Supporting Information

Self-supported Cu₃P nanowires electrode as an efficient electrocatalyst for oxygen evolution reaction

Xin Zhou,^a Xiaoliang Zhou^{*}^a, Limin Liu^{*}^a, Hanyu Chen, ^a Xingguo Hu^a, Jiaqi Qian^a, Di Huang^a, Bo Zhang^b and Junlei Tang^{*}^a

^{a.} College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China. ^{b.} Hydrogen energy division, DONG FANG BOILER GROUP CO., LTD., Chengdu, 611731, PR China.

Figure S1. XRD patterns of Cu(OH)₂ NWs/CF.

Figure S2. XRD patterns of bare Cu foam.

Figure S3. Optical photograph of (a) Cu foam, (b) Cu(OH)₂ NWs/CF, and (c) Cu₃P NWs/CF.

Figure S4. SEM image of bare Cu foam.

Figure S5. SEM-EDS elemental mapping images of Cu₃P NWs/CF.

Figure S6. XRD patterns of Cu₃P/CF.

Figure S7. (a) Low-magnification and (b) high-magnification SEM images of Cu_3P/CF .

Figure S8. Cyclic voltammograms of (a) Cu₃P NWs/CF, (b) RuO₂/CF, (c) Cu₃P/CF, and (d) Cu foam.

Figure S9. LSV curves of Cu₃P NWs/CF before and after long-term durability measurment.

Figure S10. (a-b) SEM images and (c) TEM image of Cu₃P NWs/CF after long-term durability measurement.

Figure S11. High-resolution XPS spectra of (a) Cu 2p and (b) P 2p for Cu₃P NWs/CF after long-term durability measurement.

Figure S12. The comparison of LSV curves with platinum and graphite rods as counter electrodes for Cu₃P NWs/CF.

Figure S13. CV curve at a scan rate of 1 mV s⁻¹ for Cu₃P NWs/CF.

Table S1.	Comparison of C	DER performance	s of Cu ₃ P NV	Ws/CF and	other re	eported
electrocata	alysts.					

Catalyst	Substrate	Eectrolyte	j (mA cm ⁻²)	Onerpotential (mV)	Reference	
Cu D	Cu foam	1.0 M KOH	10	316	This work	
			20	327		
			50	352		
$C_{\rm P}$ D ND/ $C_{\rm P}$	Cu mesh	1.0 M	10	380	1	
Cu ₃ P NB/Cu		КОН	20	390		
NiCoP@Cu ₃	Cu foam	1.0 M	10	309	2	
P		КОН			2	
Cu ₃ P	Ni foam	1.0 M	10	320	2	
nanosheets		КОН			3	
Ni ₃ S ₄	Ni foam	1.0 M	20	310	1	
nanosheets		КОН			+	
NiMoP ₂	Carbon	1.0 M	10	330	5	
nanowire	cloth	КОН	10	550	5	
NiCo-LDH	Carbon paper	1.0 M	20	390	6	
nanosheets		КОН				
NiO/NiFe ₂ O	Carbon	1.0 M	10	303	7	
	paper	КОН			/	
NiCo-Mixed	GCE	1.0 M	10	380	8	
Oxide		КОН			0	
CoMnP	GCE	1.0 M	10	330	9	
nanoparticles		КОН			,	
IrO ₂	GCE	1.0 M KOH	10	320	10	

Note: GCE stands for glassy carbon electrode.

Catalyst	Rs (ohm)	Rct (ohm)
Cu ₃ P NWs/CF	1.6	3.5
RuO ₂ /CF	1.6	4.5
Cu ₃ P/CF	1.6	9.5
Cu foam	1.7	14.5

Table S2. The electrolyte resistance (R_s) and charge transfer resistance (R_{ct}) of various samples.

References

- S. Wei, K. Qi, Z. Jin, J. Cao, W. Zheng, H. Chen and X. Cui, *ACS omega*, 2016, 1, 1367-1373.
- 2. X. Ma, Y. Chang, Z. Zhang and J. Tang, J. Mater. Chem. A, 2018, 6, 2100-2106.
- A. Han, H. Zhang, R. Yuan, H. Ji and P. Du, ACS. Appl. Mater. Inter., 2017, 9, 2240-2248.
- 4. J.-T. Ren and Z.-Y. Yuan, ACS Sustain. Chem. Eng., 2017, 5, 7203-7210.
- X.-D. Wang, H.-Y. Chen, Y.-F. Xu, J.-F. Liao, B.-X. Chen, H.-S. Rao, D.-B. Kuang and C.-Y. Su, *J. Mater. Chem. A*, 2017, 5, 7191-7199.
- H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, *Nano Lett.*, 2015, 15, 1421-1427.
- B. K. Kang, M. H. Woo, J. Lee, Y. H. Song, Z. Wang, Y. Guo, Y. Yamauchi, J. H. Kim, B. Lim and D. H. Yoon, *J. Mater. Chem. A*, 2017, 5, 4320-4324.
- 8. L. Han, X. Y. Yu and X. W. Lou, Adv. Mater., 2016, 28, 4601-4605.
- D. Li, H. Baydoun, C. u. N. Verani and S. L. Brock, J. Am. Chem. Soc., 2016, 138, 4006-4009.
- C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*,
 2013, 135, 16977-16987.