Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Thermal degradation of defective high-surface-area UiO-66 in different gaseous

environments

Muhammad Athar^{a,b}, Przemyslaw Rzepka^{a,b}, Debora Thoeny^b, Marco Ranocchiari^{*a}, Jeroen Anton van Bokhoven^{*a,b}

^a Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen-PSI, Villigen, Switzerland

^b Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland

BET Measurement

BET measurement was calculated from the linear region of the isotherms for each sample i.e. Points fitted on the linear isotherm up to relative pressures (p/p°) of 0.09, 0.08, 0.08, 0.06 for the samples having no heat treatment, oxidative heat treatment, reductive heat treatment and inert heat treatment respectively.

Figure 1 Isotherm for BET surface area of the UiO-66 sample without heat treatment.

Oxidative heat treatment

Figure 2 Isotherm for BET surface area of the UiO-66 sample after oxidative heat treatment.

Figure 3 Isotherm for BET surface area of the UiO-66 sample after reductive heat treatment.

Figure 4 Isotherm for BET surface area of the UiO-66 sample after inert heat treatment.

Pore Size Distribution

Horvath-Kawazoe differential pore volume plots for all the samples are given below.

Figure 5 Horvath-Kawazoe differential pore volume plot for the UiO-66 sample without any heat treatment

Figure 6 Horvath-Kawazoe differential pore volume plot for the UiO-66 sample afteroxidative heat treatment

Figure 7 Horvath-Kawazoe differential pore volume plot for the UiO-66 sample after reductive heat treatment

Figure 8 Horvath-Kawazoe differential pore volume plot for the UiO-66 sample after inert heat treatment

Thermogravimetric analysis

The TG curves taken under inert, reductive and oxidative conditions are presented below, the % loss of mass in various steps is mentioned for each curve.

Figure 9 TG Curve of the UiO-66 sample under oxidative condition. The mass loss % of each step is mentioned.

Figure 10 TG Curve of the UiO-66 sample under reductive condition. The mass loss % of each step is mentioned.

Figure 11 TG Curve of the UiO-66 sample under inert condition. The mass loss % of each step is mentioned.

Calculation of Missing linkers' Defects

Final mass of the product is taken as the mass of 6ZrO₂.

A Perfect UiO-66 (having no defects) after dehydroxylation has the formula Zr₆O₆(BDC)₆

If the final mass % of 6ZrO₂ is taken as 100 %, the mass% of perfect UiO-66 will be 220%.

The point of TG curve when there is negligible mass loss after dehydroxylation and no heat absorbed/evolved is taken as the mass % of the defect-containing UiO-66 having formula $Zr_6O_{(6+X)}(BDC)_{(6-X)}$.

Figure 12 Calculation of number of the missing BDC linkers per hexa-zirconium node. The final mass of $6ZrO_2$ is taken as 100 and the dehydroxylated perfect MOF before thermal decomposition is taken as 220.

The value of x is calculated by the following equation

$$\frac{220}{A} = \frac{1628.2 \text{ (Molar mass of } Zr_6O_6(BDC)_6)}{1628.2 - 148x \text{ (Molar mass of } Zr_6O_{(6+x)}(BDC)_{(6-x)})}$$

Solving this equation, we get;

$$x = \frac{1628.2 - 7.4A}{148}$$

X = Number of missing linkers defect per formula unit.

A = value of mass % of defect-containing UiO-66 $(Zr_6O_{(6+X)}(BDC)_{(6-X)})$ on y-axis of TG curve

For A = 173 (our sample), x = 2.35