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Experimental details

1. Characterization

  Inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Scientific, 

iCAP 7400) was applied to detect the accurate molar ratios of Ag2S. A Rigaku D/max-2000 

diffractometer using Cu Kα1 radiation (λ = 0.15406 nm) was used to characterize the crystal 

structure of the as-prepared samples. To investigate the chemical composition and valence 

spectra of samples, X-ray photoelectron spectroscopy (XPS) analysis was conducted on a 

Thermo Scientific ESCALAB 250Xi X-ray photoelectron spectrometer with 20 eV pass 

energy with monochromatic Al Kα radiation (1486.6 eV). A HELIOS NanoLab 600i field 

emission scanning electron microscope (FE-SEM), a TALOS F200× field emission low-

magnification transmission electron microscope (TEM), and high-resolution transmission 

electron microscopy (HRTEM) were applied to observe the morphologies of samples. The 

Brunauer-Emmett-Teller (BET) surface area and the Barrett-Joyner-Halenda (BJH) pore size 

distribution of the samples were acquired based on the nitrogen adsorption/desorption 

isotherms at 77 K (BET, Micromeritics ASAP2020, USA). The optical absorption of samples 

was recorded by an UV−vis spectrophotometer (HITACHI UH-4150) using BaSO4 as a 

reference. Time-resolved fluorescence decay spectra were measured on a HORIBA 

FluoroMax-4 operating at room temperature.
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2. Photocatalytic activity test

20 mg of a photocatalyst was dispersed in 50 mL of the aqueous solution which contained 

0.35 M Na2S∙9H2O, and 0.25 M Na2SO3. The system was vacuumed before the photocatalytic 

reaction to remove all air. A 300 W Xe lamp (Trust-tech PLS-SXE 300, Beijing) equipped 

with a cut-off filter (λ > 420 nm) was used to provide the visible light irradiation. During the 

measurement, the temperature of the reactor was maintained at 279 K by providing cooling 

water. The amount of produced H2 gas was determined using gas chromatography (Agilent 

7890A) with a thermal conductivity detector (TCD). 

The apparent quantum yield (AQY) for H2 production was also measured under the same 

reaction conditions, only with light source passing through a 380, 420, 450, 475 and 500 nm 

band-pass filter. The irradiation area was controlled at 28 cm2. The distance between the light 

source and the solution was 10 cm.

      𝐴𝑄𝑌(%) =
2 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑒𝑣𝑜𝑙𝑢𝑣𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
× 100%

The number of incident photons was calculated by a radiometer (Photoelectric Instrument 

Factory, Beijing Normal University).

3. Photoelectrochemical test

Current–potential curves and electrochemical impedance spectrum were measured with a 

three-electrode system using Pt and Ag/AgCl electrodes as the counter and reference 

electrodes, respectively. A spin-coating method was used to prepare working electrodes, and 

FTO glass (2 cm×2 cm) was used as a conducting substrate. A 300 W Xe lamp (Trust-tech 

PLS-SXE 300, Beijing) equipped with a cut-off filter (λ > 420 nm) was used as a light source 

and a 1 M Na2SO4 aqueous solution (100 mL, pH=5.91) or 1 M Na2SO4 with 1 M Na2SO3 
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(100 mL, pH=9.43) was used as the electrolyte solution. An AUTOLAB-PGSTAT302N 

electrochemical working station was used to manage the electrode's potential.

4. Theoretical methods

First-principles calculations based on density functional theory (DFT) were performed 

using the Vienna Ab initio Simulation Package (VASP). Electron-ion interactions were 

described by projector augmented wave (PAW) approach. Exchange-correlation interactions 

between electrons were treated by the generalized gradient approximation (GGA) with the 

Perdew-Burke-Ernzerhof (PBE) functional and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid 

functional. The kinetic-energy cut-off of plane wave basis set was set 500 eV. Gamma-

centered Monkhorst-Pack grids of 5 × 5 × 1 were used to sample the first Brillouin zone. The 

structures were optimized with total energy and force convergence standards of 10-4 eV and 

10-2 eV/Å.

Figure S1. XRD patterns for (a) Z5, (b) 10A/Z5 and (c) 15A/Z5.
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Figure S2. XPS spectra of the (a) Zn 2p, (b) In 3d and (c) S 2p in the Z1, 3A/Z1, Z5 and 

3A/Z5 samples.
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Figure S3. (a) XPS survey spectra, (b) Ag 3d, (c) Zn 2p, (d) In 3d and (e)S 2p of the Z5, 

3A/Z5 and 10A/Z5 samples.
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Figure S4. XPS spectra of Ag 3d of the Z1, 3A/Z1, Z5 and 3A/Z5 samples.

Figure S5. SEM images of ZIS.
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Figure S6. (a) TEM image and (b) HRTEM image of the 100A/Z5.

Figure S7. (a) N2 adsorption–desorption isotherms and (b) the pore size distribution curve of 

Z1, 3A/Z1, Z5, 3A/Z5.
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Figure S8. Tauc plots of Z1 and Z5.

Figure S9. XPS valence spectra of (a) Z1, (b) Z5 and (c) Ag2S.
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Figure S10. Energy band diagram of Z1, Z5 and Ag2S.

Figure S11. H2 evolution rates of (a) Z5, (b) 1A/Z5, (c) 3A/Z5 (d) 5A/Z5 and (e) 10A/Z5.
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Figure S12. The optimized structures of (a) Z1 and (5) Z5.

Figure S13. Current–potential curves for photoelectrodes made of Z1, 3A/Z1, Z5 and 3A/Z5 

measured in an aqueous solution without Na2SO3 (pH =6.8). 
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Figure S14. Theoretical photocurrent intensity of (a) Z1, (b) 3A/Z1, (c) Z5 and (d) 3A/Z5 

according to light absorption. 

Figure S15. Photoluminescence spectra of Z1, 3A/Z1 Z5 and 3A/Z5.

S-13



Table S1. Comparison of AQY of ZIS based- photocatalyst from recent publications.

Ref photocatalysts Sacrificial
agent

Wavelength
(nm)

AQY
(%)

This

work

3A/Z5 Na2S/Na2SO3 420 13.76

1 S-defect-controlled ZnIn2S4 TEOA 420 0.16

2 Pd@UiO-66-NH2@ZnIn2S4 TEOA 420 3.2

3 ZnIn2S4/BiVO4 TEOA 420 4.23

4 0.9%Ni/ ZnIn2S4-RVs TEOA 420 9.6

5 CdS/ZnIn2S4 Na2S/Na2SO3 420 15.9

6 Nix-ZIS  TEOA 420 17.10

7 MoS2/CQDs/ZnIn2S4 TEOA 420 25.60

Table S2. The average lifetimes of photogenerated charges of samples.

Samples 1
ns


ns

A1

(%)
A2

(%)
Ave.
ns

Z1 0.325 3.289 90.61 9.39 1.842

3A/Z1 0.304 4.863 90.57 9.43 3.153

Z5 0.452 4.911 95.87 4.13 1.875

3A/Z5 0.0947 9.450 95.40 4.60 7.840
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