Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for RSC Advances.

Supplementary information

In situ Constructed Oxygen-vacancy-rich MoO_{3-x}/Porous *g*-C₃N₄ Heterojunction for Synergistically Enhanced Photocatalytic H₂ Evolution

Yufeng Pan,^{a b} Bin Xiong,^{a b} Zha Li,^c Yan Wu,^{a b} Chunjie Yan,^{a b} Huaibin Song*^{a b}

^a Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, P. R. China

^b Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, Hubei, P. R. China

^c Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and

Technology, Wuhan, Hubei, 430074, P. R. China

* Corresponding author: Huaibin Song E-mail: songhb@cug.edu.cn

Figure S1 XRD patterns of g-C₃N₄, MoO_{3-x}/g-C₃N₄ (calcination at 280 °C), and MoO_{3-x}/g-C₃N₄ (calcination at 350 °C).

Figure S2 XRD pattern of MoO_3 (The Mo (OH)₆ precursor was calcined at 400 °C), the illustration shows the crystal structure of MoO_3 .

Figure S3 SEM images of pure g-C₃N₄ and MoO_{3-x}/g-C₃N₄.

Figure S4 HR-TEM images of $MoO_{3-x}/g-C_3N_4$.

Figure S5 AFM image of pure g-C₃N₄ nanosheets.

Figure S6 Photocatalytic hydrogen production rates of g-C₃N₄, 5% MoO₃/g-C₃N₄ and 5% MoO_{3-x}/g-C₃N₄.

Figure S7 UV–vis diffuse reflectance spectra of g-C₃N₄ (a) and MoO_{3-x} (b), the illustrations are their corresponding Tauc's plot.

g-C ₃ N ₄	Atomic %	N/C ratio	$MoO_{3-x}/g-C_3N_4$	Atomic %	N/C ratio
N1s	54.06		N1s	45.40	
Ols	4.92	1.32	Ols	4.47	1.02
C1s	41.02		C1s	44.08	
			Mo 3s	3.44	
			Na 1s	1.42	
			Cl 2p	1.18	

Table S1. The N/C ratios of g-C₃N₄ and MoO_{3-x}/g-C₃N₄ calculated by XPS.

Species	Peak BE	FWHM eV	Area (P) CPS. eV	Ratio %
Lattice oxygen	530.5	1.34	230460.80	72.02
Defect oxygen	532.2	1.67	69881.18	21.84
Hydroxyl oxygen	533.0	1.37	19636.34	6.14

Table S2. The ratios of different O species of MoO_3 calculated by XPS.

Species	Peak BE	FWHM eV	Area (P) CPS.eV	Ratio %
Lattice oxygen	531.1	1.55	17656.19	31.67
Defect oxygen	532.2	1.49	27133.34	48.67
Adsorbed water	535.4	3.16	10963.82	19.66

Table S3. The ratios of different O species of $MoO_{3-x}/g-C_3N_4$ calculated by XPS.

Table S4. Photocatalytic hydrogen production performance of similar photocatalysts reported in recent references.

Photocatalysts	HER performance	Co-catalyst	Sacrificial agent	Reference
	/µmol $h^{-1} g^{-1}$			
$M_0S_2/g-C_3N_4$	3570.0	2 wt% Pt	TEOA	Ref. 1
WO ₃ /g-C ₃ N ₄	982.0	2 wt% Pt	lactic acid	Ref. 2
Cu (OH) ₂ /g-C ₃ N ₄	48.7		CH ₃ OH	Ref. 3
M0O _{3-x} /g-C ₃ N ₄	4694.3	2 wt% Pt	TEOA	This work
MoO _{3-x} /g-C ₃ N ₄	821.0	2 wt% Pt	lactic acid	This work

Refences

1. X. Liu, B. F. Wang, M. Liu, S. L. Liu, W. Chen, L. Gao and X. Y. Li, *Appl. Surf. Sci.*, 2021, 554, 149617.

2. J. Fu, Q. Xu, J. Low, C. Jiang and J. Yu, Appl. Catal. B, 2019, 243, 556-565.

3. X. S. Zhou, Z. H. Luo, P. F. Tao, B. Jin, Z. J. Wu and Y. S. Huang, *Mater. Chem. Phys.*, 2014, **143**, 1462-1468.