Cellulose Citrate: a Convenient and Reusable Bio-adsorbent for Effective Removal of Methylene Blue Dye from Artificially Contaminated Water

Fabrizio Olivito,*1 Vincenzo Algieri,*1 Antonio Jiritano,1 Matteo Antonio Tallarida,1 Antonio Tursi,2 Paola Costanzo,1 Loredana Maiuolo1 and Antonio De Nino*1

Corresponding authors email addresses
fabrizio.olivito@unical.it, vincenzo.algieri@unical.it, denino@unical.it

Adsorption kinetics ..2
Adsorption isotherms ..3
Equations ..4
Adsorption kinetics

Fig. S1 Pseudo first order and Elovich model plots
Adsorption isotherms

Fig. S2 Freundlich and Temkin isotherms plots
Equations

Different equations used in the study:

\[
\text{Pseudo – first order equation: } ln(q_e - q_t) = lnq_e - k_1t
\]
(1)

\[
\text{Pseudo – second order equation: } \frac{t}{q_t} = \frac{1}{k_2q_e^2} + \left(\frac{1}{q_e}\right)t
\]
(2)

\[
\text{Elovich equation: } q_t = \frac{1}{\beta} \ln(\alpha \beta) + \frac{1}{\beta} \ln t
\]
(3)

Where, \(q_e\) and \(q_t\) are the amounts of dye adsorbed on cellulose-citrate (mg/g) at equilibrium and at time \(t\). \(k_1\) (min\(^{-1}\)) and \(k_2\) (g/mg/min) are the pseudo-first order rate constant and the pseudo-second-order rate constant. \(\alpha\) (mg g\(^{-1}\) min\(^{-1}\)) is the initial adsorption rate and \(\beta\) (g mg\(^{-1}\)) is the relationship between the degree of surface coverage and the activation energy involved in the chemisorption.

\[
\text{van’t Hoff equation: } lnK_c = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT}
\]
(4)

where, \(\Delta S^o\), \(\Delta H^o\) and \(R\) represent entropy change, enthalpy change and the universal gas constant (8.314 J/mol K) respectively. \(T\) (K) is the absolute temperature and \(K_c\) (L/g) is the standard thermodynamic equilibrium constant, which is expressed by

\[
K_c = \frac{q_e}{C_e}
\]
(5)

where, \(q_e\) is the amount of adsorbed MB dye per unit mass of adsorbent at equilibrium (mg/g) and \(C_e\) is the equilibrium aqueous concentration of MB.

Further, the value of the Gibbs free energy change \(\Delta G^o\) (J/mol) is calculated as:

\[
\Delta G^o = -RT\ln K_c
\]
(6)

The negative value of \(\Delta G^o\) indicates the spontaneity of a chemical reaction.

\[
\text{Langmuir isotherm: } \frac{C_e}{q_e} = \frac{1}{k_Lq_m} + \frac{1}{q_mC_e}
\]
(7)

\[
\text{Freundlich isotherm: } lnq_e = lnk_f + \frac{1}{n}lnC_e
\]
(8)

\[
\text{Tempkin isotherm: } q_e = \beta lnk_f + \beta lnC_e \quad \text{[where, } \beta = RT/b\]
(9)

where the Langmuir constants \(q_m\) and \(k_L\) represent the maximum adsorption capacity of the adsorbent and the constant energy related to the heat of adsorption, while \(C_e\) (mg/L) is the concentration of adsorbate in the liquid phase at equilibrium and \(q_e\) (mg/g) is the amount of adsorbate adsorbed on the solid phase at equilibrium. \(k_f\) (mg/g) (L/mg)\(^{1/n}\) indicates the adsorption capacity, and \(n\) reflects the intensity of adsorption according to the Freundlich theory. The constant \(\beta\) (L/mg) is related to the heat of adsorption, \(k_f\) (mg/L) is a constant of the Tempkin isotherm, \(b\)
(J/mol) is the energy constant of the Tempkin isotherm, R (8.314 J/K mol) is the gas constant and T (K) is the absolute temperature.

One of the essential characteristics of the Langmuir isotherm can be expressed by a dimensionless constant, separation factor, R_L, defined as follows:

$$R_L = \frac{1}{1 + k_L C_0} \quad (12)$$

The value of R_L indicates the type of the isotherm; which is unfavourable ($R_L > 1$), linear ($R_L = 1$), favourable ($0 < R_L < 1$) or irreversible ($R_L = 0$).

In Table S1 R_L values for each used concentration are reported:

<table>
<thead>
<tr>
<th>C_0</th>
<th>R_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.31</td>
</tr>
<tr>
<td>20</td>
<td>0.18</td>
</tr>
<tr>
<td>30</td>
<td>0.13</td>
</tr>
<tr>
<td>40</td>
<td>0.10</td>
</tr>
<tr>
<td>50</td>
<td>0.08</td>
</tr>
<tr>
<td>70</td>
<td>0.06</td>
</tr>
<tr>
<td>100</td>
<td>0.04</td>
</tr>
<tr>
<td>120</td>
<td>0.04</td>
</tr>
<tr>
<td>150</td>
<td>0.03</td>
</tr>
</tbody>
</table>

References