Electronic Supplementary Information

Synergism of Carbon Quantum Dots and Au Nanoparticles with Bi₂MoO₆ for Activity Enhanced Photocatalytic Oxidative Degradation of Phenol

Qiang Zhao^{1†}, Zhuangzhuang Zhang^{1†}, Ting Yan¹, Li Guo¹, Chunming Yang¹, Ge Gao¹, Yu Wang¹, Feng Fu^{1*}, Bin Xu^{1,2*}, Danjun Wang^{1,2*}

¹ College of Chemistry & Chemical Engineering, Yan'an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, China

² State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China

*Corresponding authors

E-mail address: yadxfufeng@126.com

E-mail address: binxumail@163.com

E-mail address: wangdj761118@163.com

t	These	authors	contributed	equally	to	this	work.

TABLE OF CONTENTS

- **Table S1**Photocatalytic activity comparison of Bi2MoO6-based photocatalysts.
- Table S2 The equivalent circuit model for electrochemical impedance spectroscopy

 (EIS) of samples.

Figures

- Fig. S1 XRD patterns of series of CQDs/Au/BMO heterostructures and CQDs.
- Fig. S2 FE-SEM images of (a,b) BMO-SOVs, (c,d) Au/BMO and (e,f) CQDs/BMO.
- Fig. S3 (a) photocatalytic degradation efficiency of phenol by the series of CQDs/Au/BMO composites, (c) kinetic plot of C/C_0 versus with irradiation time for the photo-degradation of phenol and (c) The photodegradation rate constants of phenol using different catalysts.
- Fig. S4 The Photoluminescence spectra of pure BMO, BMO-SOVs, Au/BMO, CQDs/BMO and CQDs/Au/BMO composites.
- Fig. S5 The capture agent experiment for photodegradation of phenol by 7% CQDs/Au/BMO under visible light irradiation (λ > 420 nm).
- Fig. S6 (a) UV-Vis diffuse reflectance spectra of series of CQDs/Au/BMO samples.
- Fig. S7 Mott-Schottky plots of (a) BMO and (b) BMO-SOVs.
- Fig. S8 Band diagram of BMO and BMO-SOVs.

	Light source	Photocatalytic activities						
Catalyst	^{a)} type/power (W)	^{b)} t time(min)	$^{c)}C_{pollutants}$ $(mg \cdot L^{-1})$	^{d)} C _{catalyst} (g·L ⁻¹)	$k_{app}^{e)}/(\times 10^{-4} min^{-1})$	^{f)} η(%)	^{g)} TR(%)	Refs.
CQDs/Bi2MoO6	300 W Xe lamp $\lambda > 400 \text{ nm}$	120	BPA, 10 mg·L ⁻¹	1.0	-	54	-	[36]
Au/Bi ₂ MoO ₆ @TiO ₂	300 W Xe lamp	300	Phenol, 10 mg·L ⁻¹	-	31	65	-	
NTAs		90	BPA, 10 mg·L ⁻¹	-	108	63	-	[42]
	300 W mercury lamp	300	Phenol, 10 mg·L ⁻¹	-	126	89	68	[43]
		90	BPA ,10 mg·L ⁻¹	-	197	93	-	
Fe(III)/Bi ₂ MoO ₆	400 W halogen lamp	180	Phenol, 10 mg·L ⁻¹	1.0	150.3	93.4	85.6	[45]
Au/Bi_2MoO_6	400 W halogen lamp	180	Phenol, 10 mg·L ⁻¹	1.0	84.9	100	45.0	[46]
Ag/Bi_2MoO_6 -SOVs	400W halogen lamp	180	Phenol, 10 mg·L ⁻¹	1.0	343.9	100	57.1	[[]]
		180	4-nitrophenol, 10 mg·L ⁻¹	1.0	77.8	-	48.7	[56]
Bi ₂ O ₃ /Bi ₂ MoO ₆	400W halogen lamp	180	Phenol, 10 mg·L ⁻¹	1.0	145.8	96.4	75.5	[60]
Pd-rGO-Bi ₂ MoO ₆	300W halogen tungsten 310~800 nm	120	Phenol, 10 mg·L ⁻¹	1.0	161.0	88.2	-	[66]
F-Bi ₂ MoO ₆	500W Xe lamp Simulated	300	4-chlorophenol, 20 mg·L ⁻¹	0.5	132	33.6	28.6	
	Sunlight	100	Phenol, 20 mg·L ⁻¹	0.5		80.7	80.2	[67]
		100	BPA, 20 mg·L ⁻¹	0.5		98.3	77.8	
Bi2MoO6-x@Bi2MoO6	250 W Xenon lamp	240	Phenol, 10 mg·L ⁻¹	1.0	52.9	70.2	-	[68]
Bi2MoO6/CNTs/g-C3N4	500W Xenon lamp $(\lambda > 420 \text{ nm})$	120	2,4-dibromophenol, 20 mg·L ⁻¹	1.0	78	68.2	49.8	[69]
CdS/Bi/Bi2MoO6	solar light	60	Phenol, 20 mg·L ⁻¹	1.0	-	47.5	-	[70]
CQDs/Au/Bi ₂ MoO ₆ -SOV	400W halogen lamp	120	Phenol, 10 mg·L ⁻¹	1.0	228.2	94	72.4	this work

Table S1Photocatalytic activity comparison of Bi2MoO6-based photocatalysts.

Note: a) UVC-lamp were the UV-light sources, Xe lamp, tungsten lamp and halogen lamp($\lambda > 420$ nm) were the visible-light source; b) irradiation time; c) concentration of pollutants; d) concentration of photocatalyst, g·L⁻¹; e) Apparent rate constants, ($k_{app}/\times 10^{-4}$ min⁻¹); f) Degradation rate, $\eta(\%)$; g) TOC Removal rate, TR, %.

	BMO	BMO-SOVs	CQDs/BMO	Au/BMO	CQDs/Au/BMO
The equivalent circuit model			R2 PE2 C1 1	R1	
R_1/Ω	20.19	17.95	16.21	15.63	20.4
R_2/Ω	35995	30006	21731	2873	14733
R_3/Ω	-	-	-	21928	3334

 Table S2 The equivalent circuit model for electrochemical impedance spectroscopy

 (EIS) of samples

Fig. S1 XRD patterns of series of CQDs/Au/BMO heterostructures and CQDs.

Fig. S2 FE-SEM images of BMO-SOVs(a,b), Au/BMO(c,d) and CQDs/BMO(e,f).

Fig. S3 (a) photocatalytic degradation efficiency of phenol by the series of CQDs/Au/BMO composites, (b) kinetic plot of C/C₀ versus with irradiation time for the photo-degradation of phenol, (c) The photodegradation rate constants(K_{app} /min⁻¹) of phenol using different catalysts.

Fig. S4 The photoluminescence spectra of pure BMO, BMO-SOVs, Au/BMO,

CQDs/BMO and CQDs/Au/BMO composites.

Fig. S5 The capture agent experiment for photodegradation of phenol by 7 wt% CQDs/Au/BMO under visible light irradiation (λ > 420 nm).

Fig. S6 (a) UV-Vis diffuse reflectance spectra of series of CQDs/Au/BMO samples.

Fig. S7 Mott-Schottky plots of (a) BMO and (b) BMO-SOVs.

Fig. S8 Band diagram of BMO and BMO-SOVs.

Fig. S9 (a) Photocatalytic degradation of phenol with the 7 wt% $CQDs/Bi_2MoO_6$ sample for four cycles, (b) XRD patterns of the 7 wt% $CQDs/Au/Bi_2MoO_6$ sample before and after the photodegradation test for four cycles.