Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Copper(I)-Catalyzed Radical Carboamination Reaction of 8-Aminoquinoline-Oriented Buteneamides with Chloroform: Synthesis of-β-Lactams

Zixu Gan,[†] Ke Zhang,[†] Peng Shi,^{††} Yingsheng Zhao,^{*†} Runsheng Zeng^{*†}

[†]Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.

^{††}Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.

*yszhao@suda.edu.cn *zengrunsheng@suda.edu.cn

Table of contents

1. General information.	S2
2. Instrumentation	S2
3. Synthetic procedures	
4. Characterization data	
5 NMR spectra	
er i (i i i i spece i i i i i i i i i i i i i i i i i i	

1. General information.

Unless otherwise noted, all reactions were carried out in the oven-dried glass tubes with magnetic stirring. All reagents and solvents were purchased for commercial suppliers. Analytical thin layer chromatography (TLC) was performed using Silica Gel 60 F 254 aluminum plates and visualized with UV light (254 nm). The pure products were obtained by means of column chromatography which was performed on silica gel (200-300 mesh).

2. Instrumentation.

The ¹H NMR (400 MHz), ¹³C NMR (100 MHz), and ¹⁹F NMR (376 MHz) spectra were recorded at 23 °C with CDCl₃ as solvent on a Bruker 400 spectrometer or Varian Inova 400 spectrometer and tetramethylsilane (TMS) as internal standard. Chemical shifts were reported in ppm from internal TMS (δ), all coupling constants (*J* values) were reported in Hertz (Hz). High resolution mass spectra (HRMS) were obtained on a TOF machine (ESI-TOF).

3. Synthetic procedures.

3.1 General procedure for synthesis of substrate 1a [1]

A oven-dried 100 mL RB flask charged with a magnetic stirring bar was added vinyl acetic acid (12 mmol, 1.0 equiv.), 8-aminoquinoline (1.44 g, 10 mmol), pyridine (2.6 mL, 20 mmol), HATU (4.94 g, 13 mmol), DCM (30 mL), and the flask was evacuated and backfilled with argon (3 times). The reaction mixture was stirred at 25 °C for 16 h. After removal of DCM, The reaction mixture was extracted with EtOAc (200 mL), washed with NaHCO₃ saturated solution (100 mL) and 10% HCl solution (100 mL), then the solvent was removed under vacuum, and the residue **1a** was purified by regular column chromatography (hexanes: ethyl acetate: =6:1).

3.2 General procedure for synthesis of α-substituted vinyl acetic acids ^[2]

A solution of LDA 2 M in THF (11.8 mL, 23.5 mmol) was cooled to 0°C in ice-water, 3-butenoic acid (1 mL, 11.77 mmol) dissolved in THF (10 mL) was added to cooled LDA solution slowly over a period of 15 min. The reaction mixture was stirred at the same temperature for 45 min to obtain a deep yellow solution. A total of 1.1 eq. (12.9 mmol) of the alkylating agent was added, whereupon the reaction mixture immediately

turned colorless. After 30 min at the same temperature and 1 h at room temperature, the pH of the solution was adjusted to 2.5 with 10% HCl. The reaction mixture was extracted with EtOAc, and washed with NaCl saturated solution for 2 times. The organic phase was dried by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo to afford crude product. The resulting residue was purified by column chromatography on silica gel (10-20% ethyl acetate/hexanes) to produce the targeted molecules (28%-78% yield).

3.3 General procedure for synthesis of γ -substituted vinylacetic acids ^[3]

A mixture of aldehyde in DMSO (1M), malonic acid (1.1 equiv), acetic acid (6 μ L) and piperidine (10 μ L) were added in a 10 mL RB flask. The mixture was heated at 100°C for 8 h and then quenched with saturated saline. After extraction with EtOAc for several times, the concentrated organic phase was dried over Na₂SO₄. The crude product was purified by column chromatography to give the target carboxylic acid (56%-82% yield).

3.4 General procedure for Synthesis of β-lactam 2

A mixture of **1** (0.2 mmol), DTBP (220 μ L, 1.2 mmol), Cu(CH₃CN)₄PF₆ (7.5 mg, 0.02 mmol), and CHCl₃ (2 mL) in a 15 mL glass vial sealed under air atmosphere was heated at 110°C for 6 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (PE / EA = 30 / 1) on silica gel to give the product **2**.

3.5 Gram-scale reaction

A mixture of **1a** (1.05 g, 5 mmol), DTBP (6.6 mL, 30 mmol), $Cu(CH_3CN)_4PF_6$ (185 mg, 0.5 mmol), and CHCl₃ (15 mL) in a 50 mL glass vial sealed under air atmosphere was heated at 110°C for 6 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (PE / EA = 30 / 1) on silica gel to give the product 2a (1.28 g, 78%).

4. Characterization data.

4.1 N-(quinolin-8-yl)but-3-enamide (1a)

¹**H** NMR (400 MHz, CDCl₃) δ 10.03 – 9.83 (m, 1H), 8.78 – 8.73 (m, 2H), 8.11 – 8.07 (m, 1H), 7.51 – 7.42 (m, 2H), 7.41 – 7.36 (m, 1H), 6.18 – 6.07 (m, 1H), 5.40 – 5.32 (m, 2H), 3.33 (d, J = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.30, 148.24, 138.44, 136.30, 134.34, 130.98, 127.90, 127.31, 121.64, 121.59, 120.06, 116.45, 43.16. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₃H₁₃N₂O⁺: 213.1028, found: 213.1029.

4.2 2-methyl-N-(quinolin-8-yl)but-3-enamide (1b)

¹**H** NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.81 – 8.76 (m, 2H), 8.13 (dd, J = 8.3, 1.6 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.48 (dd, J = 8.3, 1.6 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 6.16 – 6.05 (m, 1H), 5.39 (dt, J = 17.2, 1.2 Hz, 1H), 5.33 – 5.28 (m, 1H), 3.40 – 3.32 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.56, 148.25, 138.60, 137.99, 136.30, 134.52, 127.94, 127.38, 121.57, 121.51, 117.30, 116.37, 47.01, 16.97. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₄H₁₄N₂ONa⁺: 249.1004, found: 249.1004.

4.3 2-ethyl-N-(quinolin-8-yl)but-3-enamide (1c)

¹**H** NMR (400 MHz, CDCl₃) δ 9.97 (s, 1H), 8.79 (m, 2H), 8.13 (dd, J = 8.3, 1.6 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.47 (dd, J = 8.3, 1.5 Hz, 1H), 7.42 (dd, J = 8.3, 4.2 Hz, 1H), 6.09 – 5.96 (m, 1H), 5.38 – 5.32 (m, 1H), 5.30 (dd, J = 10.2, 1.0 Hz, 1H), 3.10 (dd, J = 15.2, 7.7 Hz, 1H), 2.09 – 1.98 (m, 1H), 1.79 – 1.67 (m, 1H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.15, 148.23, 138.54, 136.83, 136.31, 134.51, 127.93, 127.38, 121.57, 121.49, 118.16, 116.41, 55.11, 25.11, 11.82. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₅H₁₇N₂O⁺: 241.1341, found: 241.1334.

4.4 2-isopropyl-N-(quinolin-8-yl)but-3-enamide (1d)

¹**H** NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.81 (d, J = 1.6 Hz, 1H), 8.80 (dd, J = 2.9, 1.7 Hz, 1H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.48 (dd, J = 8.3, 1.6 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 6.04 (dt, J = 17.1, 9.8 Hz, 1H), 5.34 – 5.27 (m, 2H), 2.91 – 2.83 (m, 1H), 2.33 – 2.23 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.12, 148.20, 138.50, 136.32, 135.74, 134.47, 127.93, 127.39, 121.55, 121.46, 118.75, 116.43, 61.41, 30.30, 21.04, 19.72. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₆H₁₉N₂O⁺: 255.1497, found: 255.1486.

4.5 N-(quinolin-8-yl)-2-vinylpent-4-enamide (1e)

¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.81 – 8.74 (m, 2H), 8.14 – 8.07 (m, 1H), 7.53 – 7.44 (m, 2H), 7.43 – 7.38 (m, 1H), 6.09 – 5.97 (m, 1H), 5.91 – 5.80 (m, 1H), 5.35 (dd, J = 19.5, 13.7 Hz, 2H), 5.19 – 5.12 (m, 1H), 5.08 – 5.03 (m, 1H), 3.29 (dd, J = 15.2, 7.5 Hz, 1H), 2.81 – 2.70 (m, 1H), 2.53 – 2.44 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.31, 148.25, 138.52, 136.36, 136.30, 135.37, 134.41, 127.92, 127.34, 121.59, 118.51, 117.10, 116.44, 53.02, 36.14. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₆H₁₇N₂O⁺:253.1341, found: 253.1342.

4.6 2-(cyclopropylmethyl)-N-(quinolin-8-yl)but-3-enamide (1f)

¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 8.83 – 8.76 (m, 2H), 8.13 (dd, J = 8.3, 1.6 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.47 (dd, J = 8.2, 1.5 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 6.09 (ddd, J = 17.2, 10.1, 8.6 Hz, 1H), 5.41 – 5.33 (m, 1H), 5.28 (dd, J = 10.2, 0.9 Hz, 1H), 3.32 (dd, J = 15.5, 7.4 Hz, 1H), 1.88 – 1.80 (m, 1H), 1.72 – 1.64 (m, 1H), 0.87 – 0.76 (m, 1H), 0.52 – 0.39 (m, 2H), 0.18 – 0.08 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.14, 148.22, 138.53, 137.08, 136.29, 134.52, 127.93, 127.38, 121.55, 121.46, 117.76, 116.39, 53.94, 37.30, 9.04, 4.73, 4.62.

 $\label{eq:HRMS(ESI-TOF): $[M+H]^+$ m/z$ calcd for $C_{17}H_{19}N_2O^+$: 267.1497, found: 267.1499.$$ 4.7 2-(cyclobutylmethyl)-N-(quinolin-8-yl)but-3-enamide (1g)$}$

¹H NMR (400 MHz, CDCl₃) δ 9.94 (s, 1H), 8.82 – 8.75 (m, 2H), 8.16 – 8.08 (m, 1H), 7.53 – 7.44 (m, 2H), 7.40 (dd, *J* = 8.2, 4.2 Hz, 1H), 6.06 – 5.94 (m, 1H), 5.31 (d, *J* = 17.1 Hz, 1H), 5.25 (d, *J* = 10.1 Hz, 1H), 3.12 (q, *J* = 7.7 Hz, 1H), 2.47 – 2.34 (m, 1H), 2.14 – 2.02 (m, 3H), 1.85 – 1.63 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 172.14, 148.22, 138.50, 137.09, 136.28, 134.50, 127.91, 127.35, 121.55, 121.47, 117.67, 116.38, 51.71, 39.22, 33.93, 28.52, 28.25, 18.49. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₈H₂₁N₂O⁺: 281.1654, found: 281.1655.

4.8 5-chloro-N-(quinolin-8-yl)-2-vinylpentanamide (1h)

¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.76 (dd, J = 7.1, 1.8 Hz, 1H), 8.13 (dd, J = 8.3, 1.6 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.48 (dd, J = 8.3, 1.9 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 6.01 (ddd, J = 17.1, 10.1, 8.7 Hz, 1H), 5.42 – 5.36 (m, 1H), 5.33 (dd, J = 10.2, 0.8 Hz, 1H), 3.63 – 3.52 (m, 2H), 3.21 (dd, J = 15.1, 7.4 Hz, 1H), 2.18 – 2.08 (m, 1H), 1.95 – 1.81 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.44, 148.26, 138.44, 136.42, 134.32, 127.94, 127.36, 121.70, 121.63, 118.77, 116.52, 52.63, 44.76, 30.29, 29.07. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₆H₁₇N₂ONa⁺: 311.0927, found: 311.0927. **4.9 ethyl 3-(quinolin-8-ylcarbamoyl)pent-4-enoate (1i)**

¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 8.77 (dd, J = 4.2, 1.7 Hz, 1H), 8.73 (dd, J = 7.0, 2.0 Hz, 1H), 8.12 – 8.08 (m, 1H), 7.51 – 7.45 (m, 2H), 7.40 (dd, J = 8.3, 4.2 Hz, 1H), 6.10 – 5.97 (m, 1H), 5.46 (d, J = 17.1 Hz, 1H), 5.35 (d, J = 10.1 Hz, 1H), 4.18 – 4.11 (m, 2H), 3.79 – 3.69 (m, 1H), 3.06 (dd, J = 16.5, 7.7 Hz, 1H), 2.64 (dd, J = 16.5, 6.3 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.77, 170.40, 148.29, 138.52, 136.25, 135.33, 134.38, 127.90, 127.26, 121.66, 121.59, 119.41, 116.41, 60.69, 48.82, 36.11, 14.18. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₇H₁₉N₂O₃⁺: 299.1396, found: 299.1392.

4.10 2-benzyl-N-(quinolin-8-yl)but-3-enamide (1j)

¹H NMR (400 MHz, CDCl₃) δ 9.93 (s, 1H), 8.79 (dd, J = 7.5, 1.4 Hz, 1H), 8.73 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.3, 1.6 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.44 (dd, J = 8.3, 1.5 Hz, 1H), 7.37 (dd, J = 8.3, 4.2 Hz, 1H), 7.29 – 7.22 (m, 4H), 7.19 – 7.13 (m, 1H), 6.06 (ddd, J = 17.1, 10.2, 8.6 Hz, 1H), 5.31 – 5.23 (m, 2H), 3.50 (dd, J = 15.4, 7.6 Hz, 1H), 3.39 (dd, J = 13.7, 6.8 Hz, 1H), 2.98 (dd, J = 13.7, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.28, 148.22, 139.19, 138.50, 136.35, 136.28, 134.42, 129.27, 128.39, 127.92, 127.36, 126.34, 121.63, 121.59, 118.74, 116.47, 55.15, 38.16. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₉N₂O⁺:303.1497, found: 303.1505.

4.11 2-(4-methylphenyl)-N-(quinolin-8-yl)but-3-enamide (1k)

¹**H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.84 (d, J = 7.6 Hz, 1H), 8.75 (dd, J = 4.2, 1.6 Hz, 1H), 8.12 – 8.05 (m, 1H), 7.52 (t, J = 7.9 Hz, 1H), 7.46 (dd, J = 8.3, 1.3 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.19 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 6.16 – 6.03 (m, 1H), 5.31 (dd, J = 13.6, 8.4 Hz, 2H), 3.52 (dd, J = 15.3, 7.6 Hz, 1H), 3.39 (dd, J = 13.7, 6.9 Hz, 1H), 2.99 (dd, J = 13.7, 7.6 Hz, 1H), 2.29 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.36, 148.18, 138.48, 136.46, 136.25, 136.05, 135.73, 134.45, 129.12, 129.09, 127.89, 127.33, 121.59, 121.56, 118.63, 116.45, 55.24, 37.77, 21.08.

HRMS(ESI-TOF): $[M+H]^+ m/z$ calcd for $C_{21}H_{21}N_2O^+$: 317.1654, found: 317.1654.

4.12 2-(4-fluorophenyl)-N-(quinolin-8-yl)but-3-enamide (11)

¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.79 (d, J = 7.2 Hz, 1H), 8.74 (d, J = 2.9 Hz, 1H), 8.09 (d, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.38 (dd, J = 8.2, 4.2 Hz, 1H), 7.21 (dd, J = 8.1, 5.6 Hz, 2H), 6.93 (t, J = 8.6 Hz, 2H), 6.12 – 5.99 (m, 1H), 5.33 – 5.25 (m, 2H), 3.46 (dd, J = 15.4, 7.5 Hz, 1H), 3.34 (dd, J = 13.7, 7.0 Hz, 1H), 2.96 (dd, J = 13.7, 7.4 Hz, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -117.00 (s). ¹³C NMR (100 MHz, CDCl₃) δ 171.04,161.55 (d, J = 244.0 Hz), 148.23, 138.48, 136.31, 136.12, 134.78, 134.32, 130.70, 130.62, 127.93, 127.35, 121.67, 121.60, 118.85, 116.47, 115.24, 115.03, 55.27, 37.32. HRMS(ESI-TOF):

 $[M+H]^+$ m/z calcd for $C_{20}H_{18}FN_2O^+$: 321.1403, found: 321.1409.

4.13 2-phenethyl-N-(quinolin-8-yl)but-3-enamide (1m)

¹**H** NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.79 (dd, J = 7.5, 1.5 Hz, 1H), 8.76 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.3, 1.6 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.44 (dd, J = 8.3, 1.5 Hz, 1H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.22 – 7.14 (m, 3H), 6.03 (ddd, J = 17.2, 10.1, 8.7 Hz, 1H), 5.39 – 5.29 (m, 2H), 3.18 (dd, J = 15.4, 7.6 Hz, 1H), 2.77 – 2.66 (m, 2H), 2.41 – 2.30 (m, 1H), 2.03 – 1.93 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.79, 148.28, 141.58, 138.57, 136.83, 136.35, 134.50, 128.63, 128.48, 127.98, 127.41, 126.01, 121.63, 118.58, 116.50, 52.62, 33.36, 33.32. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₂₁N₂O⁺: 317.1654, found: 317.1645.

4.14 2,2-dimethyl-N-(quinolin-8-yl)but-3-enamide (1n)

¹**H** NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 8.80 – 8.74 (m, 2H), 8.07 (dd, J = 8.3, 1.7 Hz, 1H), 7.49 (dd, J = 10.0, 5.8 Hz, 1H), 7.43 (dd, J = 8.3, 1.4 Hz, 1H), 7.37 (dd, J = 8.3, 4.2 Hz, 1H), 6.23 (dd, J = 17.5, 10.6 Hz, 1H), 5.40 (ddd, J = 14.0, 11.5, 0.8 Hz, 2H), 1.48 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.82, 148.31, 142.86, 138.85, 136.20, 134.67, 127.91, 127.32, 121.51, 121.43, 116.18, 115.02, 46.83, 24.89. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₅H₁₇N₂O⁺: 241.1341, found: 241.1341.

4.15 N-(quinolin-8-yl)pent-3-enamide (10)

¹**H** NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.79 – 8.73 (m, 2H), 8.11 (dd, J = 8.3, 1.7 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.46 (dd, J = 8.3, 1.6 Hz, 1H), 7.41 (dd, J = 8.3, 4.2 Hz, 1H), 5.85 – 5.70 (m, 2H), 3.27 – 3.23 (m, 2H), 1.83 – 1.78 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.08, 148.22, 138.50, 136.28, 134.46, 131.31, 127.91, 127.36, 123.50, 121.55, 121.49, 116.33, 42.09, 18.12. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₄H₁₅N₂O⁺:227.1184, found: 227.1182.

4.16. N-(quinolin-8-yl)hex-3-enamide (1p)

¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.78 – 8.72 (m, 2H), 8.10 (dd, J = 8.3, 1.7 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.45 (dd, J = 8.3, 1.6 Hz, 1H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 5.89 – 5.80 (m, 1H), 5.76 – 5.67 (m, 1H), 3.25 (dd, J = 7.0, 0.9 Hz, 2H), 2.21 – 2.13 (m, 2H), 1.11 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.11, 148.12, 138.68, 138.52, 136.23, 134.44, 127.89, 127.33, 121.53, 121.48, 121.36, 116.27, 42.07, 25.79, 13.57. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₅H₁₇N₂O⁺: 241.1341, found:

241.1344.

4.17 5-phenyl-N-(quinolin-8-yl)pent-3-enamide (1q)

¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.80 (dd, J = 7.3, 1.6 Hz, 1H), 8.78 (dd, J = 4.2, 1.7 Hz, 1H), 8.14 (dd, J = 8.3, 1.6 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.49 (dd, J = 8.3, 1.7 Hz, 1H), 7.44 (dd, J = 8.3, 4.2 Hz, 1H), 7.34 – 7.29 (m, 4H), 7.26 – 7.20 (m, 1H), 6.03 – 5.93 (m, 1H), 5.89 – 5.79 (m, 1H), 3.52 (d, J = 6.5 Hz, 2H), 3.33 (dd, J = 7.1, 0.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.79, 148.21, 139.94, 138.53, 136.34, 135.40, 134.44, 128.76, 128.52, 127.96, 127.40, 126.22, 123.75, 121.61, 116.42, 42.05, 39.12. HRMS(ESI-TOF):

 $[M+H]^+ m/z$ calcd for $C_{20}H_{19}N_2O^+$: 303.1497, found: 303.1496.

4.18 N-(5-methoxyquinolin-8-yl)but-3-enamide (1r)

¹**H** NMR (400 MHz, CDCl3) δ 9.62 (s, 1H), 8.68 (dd, J = 4.2, 1.7 Hz, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.42 (dd, J = 8.4, 1.7 Hz, 1H), 7.29 (dd, J = 8.4, 4.2 Hz, 1H), 6.68 (d, J = 8.6 Hz, 1H), 6.22 – 5.98 (m, 1H), 5.38 – 5.24 (m, 2H), 3.85 (s, 3H), 3.27 (d, J = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl3) δ 168.67, 150.18, 148.57, 139.06, 131.23, 131.04, 127.76, 120.57, 120.25, 119.76, 116.51, 104.13, 55.61, 43.03. HRMS(ESI-TOF): $[M+H]^+$ m/z calcd for C₁₄H₁₅N₂O₂⁺: 243.1134, found: 243.1143.

4.19 1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2a)

yellow oil, 60 mg (92% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.8 Hz, 1H), 8.33 (dd, J = 7.5, 1.4 Hz, 1H), 8.15 (dd, J = 8.4, 1.7 Hz, 1H), 7.60 (dd, J = 8.2, 1.3 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.42 (dd, J = 8.3, 4.1 Hz, 1H), 5.70 – 5.62 (m, 1H), 3.66 (dd, J = 14.3, 1.6 Hz, 1H), 3.57 (dd, J = 15.6, 5.2 Hz, 1H), 3.29 (dd, J = 15.6, 2.6 Hz, 1H), 2.91 (dd, J = 14.3, 10.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.82, 149.13, 140.06, 136.13, 132.86, 128.97, 126.82, 124.12, 121.58, 121.17, 96.68, 57.07, 54.23, 45.56. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₄H₁₂Cl₃N₂O⁺: 329.0015, found:329.0013.

4.20 3-methyl-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2b)

yellow oil, 40 mg (59% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.83 (dd, J = 4.1, 1.8 Hz, 1H), 8.33 (dd, J = 7.5, 1.4 Hz, 1H), 8.14 (dd, J = 8.4, 1.7 Hz, 1H), 7.59 (dd, J = 8.2, 1.4 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.42 (dd, J = 8.4, 4.1 Hz, 1H), 5.28 (dt, J = 10.2, 2.0 Hz, 1H), 3.64 (dd, J = 14.3, 1.8 Hz, 1H), 3.47 – 3.40 (m, 1H), 2.93 (dd, J = 14.3, 10.2 Hz, 1H), 1.57 (d, J = 7.3 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 169.54, 149.11, 140.12, 136.12, 132.77, 129.00, 126.82, 124.03, 121.54, 121.43, 96.62, 62.25, 56.97, 53.02, 13.40. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₅H₁₄Cl₃N₂O⁺: 343.0172, found:343.0169.

4.21 3-ethyl-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2c)

yellow oil, 43 mg (61% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.8 Hz, 1H), 8.35 (dd, J = 7.5, 1.4 Hz, 1H), 8.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.59 (dd, J = 8.2, 1.3 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.42 (dd, J = 8.3, 4.1 Hz, 1H), 5.39 (dt, J = 10.1, 2.0 Hz, 1H), 3.63 (dd, J = 14.3, 1.9 Hz, 1H), 3.46 – 3.41 (m, 1H), 2.94 (dd, J = 14.3, 10.1 Hz, 1H), 2.09 – 1.97 (m, 2H), 1.19 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.09, 149.12, 140.16, 136.09, 132.76, 128.99, 126.82, 123.98, 121.52, 121.35, 96.67, 59.65, 59.01, 56.97, 21.89, 11.22. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₆H₁₆Cl₃N₂O⁺: 357.0328, found:357.0321.

4.22 3-isopropyl-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2d)

yellow oil, 37 mg (50% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.6 Hz, 1H), 8.36 (dd, J = 7.5, 1.2 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.40 (dd, J = 8.3, 4.1 Hz, 1H), 5.45 (dt, J = 9.8, 2.0 Hz, 1H), 3.59 (dd, J = 14.4, 2.1 Hz, 1H), 3.38 (dd, J = 5.6, 2.0 Hz, 1H), 2.93 (dd, J = 14.4, 9.9 Hz, 1H), 2.35 – 2.26 (m, 1H), 1.21 (dd, J = 9.6, 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.40, 149.14, 140.24, 136.06, 132.65, 128.96, 126.80, 123.99, 121.50, 121.37, 96.63, 63.75, 58.41, 57.03, 28.22, 21.52, 18.91. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₇H₁₈Cl₃N₂O⁺: 371.0485, found:371.0491.

4.23 3-allyl-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2e)

yellow oil, 35 mg (47% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.8 Hz, 1H), 8.34 (dd, J = 7.5, 1.4 Hz, 1H), 8.14 (dd, J = 8.4, 1.8 Hz, 1H), 7.60 (dd, J = 8.2, 1.4 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.42 (dd, J = 8.4, 4.1 Hz, 1H), 6.04 – 5.97 (m, 1H), 5.42 (dt, J = 10.1, 2.1 Hz, 1H), 5.28 – 5.23 (m, 1H), 5.16 – 5.12 (m, 1H), 3.65 (dd, J = 14.3, 1.9 Hz, 1H), 3.56 – 3.51 (m, 1H), 2.95 (dd, J = 14.3, 10.1 Hz, 1H), 2.79 – 2.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.28, 149.15, 140.11, 136.08, 133.89, 132.70, 128.98, 126.81, 124.05, 121.53, 121.35, 118.12, 96.59, 59.24, 57.23, 56.84, 32.68. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₇H₁₅Cl₃N₂ONa⁺: 391.0148, found: 391.0140.

4.24 3-(cyclopropylmethyl)-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2f)

yellow oil, 38 mg (50% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.8 Hz, 1H), 8.36 (dd, J = 7.5, 1.4 Hz, 1H), 8.14 (dd, J = 8.4, 1.7 Hz, 1H), 7.59 (dd, J = 8.2, 1.4 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.42 (dd, J = 8.3, 4.1 Hz, 1H), 5.54 (dt, J = 10.1, 2.0 Hz, 1H), 3.64 (dd, J = 14.3, 1.9 Hz, 1H), 3.58 – 3.52 (m, 1H), 2.94 (dd, J = 14.3, 10.1 Hz, 1H), 1.95 – 1.83 (m, 2H), 1.08 – 0.98 (m, 1H), 0.57 – 0.47 (m, 2H), 0.23 – 0.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.14, 149.11, 140.17, 136.08, 132.80, 128.99, 126.83, 123.98, 121.52, 121.34, 96.72, 59.62, 58.08, 57.04, 33.62, 8.42, 5.25, 4.65. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₈H₁₈Cl₃N₂O⁺: 383.0485, found:383.0481.

4.25 3-(cyclobutylmethyl)-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2g)

yellow oil, 37 mg (47% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.83 (dd, J = 4.1, 1.8 Hz, 1H), 8.34 (dd, J = 7.5, 1.4 Hz, 1H), 8.14 (dd, J = 8.4, 1.7 Hz, 1H), 7.59 (dd, J = 8.2, 1.3 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.41 (dd, J = 8.3, 4.1 Hz, 1H), 5.37 (dt, J = 10.1, 2.0 Hz, 1H), 3.60 (dd, J = 14.3, 1.9 Hz, 1H), 3.40 – 3.34 (m, 1H), 2.90 (dd, J = 14.3, 10.1 Hz, 1H), 2.75 – 2.65 (m, 1H), 2.20 – 2.12 (m, 2H), 2.09 (t, J = 7.2 Hz, 2H), 1.86 – 1.67 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 169.18, 149.07, 140.12, 136.07, 132.77, 128.96, 126.81, 123.93, 121.50, 121.29, 96.70, 59.97, 57.06, 56.33, 35.95, 33.52, 29.02, 28.35, 18.44. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₉H₂₀Cl₃N₂O⁺: 397.0641, found:397.0638.

4.26 3-(3-chloropropyl)-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2h)

yellow oil, 38.6 mg (48% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.7 Hz, 1H), 8.32 (dd, J = 7.5, 1.2 Hz, 1H), 8.15 (dd, J = 8.4, 1.7 Hz, 1H), 7.61 (dd, J = 8.2, 1.2 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 5.38 (dt, J = 10.1, 2.0 Hz, 1H), 3.66 – 3.59 (m, 3H), 3.50 – 3.44 (m, 1H), 2.94 (dd, J = 14.4, 10.1 Hz, 1H), 2.27 – 2.16 (m, 2H), 2.12 – 2.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.50, 149.21, 140.16, 136.14, 132.54, 128.99, 126.79, 124.23, 121.60, 121.46, 96.52, 60.22, 56.89, 56.87, 44.75, 29.71, 26.36. HRMS(ESI-TOF):[M+H]⁺ m/z calcd for C₁₇H₁₇Cl₄N₂O⁺: 405.0095, found:405.0087.

4.27 ethyl 2-(2-oxo-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-3-yl)acetate (2i)

yellow oil, 51.1 mg (62% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.83 (dd, J = 4.1, 1.8 Hz, 1H), 8.30 (dd, J = 7.5, 1.4 Hz, 1H), 8.14 (dd, J = 8.4, 1.7 Hz, 1H), 7.60 (dd, J = 8.2, 1.3 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.41 (dd, J = 8.3, 4.1 Hz, 1H), 5.51 (dt, J = 9.9, 2.2 Hz, 1H), 4.19 – 4.12 (m, 2H), 3.78 – 3.73 (m, 1H), 3.69 (dd, J = 14.4, 2.0 Hz, 1H), 3.04 – 2.93 (m, 3H), 1.20 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 170.62, 167.09, 149.20, 140.21, 136.13, 132.53, 128.98, 126.79, 124.28, 121.63, 121.57, 96.40, 61.01, 59.83, 57.03, 53.51, 32.85, 14.08. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₈H₁₇Cl₃N₂O₃Na⁺: 437.0202, found: 437.0201.

4.28 3-benzyl-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2j)

yellow oil, 58 mg (70% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, J = 4.1, 1.8 Hz, 1H), 8.27 (dd, J = 7.5, 1.3 Hz, 1H), 8.14 – 8.09 (m, 1H), 7.58 (dd, J = 8.2, 1.3 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.42 – 7.35 (m, 3H), 7.32 – 7.25 (m, 2H), 7.22 – 7.17 (m, 1H), 5.40 (dt, J = 10.0, 2.0 Hz, 1H), 3.74 – 3.67 (m, 1H), 3.60 (dd, J = 14.4, 1.9 Hz, 1H), 3.37 – 3.24 (m, 2H), 2.95 (dd, J = 14.4, 10.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.30, 149.11, 140.19, 137.93, 136.03, 132.59, 129.51, 128.94, 128.51, 126.76, 126.64, 124.19, 121.52, 121.49, 96.51, 59.44, 58.91, 56.85, 34.73. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₁₈Cl₃N₂O⁺: 419.0485, found: 419.0485.

4.29 3-(4-methylbenzyl)-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2k)

yellow oil, 44.9 mg (52% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (dd, J = 4.1, 1.8 Hz, 1H), 8.28 (dd, J = 7.5, 1.3 Hz, 1H), 8.11 (dd, J = 8.3, 1.7 Hz, 1H), 7.58 (dd, J = 8.2, 1.3 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.39 (dd, J = 8.3, 4.1 Hz, 1H), 7.25 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 5.39 (dt, J = 10.0, 2.0 Hz, 1H), 3.71 – 3.65 (m, 1H), 3.61 (dd, J = 14.4, 1.9 Hz, 1H), 3.33 – 3.20 (m, 2H), 2.94 (dd, J = 14.4, 10.1 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.41, 149.09, 140.18, 136.06, 136.02, 134.81, 132.65, 129.34, 129.18, 128.94, 126.76, 124.12, 121.50, 121.46, 96.54, 59.48, 59.04, 56.88, 34.29, 21.07. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₂H₁₉Cl₃N₂ONa⁺: 455.0461, found:455.0461.

4.30 3-(4-fluorobenzyl)-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2f)

yellow oil, 52.9 mg (61% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.78 (dd, J = 4.1, 1.7 Hz, 1H), 8.26 (dd, J = 7.5, 1.2 Hz, 1H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 7.59 (dd, J = 8.1, 1.1 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.40 (dd, J = 8.3, 4.1 Hz, 1H), 7.34 – 7.30 (m, 2H), 7.00 – 6.93 (m, 2H), 5.38 (dt, J = 10.1, 2.0 Hz, 1H), 3.70 – 3.65 (m, 1H), 3.59 (dd, J = 14.4, 1.9 Hz, 1H), 3.32 (dd, J = 14.3, 5.0 Hz, 1H), 3.23 (dd, J = 14.3, 7.6 Hz, 1H), 2.95 (dd, J = 14.4, 10.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.08 , 161.77 (d, J = 244.3 Hz),149.14, 140.17, 136.05, 133.52, 132.42, 131.05, 130.97, 128.95, 126.73, 124.28, 121.55, 121.50, 115.40, 115.19, 96.52, 59.16, 58.81, 56.74, 33.73. ¹⁹F NMR (377 MHz, CDCl₃) δ -116.53 (s). HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₁₇Cl₃FN₂O⁺: 437.0390, found: 437.0388.

4.31 3-phenethyl-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2m)

yellow oil, 53 mg (61% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.82 (dd, J = 4.1, 1.8 Hz, 1H), 8.35 (dd, J = 7.5, 1.4 Hz, 1H), 8.14 (dd, J = 8.4, 1.7 Hz, 1H), 7.60 (dd, J = 8.2, 1.4 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.41 (dd, J = 8.3, 4.1 Hz, 1H), 7.28 – 7.24 (m, 4H), 7.22 – 7.15 (m, 1H), 5.39 (dt, J = 10.1, 2.0 Hz, 1H), 3.61 (dd, J = 14.3, 1.9 Hz, 1H), 3.50 – 3.42 (m, 1H), 3.11 – 3.01 (m, 1H), 2.94 – 2.84 (m, 2H), 2.38 – 2.26 (m, 2H).¹³C NMR (100 MHz, CDCl₃) δ 168.88, 149.14, 141.38, 140.16, 136.12, 132.72, 129.00, 128.56, 128.42, 126.83, 126.03, 124.08, 121.56, 121.37, 96.59, 60.20, 57.01, 56.90, 32.98, 30.74. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₂H₂₀Cl₃N₂O⁺: 433.0641, found: 433.0646.

4.32 3,3-dimethyl-1-(quinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2n)

yellow oil, 30.7 mg (43% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.2, 1.8 Hz, 1H), 8.13 (dd, J = 8.3, 1.7 Hz, 1H), 8.11 (dd, J = 7.5, 1.3 Hz, 1H), 7.65 (dd, J = 8.2, 1.3 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.42 (dd, J = 8.3, 4.2 Hz, 1H), 5.32 (dd, J = 9.4, 1.5 Hz, 1H), 3.28 (dd, J = 15.1, 1.5 Hz, 1H), 3.15 (dd, J = 15.1, 9.4 Hz, 1H), 1.59 (s, 3H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.94, 149.41, 141.43, 136.02, 132.17, 129.03, 126.61, 125.05, 123.52, 121.60, 96.82, 65.61, 54.19, 52.55, 22.11, 18.76. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₆H₁₅Cl₃N₂ONa⁺: 379.0148, found:379.0149.

4.33 1-(quinolin-8-yl)-4-(1,1,1-trichloropropan-2-yl)azetidin-2-one (20)

yellow oil, 28 mg (41% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.89 (dd, J = 4.2, 1.7 Hz, 1H), 8.15 (dd, J = 8.3, 1.7 Hz, 1H), 7.89 (dd, J = 7.4, 1.3 Hz, 1H), 7.68 (dd, J = 8.2, 1.2 Hz, 1H), 7.59 – 7.50 (m, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 5.80 (ddd, J = 6.7, 5.6, 2.6 Hz, 1H), 3.64 (dd, J = 15.5, 5.5 Hz, 1H), 3.27 (dd, J = 15.5, 2.6 Hz, 1H), 3.08 (p, J = 6.8 Hz, 1H), 1.22 (d, J = 6.8 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 166.79, 149.40, 142.64, 136.18, 133.70, 129.14, 126.50, 125.90, 124.59, 121.59, 102.98, 59.01, 57.35, 45.70, 14.60. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₅H₁₄Cl₃N₂O⁺: 343.0172, found: 343.0168.

4.34 1-(quinolin-8-yl)-4-(1,1,1-trichlorobutan-2-yl)azetidin-2-one (2p)

yellow oil, 23.4 mg (33% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.85 (dd, J = 4.2, 1.7 Hz, 1H), 8.16 (dd, J = 8.3, 1.7 Hz, 1H), 8.01 (dd, J = 7.5, 1.3 Hz, 1H), 7.66 (dd, J = 8.2, 1.2 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 5.83 (dd, J = 8.6, 4.8 Hz, 1H), 3.57 – 3.47 (m, 2H), 2.94 – 2.88 (m, 1H), 1.97 – 1.82 (m, 1H), 1.63 – 1.52 (m, 1H), 1.13 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.62, 149.19, 141.95, 136.24, 133.22, 129.10, 126.65, 125.24, 123.97, 121.51, 102.53, 62.31, 57.22, 42.94, 24.11, 14.02. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₆H₁₆Cl₃N₂O⁺: 357.0328, found: 357.0320.

4.35 1-(quinolin-8-yl)-4-(1,1,1-trichloro-3-phenylpropan-2-yl)azetidin-2-one (2q)

yellow oil, 17.3 mg (21% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 4.2, 1.8 Hz, 1H), 8.08 (dd, J = 8.3, 1.7 Hz, 1H), 7.89 (dd, J = 7.5, 1.3 Hz, 1H), 7.58 (dd, J = 8.2, 1.3 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.37 – 7.27 (m, 4H), 7.24 – 7.19 (m, 2H), 5.83 (dt, J = 6.4, 3.3 Hz, 1H), 3.61 – 3.53 (m, 2H), 3.49 – 3.38 (m, 2H), 2.84 (dd, J = 14.7, 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.04, 148.90, 141.45, 138.55, 135.98, 133.23, 128.98, 128.84, 128.71, 126.77, 126.59, 124.76, 123.33, 121.23, 102.07, 60.87, 56.80, 41.27, 36.48. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₁₈Cl₃N₂O⁺: 419.0485, found: 419.0485.

4.36 1-(5-methoxyquinolin-8-yl)-4-(2,2,2-trichloroethyl)azetidin-2-one (2r)

yellow oil, 59.4 mg (83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.2, 1.8 Hz, 1H), 8.57 (dd, J = 8.5, 1.8 Hz, 1H), 8.15 – 8.09 (m, 1H), 7.41 (dd, J = 8.5, 4.2 Hz, 1H), 6.86 – 6.81 (m, 1H), 5.59 – 5.49 (m, 1H), 4.00 (s, 3H), 3.55 (dd, J = 15.4, 5.0 Hz, 1H), 3.49 (dd, J = 14.3, 1.7 Hz, 1H), 3.25 (dd, J = 15.4, 2.5 Hz, 1H), 2.90 (dd, J = 14.3, 10.2 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 165.63, 152.54, 149.74, 141.55, 130.92, 125.65, 122.47, 120.92, 120.76, 104.17, 96.71, 56.91, 55.94, 53.71, 45.28. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₅H₁₃Cl₃N₂O₂Na⁺: 380.9940, found: 380.9943.

4.37 (2-chloroethene-1,1-diyl)dibenzene (3)

¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.29 (m, 8H), 7.24 – 7.19 (m, 2H), 6.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.9, 140.1, 137.6, 129.9, 128.4, 128.2, 128.1, 128.0, 127.7, 115.9. HRMS(ESI-TOF): [M + H]⁺ m/z calcd for C₁₄H₁₂Cl⁺: 215.0628, found: 215.0633.

4.38 2,6-di-tert-butyl-4-(2,2,2-trichloroethyl)phenol (4)

¹H NMR (400 MHz, CDCl₃): δ 7.23 (s, 2H), 5.27 (s, 1H), 3.84 (s, 2H), 1.46 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 153.2, 135.5, 128.5, 124.2, 100.0, 59.9, 34.3, 30.3. HRMS(ESI-TOF): [M]⁺ Calcd for C₁₆H₂₃Cl₃O⁺: 336.0814, found: 336.0813.

5. NMR spectra

¹H NMR of 1a

9.9.9.3.8.8.76 (Sec. 1997) (Se

¹³C NMR of 1a

¹H NMR of 1b

¹³C NMR of 1b

¹H NMR of 1c

¹³C NMR of 1c

¹³C NMR of 1d

¹H NMR of 1e

$\begin{array}{c} 10.00\\ \hline & 8.80\\ \hline & 8.73\\ \hline & 8.74\\ \hline & 8.74\\ \hline & 8.74\\ \hline & 8.74\\ \hline & 8.75\\ \hline$

¹³C NMR of 1e

¹H NMR of 1f

¹H NMR of 1g

¹H NMR of 1h

$\begin{array}{c} 10.00\\ \hline & 8.79\\ \hline & 8.79\\ \hline & 8.78\\ \hline & 8.78\\ \hline & 8.75\\ \hline & 8.12\\ \hline & 8.75\\ \hline & 8.75\\ \hline & 8.75\\ \hline & 8.12\\ \hline & 8.75\\ \hline & 8.12\\ \hline & 8.75\\ \hline & 8.75\\ \hline & 8.12\\ \hline & 8.75\\ \hline & 8.75\\ \hline & 8.12\\ \hline & 8.75\\ \hline$

 $\begin{smallmatrix} 10.09 \\ -8.78 \\ -8.77 \\ -8.74 \\ -8.77 \\ -8.77 \\ -8.77 \\ -8.77 \\ -8.77 \\ -8.77 \\ -8.72 \\ -8.72 \\ -8.72 \\ -8.72 \\ -8.72 \\ -8.72 \\ -8.72 \\ -7.74 \\ -7.75 \\ -7.74 \\ -7.74 \\ -7.74 \\ -7.74 \\ -7.74 \\ -7.74 \\ -7.75 \\ -7.74 \\ -7.74 \\ -7.74 \\ -7.75 \\ -$

¹³C NMR of 1i

¹H NMR of 1j

¹³C NMR of 1j

¹H NMR of 1k

¹³C NMR of 1k

¹H NMR of 11

¹³C NMR of 11

¹⁹F NMR of 11

¹H NMR of 1m

¹³C NMR of 1m

¹H NMR of 1n

¹³C NMR of 1n

¹H NMR of 10

99 88,877 88,777 88,877 88,777 87,777 87

¹³C NMR of 10

¹H NMR of 1q

¹³C NMR of 1q

¹H NMR of 1r

$\begin{array}{c} -9.62\\ -9.62\\ 8.69\\ 8.69\\ 8.89\\ 8.859\\ 8.859\\ 8.859\\ 8.859\\ 6.67\\ 6.67\\ 6.67\\ 6.67\\ 6.67\\ 6.69\\ 6.67\\ 6.533\\ 5.33$

¹³C NMR of 1r

¹H NMR of 2a

¹H NMR of 2b

¹H NMR of 2c

¹³C NMR of 2c

¹H NMR of 2d

¹³C NMR of 2d

¹H NMR of 2e

¹H NMR of 2f

¹³C NMR of 2f

¹H NMR of 2g

¹H NMR of 2h

¹H NMR of 2i

¹³C NMR of 2i

¹H NMR of 2j

¹³C NMR of 2j

¹H NMR of 2k

¹³C NMR of 2k

¹H NMR of 2l

¹⁹F NMR of 2l

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 fl (ppm)

¹H NMR of 2m

¹H NMR of 2n

¹H NMR of 20

¹³C NMR of 20

¹H NMR of 2p

¹H NMR of 2q

¹³C NMR of 3

¹³C NMR of 4

