Supporting Information

Facile synthesis of nitrogen-defective g-C₃N₄ for superior photocatalytic

degradation of rhodamine B

Xiupei Yang,^{*a} Lin Zhang,^a Dan Wang,^a Qian Zhang,^a Jie Zeng, Run Zhang,^{*b}

^aCollege of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control

Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000,

China. E-mail: xiupeiyang@163.com

^bAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia. E-mail: r.zhang@uq.edu.au

*Corresponding author

Fig. S1. Degradation curves of RhB, MO and MB by BCN and CN.

Fig. S2. XRD patterns of $g-C_3N_4$ synthesized under different modification conditions: (a) different water treatment temperature, (b) different water treatment consumption, (c) different precursor drying temperature, and (d) different precursor drying time.

Fig. S3. FT-IR spectra of $g-C_3N_4$ under different modification conditions: (a) different water treatment temperature, (b) different water treatment consumption, (c) different precursor drying temperature, and (d) different precursor drying time.

Fig. S4. The g-C₃N₄ material prepared by optimizing the precursor melamine different water treatment temperature for RhB degradation: (a) the degradation curve, (b) the first-order kinetics fitting curve.

Fig. S5. The $g-C_3N_4$ material prepared by optimizing the precursor melamine different water treatment consumption for RhB degradation: (a) the degradation curve, (b) the first-order kinetics fitting curve.

Fig. S6. The $g-C_3N_4$ material prepared by optimizing the precursor melamine different drying time for RhB degradation: (a) the degradation curve, (b) the first-order kinetics fitting curve.

Fig. S7. The $g-C_3N_4$ material prepared by optimizing the precursor melamine different drying temperature for RhB degradation: (a) the degradation curve, (b) the first-order kinetics fitting curve.

Fig. S9. PL spectrum of $g-C_3N_4$ synthesized under different modification conditions: (a) Different water treatment temperature, (b) Different water treatment consumption, (c) Different precursor drying time, (d) Different precursor drying temperature.

Table S1. EDS elemental analysis of BCN and CN.			
Element	С	Ν	C/N
BCN	51.30 %	48.70 %	1.053
CN	63.41 %	35.59 %	1.782