Self-induce cobalt derive hollow structure Prussian blue as cathode for sodium-ion battery

Yu Luo, Jiayu Peng, Youwei Yan*

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

* Corresponding Authors.

E-mail address: yanyw@hust.edu.cn

Figure S1. Ex situ Raman plots of the samples in different vibration interval ranges: (a) 400-700 cm⁻¹. (b) 2000-2400 cm⁻¹. (c) 400-2400 cm⁻¹.

Figure S2. Ex XRD patterns of the samples in different interval ranges: (a) 10-80 degree. (b) 14-16 degree.

Figure S3. SEM images of (a) Sample-CF, (b) Sample-FF-1, (c) Sample-FF-2, (d) Sample-FF-3, (e) Sample-FF-4, (f) Sample-FF-5 and (g) Sample-FF.

Figure S4. EDS analysis and the element mapping images of (a) Sample-CF, (b) Sample-FF-1, (c) Sample-FF-4 and (d) Sample-FF.

Figure S5. TEM images of (a) Sample-CF, (b) Sample-FF-1, (c) Sample-FF-2, (d) Sample-FF-3, (e) Sample-FF-4, (f) Sample-FF-5 and (g) Sample-FF.

Quantify B	By Com	ponents		¥	Sample-CF		
Component	BE [eV]	FWHM [eV]	RSF	Atomic conc. [%]	Error [%]	Mass conc. [%]	Error [%
Fe 2p	710.46	0.00	2.96	2.7	0.38	10.1	1.30
Co 2p	782.31	0.00	3.59	3.3	0.51	13.0	1.78
N 1s	398.71	0.00	0.48	17.5	0.45	16.2	0.55
C 1-	204.06	0.00	0.00	76 4	0.60	60.6	1 50
b	264.90	0.00	0.28	/0.4	0.08		1.00
D Quantify By Component	284.90 Comp BE [eV]	onents FWHM [eV]	RSF	V A	Sam	DIE-FF	Error [%]
Quantify By Component Co 2p	/ Comp BE [eV] 803.17	onents FWHM [eV] 0.00	0.28 RSF 3.59	v Atomic conc. [%] 0.0	5.08 Sam	Mass conc. [%]	Error [%]
D Quantify By Component Co 2p N 1s	284.90 Comp BE [eV] 803.17 397.97	onents FWHM [eV] 0.00 0.00	0.28 RSF 3.59 0.48	Atomic conc. [%] 0.0 22.4	5.00 5.00	DIE-FF Mass conc. [%] 0.1 21.1	Error [%] 0.22 0.67
D Quantify By Component Co 2p N 1s C 1s	284.90 Comp BE [eV] 803.17 397.97 285.02	onents FWHM [eV] 0.00 0.00 0.00	0.28 RSF 3.59 0.48 0.28	× Atomic conc. [%] 0.0 22.4 72.2	Sam Error [%] 0.06 0.55 0.68	DIE-FF Mass conc. [%] 0.1 21.1 58.5	Error [%] 0.22 0.67 1.34

Figure S6. Ex situ XPS results of (a, b) Sample-CF, (c, d) Sample-FF-1, (e, f) Sample-FF-2, (g, h) Sample-FF-3, (i, j) Sample-FF-4, (k, l) Sample-FF-5 and (m, n) Sample-FF.

Figure S7. XPS element mass content test: (a) Sample-CF. (b) Sample-FF. (c) Sample-PB.

3.59 0.0

0.28 70.9

Sample ID	Sai	mple-FF	Sample-PB				
Element	Na	Fe	Na	Fe			
Mean	1.587	5.166	0.547	2.2			
Units	mg/L	mg/L	mg/L	mg/L			

Table	S1.	ICP	resu	lt
-------	-----	-----	------	----

Component BE [eV] FWHM [eV] RSF Atomic conc. [%] Error [%] Mass conc. [%] Error [%]

2.96 7.2 0.61

25.9

0.1

19.5

54.4

0.07

0.66

0.80

1.75

0.25

0.73

1.40

EA resul	t
----------	---

708.70 0.00

805.40 0.00

285.00 0.00

397.95 0.00 0.48 21.8

Fe 2p

Co 2p

N 1s

C 1s

Sample ID	San	nple-FF	Sample-PB		
element	C	Ν	С	Ν	
Weight ratio	20.535	23.958	17.744	20.701	

Figure S8. TG curves of (a) Sample-FF and (b) Sample-PB.

Figure S9. (a)The BJH pore-size distribution plot the Sample-PB. (b)The BJH pore-size distribution plot the Sample-FF. (c) The HR-FESEM image of the Sample-PB. (d) The HR-

Figure S10. (a) charge/discharge curves of the Sample-PB at various current densities. (b) EIS plot and fitted result of both the samples.

Figure S11. (a) Electrochemical charge and discharge plots of the Sample-CF at a current density of 100 mA g^{-1} . (b) The Sample-FF/the Sample-CF full-cell charge and discharge plots at a current density of 0.5C, 1 C=170 mA g^{-1} . (c) Full-cell electrochemical cycling performance at a current density of 0.5C, 1 C=170 mA g^{-1} .

title	Precursors	additive name	Need additive	Structures	Applications	Specific capacity	Year
Frontispiece: Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching	Ni–Fe cube	HCl	YES	Ni–Fe yolk@frame structure	Na+/Li+ storage	less than 100 mAh/g at 1C	2016
Potassium ions stabilized hollow Mn-based prussian blue analogue nanocubes as cathode for high performance sodium ions battery	Mn-Fe cube	sodium citrate assisted	YES	Mn-Fe Box	Na+ storage	128 mAh/g at 50mA/g	2020
Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries	Fe-Fe cube	ascorbic acid, and NaCl	YES	hollow sphere	Na+ storage	142 mAh/g at 0.1C	2018
Metal-organic-framework-derived hollow polyhedrons of prussian	Co-Fe cube	cetyltrimethylammonium bromide	YES	CoHCF hollow dodecahedrons	Na+ storage	32.7-50 Wh/kg	2019
Hierarchical Hollow Prussian Blue Rods Synthesized via Self-Sacrifice Template as Cathode for High Performance Sodium Ion Battery	MnO2 nanosheet	tetramethylammonium hydroxide	YES	hollow rod-like structure	Na+ storage	117.3 mAh/g at 1C	2018
A Chemical Precipitation Method Preparing Hollow–Core–Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries	PBA cube	3.0 g of PVP (K30, MW ≈ 40 000) and 4.38 g of sodium citrate	YES	hollow structure	Na+ storage	123 mA h/g at 1C	2018
This work	Fe-Co cube	NO	NO	hollow cube	Na+ storage	133.6mAh/g at 1C	

Figure S12. Comparison of other reported work and this work.

The calculation process of the exact formula:

The Sample-FF:

 $Na_{\alpha 1}Fe_{\beta 1}[Fe(CN)_6]_{\gamma 1}$, Set $\beta 1=1$,

The formula changes into $Na_{x1}Fe_1[Fe(CN)_6]_{y1}$

1. $x_1:(y_1+1)=(1.587/23):(5.166/56)$ -----atom ratio

2. $x_1+2=4y_1$ -----electron balance

Result: x₁=1.38, y₁=0.845.

Water content:

 $Na_{1.38}Fe[Fe(CN)_6]_{0.845} \cdot \delta H_2O$,

188:(157.03+188)=9:100

-----weight ratio

Result: δ=0.86

The Sample-PB:

 $Na_{\alpha 2}Fe_{\beta 2}[Fe(CN)_6]_{\gamma 2}$, Set $\beta 2=1$,

The formula changes into $Na_{x2}Fe_1[Fe(CN)_6]_{y2}$

3. $x_2:(y_2+1)=(0.547/23):(2.2/56)$ -----atom ratio

4. $x_2+2=4y_2$ -----electron balance

Result: x₂=1.07, y₂=0.768.

Water content:

 $Na_{1.07}Fe[Fe(CN)_6]_{0.768} \cdot \delta H_2O$,

-----weight ratio

186:(143.51+186)=18:100

Result: $\delta = 1.75$