1.8\\ 5.7\\ 8.4\\ 7.0\\ -2.1\\ -8.8\\ 13.7\\ -13.7\\ 13.3\\ -16.2\\ 18.6\\ -10.0\\ 19.9\\ -16.6\end{array}$	15.5 10.5 20.5 15.5 11.5 24.5 19.5 16.5 15.5 19.5 20.5 20.5 28.5 24.5 23.5 23.5	50.4 50.5 50.8 50.9 51.2 51.6 51.8 51.9 52.2 52.5 52.9 53.3 53.8 54.4 54.5	1.6 1.7 2.0 2.1 2.3 2.8 3.0 3.1 3.4 3.7 4.1 4.4 5.0 5.6 5.7	C24 C23 C27 C26 C19 C32 C29 C22 C25 C30 C26 C37 C33 C34	H23 H27 H19 H23 H19 H23 H19 H23 H19 H19 H19 H19 H19 H19	N5 04 S Cl N 08 S Cl N5 04 Cl N 08 Cl N7 06 S Cl N3 02 Cl N3 02 S Cl N7 06 Cl N3 07 Cl N 03 S Cl N7 0 S Cl N 03 Cl N 03 Cl N 03 Cl N S Cl	
	512.1141 512.1128 512.1168 512.1181 512.1009 512.1069 512.1134 512.1107 512.1221 512.1240 512.1094 512.1094 512.1095 512.1246	1.4 2.7 -1.3 -2.6 4.6 8.6 2.1 4.8 -6.6 0.8 -8.5 6.1 -3.3 -5.1 8.0 -9.1	2.7 5.3 -2.5 -5.1 9.0 16.8 4.1 9.4 -12.9 1.6 -16.6 11.9 -6.4 -10.0 15.6 -17.8	20.5 15.5 19.5 24.5 28.5 24.5 24.5 24.5 25.5 28.5 29.5 15.5 20.5 33.5 20.5 33.5 24.5	56.3 56.4 56.7 57.0 57.2 58.3 58.7 58.7 58.7 58.7 58.9 59.5 59.6 59.6 60.7	7.5 7.6 7.9 8.2 8.4 9.9 9.9 9.9 9.9 9.9 9.9 10.0 10.1 10.7 10.8 10.8 11.9	C25 C24 C29 C30 C36 C31 C32 C28 C35 C33 C27 C38 C26 C39 C31	H18 H22 H22 H18 H18 H18 H14 H18 H14 H18 H14 H18 H14 H18 H14 H18	N7 04 S N3 08 S N 06 S N5 02 S N 0 S N3 03 S N 06 N7 04 N3 S N5 02 N5 07 S N3 08 N3 N5 07 N 0 N3 05	

Elemental Composition Report

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1403 formula(e) evaluated with 39 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-80 H: 0-50 N: 0-8 O: 0-8 S: 0-1 I: 0-1

Boulhaoua, COMPOUND 13 QTof Premier HAB321 51 (0.528) AM (Cen,4, 70.00, Ht,10000.0,556.28,0.70,LS 10); Cm (46:52)

100-		604.	0517						7.000	0+002
				626.0347				701.	4960	
0	566.8912 58 569.4323	88.4065 589.4095 590 600	605.0566 606.0587 610	627.03 627.03	398 642.0113 	651.8806 1111-1111-111111111111111111111111111	685.4464 + 	896.8516 1111/1111 690 70	702.4997 702.8668 703.5004	+ m/z 0
Minimum: Maximum:		5.0	20.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (N	lorm) Form	ula		
604.0517	604.0516 604.0522 604.0511 604.0529 604.0504 604.0502 604.0491 604.0545 604.0482 604.0556 604.0475 604.0562 604.0563 604.0471 604.0468 604.0468 604.0468 604.0457 604.0581 604.0581 604.0583 604.0443 604.0594 604.0596 604.0432 604.0603	$\begin{array}{c} 0.1 \\ -0.5 \\ 0.6 \\ -1.2 \\ 1.3 \\ 1.5 \\ 2.6 \\ -2.8 \\ 3.5 \\ -3.9 \\ 4.2 \\ -4.5 \\ -4.6 \\ 4.6 \\ 4.9 \\ 5.3 \\ -5.3 \\ 6.0 \\ -6.4 \\ -6.6 \\ 7.4 \\ 7.5 \\ -7.7 \\ -7.9 \\ 8.5 \\ -8.6 \end{array}$	0.2 -0.8 1.0 -2.0 2.2 2.5 4.3 -4.6 5.8 -6.5 7.0 -7.4 -7.6 7.6 8.1 8.8 9.9 -10.6 -10.9 12.3 12.4 -12.7 -13.1 14.1 -14.2	15.5 24.5 44.5 31.5 35.5 10.5 30.5 39.5 20.5 19.5 11.5 28.5 26.5 15.5 35.5 35.5 15.5 35.5 15.5 40.5 15.5 35.5 15.5 40.5 15.5 35.5 35.5 15.5 35.5	58.7 59.1 60.7 58.1 59.5 59.6 58.7 60.8 60.4 57.0 61.8 59.7 56.9 60.5 60.8 58.4 59.6 60.1 61.3 60.8 58.4 59.6 60.1 61.3 60.8 58.1 62.8 61.6 58.5 62.8 59.7	3.2 3.6 5.2 2.6 3.9 4.1 3.2 5.3 4.9 1.5 6.3 4.2 1.4 5.0 5.3 2.9 4.1 4.6 5.8 5.3 2.9 4.1 4.6 5.8 5.3 2.6 7.3 6.1 3.0 7.3 4.2	C24 C32 C45 C33 C37 C23 C36 C42 C27 C29 C19 C37 C30 C40 C26 C32 C38 C39 C25 C39 C30 C25 C39 C30 C25 C39 C30 C25 C39 C30 C25 C39 C30 C30 C32 C36 C32 C37 C30 C36 C32 C37 C23 C37 C23 C36 C42 C45 C37 C23 C36 C42 C45 C37 C23 C36 C42 C45 C45 C37 C23 C36 C42 C45 C36 C42 C45 C37 C23 C36 C42 C45 C37 C23 C36 C42 C27 C29 C19 C37 C23 C36 C42 C27 C29 C19 C37 C30 C36 C42 C27 C29 C19 C37 C30 C36 C42 C27 C29 C19 C37 C30 C36 C42 C27 C29 C19 C37 C30 C30 C30 C36 C42 C27 C29 C19 C37 C30 C30 C40 C26 C32 C37 C23 C36 C42 C27 C29 C19 C37 C30 C36 C42 C27 C29 C37 C30 C42 C23 C36 C42 C27 C29 C37 C30 C42 C23 C36 C42 C27 C29 C37 C30 C42 C32 C36 C42 C37 C30 C42 C37 C30 C42 C37 C30 C42 C37 C30 C42 C37 C39 C37 C30 C40 C37 C33 C33 C35 C35 C35 C35 C35 C35 C35 C35	H23 N5 H19 N3 H6 N3 H10 N5 H27 N H14 N H10 N3 H10 N3 H13 N5 H23 N3 H23 N7 H19 N H10 N3 H23 N7 H10 N3 H10 N7 H10 N3 H10 N7 H13 N7 H23 N H19 N7 H19 N7 H19 N7 H19 N7 H10 N H10 N	04 S I 02 I 0 08 03 S 08 S I 07 S 0 S 04 I 06 S I 1 08 S 03 08 I 05 S 06 07 07 I 02 03 S I 03 I 03 I 03 I 02 S 06 S	
	604.0430 604.0610 604.0614 604.0417 604.0617 604.0621 604.0623 604.0410 604.0628 604.0405 604.0403 604.0634 604.0399	$\begin{array}{c} 8.7 \\ -9.3 \\ -9.7 \\ 10.0 \\ -10.0 \\ -10.4 \\ -10.6 \\ 10.7 \\ -11.1 \\ 11.2 \\ 11.4 \\ -11.7 \\ 11.8 \end{array}$	$14.4 \\ -15.4 \\ -16.1 \\ 16.6 \\ -16.6 \\ -17.2 \\ -17.5 \\ 17.7 \\ -18.4 \\ 18.5 \\ 18.9 \\ -19.4 \\ 19.5 \\ 19.5 \\ 19.5 \\ 10.10 \\ 10.1$	36.5 39.5 10.5 20.5 35.5 19.5 44.5 24.5 15.5 40.5 15.5 24.5 24.5 44.5	60.9 62.1 61.5 59.9 61.1 61.7 63.1 61.8 61.0 63.1 60.8 62.3 63.9	5.4 6.6 5.9 4.4 5.6 6.1 7.6 6.3 5.5 7.5 5.2 6.8 8.4	C35 C43 C22 C26 C36 C30 C44 C33 C23 C39 C25 C31 C46	H6 N7 H10 N H27 N3 H19 N7 H10 N7 H23 N H6 N5 H19 N H23 N7 H23 N7 H23 N7 H23 N3 H19 N5 H19 N5 H6 N	05 04 07 S I 02 S 05 I 03 I 03 S I S 05 S I 0 I 02	

1: TOF MS ES+ 7.96e+002

Elemental Composition Report

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 702 formula(e) evaluated with 33 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-80 H: 0-50 N: 0-8 O: 0-8 S: 0-1

Boulhaoua, COMPOUND 14 QTof Premier HAB321

17 (0.183) AM (Cen,4, 60.00, Ht,10000.0,556.28,0.70,LS 10); Cm (17:22)

100-						891.2	2888						
% - - - 838.8 0	419 840.8954	855.2882 	7.2919 ^{868.99}	869.3080 870.311: 871.30	3)96 877.2775 885.233	885.3032	892.2953 893.294 894.21 894.21 894.21	4 923 90	907 26.8286	.2798)9.28	35 914.234 	-3 m/z
o Minimum:	40.0 850.0	00	0.0	-1 5	880.0	890.0)	900.0		910	.0		
Maximum:		5.0	20.0	50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formu	la				
869.3080	869.3081 869.3121 869.3009 869.3022 869.3049 869.3148 869.3063 869.3088 869.3114 869.3162 869.3047 869.3128 869.3047 869.3015 869.3015 869.3015 869.3015 869.3175 869.2989 869.2975 869.3056 869.3141	$\begin{array}{c} -0.1 \\ -4.1 \\ 7.1 \\ 5.8 \\ 3.1 \\ -6.8 \\ 1.7 \\ -0.8 \\ -3.4 \\ -8.2 \\ 3.3 \\ -4.8 \\ -0.9 \\ 6.5 \\ 5.1 \\ -9.5 \\ 9.1 \\ 10.5 \\ 2.4 \\ -6.1 \end{array}$	$\begin{array}{c} -0.1 \\ -4.7 \\ 8.2 \\ 6.7 \\ 3.6 \\ -7.8 \\ 2.0 \\ -0.9 \\ -3.9 \\ -9.4 \\ 3.8 \\ -5.5 \\ -1.0 \\ 7.5 \\ 5.9 \\ -10.9 \\ 10.5 \\ 12.1 \\ 2.8 \\ -7.0 \end{array}$	28.5 32.5 37.5 36.5 41.5 37.5 36.5 36.5 33.5 41.5 41.5 36.5 34.5 41.5 36.5 36.5 33.5 41.5 41.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 36.5 37.5 37.5 36.5 37.5 37.5 36.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 41.5 42.5 37.5 45.5	55.0 55.4 55.5 55.7 55.8 56.1 56.2 56.4 56.5 56.9 56.9 56.9 57.0 57.2 57.3 57.3 57.4 57.5	1.9 2.0 2.4 2.6 2.7 3.1 3.1 3.3 3.4 3.7 3.8 3.9 4.2 4.2 4.3 4.3 4.3 4.4 4.5		C46 C51 C52 C53 C55 C55 C58 C54 C58 C56 C49 C59 C62 C60 C57 C55 C65 C61 C55 C55 C65 C65 C62 C57 C55 C60 C55 C56 C57 C55 C60 C57 C55 C60 C57 C55 C60 C55 C60 C65 C60 C65 C65 C60 C65 C65 C60 C65 C60 C65 C60 C65 C60 C65 C60 C65 C60 C65 C55 C65 C60 C65 C55 C65 C65 C65 C65 C60 C55 C65	H45 H45 H41 H45 H41 H45 H41 H45 H41 H45 H41 H37 H41 H37 H41 H37 H41 H37 H41 H37	N8 N6 N4 N8 N2 08 N6 08 N6 08 N4 03 N2 N6 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8	28 26 27 23 25 25 25 26 24 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20	s s s s s s s	
	869.3234 869.2937 869.2910 869.3200 869.2950 869.3168 869.2990 869.3227 869.3227 869.3202 869.3240 869.2917 869.3208 869.3242	-15.4 14.3 17.0 -12.0 13.0 -8.8 9.0 -14.7 -12.2 -16.0 16.3 -12.8 -16.2	-17.7 16.4 19.6 -13.8 15.0 -10.1 10.4 -16.9 -14.0 -18.4 18.8 -14.7 -18.6	32.5 36.5 37.5 41.5 45.5 45.5 36.5 40.5 41.5 46.5 49.5 44.5	57.5 58.0 58.1 58.2 58.3 58.5 58.6 58.7 58.7 58.7 59.3 59.6 60.5 60.9	4.5 5.0 5.1 5.2 5.5 5.5 5.6 5.7 6.2 6.6 7.4 7.9		C50 C58 C54 C53 C59 C64 C57 C61 C58 C62 C69 C66	H45 H41 H41 H41 H41 H41 H41 H45 H45 H41 H37 H41 H45	N8 N6 N8 N4 N2 N2 N2 N2 N2 N2 N2 N2 N6 N4	25 5 24 25 22 22 5 07 02 03 02	s s s	

1: TOF MS ES+

6.60e+002