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Synthesis of DFNS and its Functionalization by DPA

Preparation of KCC-1 and KCC-1-NH;

KCC-1 was synthesized according to the methods which was reported by Bayal and coworkers
(1, Briefly, 1 g of CTAB was added to 10 mL distilled water and after addition of 0.6 g urea,
the mixture was stirred for about 3 h at room temperature. Then, the mixture of 2 g TEOS, 30
mL cyclohexane and 1.5 mL hexanol was added to the flask and sonicated for 30 min.
Afterwards, the mixture was heated at 80 °C for 4 h and subsequently refluxed at 80 °C for 24
h. Next, the mixture was cooled to the room temperature and centrifuged to collect the KCC-1
as white sediment. The collected KCC-1 was washed several times with water and ethanol and
dried at 60 °C for 24 h. Finally, the as-synthesized KCC-1 was calcinated at 550 °C for 6 h to
remove the CTAB as templating agent. As mechanism of the KCC-1 synthesis, urea was used
to hydrolyze the TEOS to produce negatively charged (SiO4)*silicate. Using of CTAB induce
the silicate molecules to form self-assembled linear structures where the CTAB help to the

aggregating of the silicates >3],

To functionalize the KCC-1 surface with NH2 moieties, 0.02 g of KCC-1 was dispersed on 1.2
mL dried toluene and sonicated for 30 min. Then 50 pL 3-aminopropyltriethoxysilane
(APTES) was added to the mixture and refluxed for 20 h at 80 °C. Then the mixture separated
and washed with toluene several times and dried at 80 °C for at least 24 h. The surface
morphology and porosity of the as-synthesized KCC-1 and KCC-1-NH2 were approved by FE-

SEM and BET.

Finally, dPA was conjugated to the dendritic fibers of KCC-1-NH2 by EDC/NHS chemistry
which provides the attaching of the dPA molecules at room temperature. Scheme Sl

summurized all of the synthesized procedure.
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Scheme S1: Synthesized procedure of KCC-1-NH2-dPA



Characterization of KCC-1, KCC-1-NH; and KCC-1-NH>-dPA

TEM was used to further characterization of the KCC-1, KCC-1-NH2 and KCC-1-NH2-dPA
(Fig. S1). The TEM images revealed the fibrous, porous and spiral shape of the nanomaterials
which the fibrous form is as a result of using the CTAB for templating. Also, the particle sizes

of KCC-1, KCC-1-NH2 and KCC-1-NH2-dPA are about 175, 190, and 200 nm, respectively.
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Fig. S1. TEM images of KCC-1 (A), KCC-1-NHz (B) and KCC-1-NHz-dPA (C).



Fig. S2, show the structural and morphological features of the KCC-1, KCC-1-NHz2 and KCC-
1-NH2-dPA using FE-SEM. The fibrous-sphere indicates the formation of KCC-1 based
materials which the functionalization have no effect on the morphology of the KCC-1. EDX
results reveal the atomic composition of the KCC-based materials where the KCC-1 is
composed only with O and Si. However, the carbon is arising from the FE-SEM grid and the
templating agent (Fig. S3). Upon functionalization with APTES, the weight percent of N, O

and C are increased which imply the effective surface modification of KCC-1 with APTES.

FTIR was applied to approve the proper functionalization of the KCC-1 with -NHa. As shown
in Fig. S4, the characteristic peaks of the silica based materials could be observed in the range
of 1020 to 1110 cm™ representing the Si-O-Si asymmetric stretching and Si-OH peak is

observed at 960 cm™! which represents the stretching vibration and asymmetric bending.

The BET and BJH analyses of the KCC-1, KCC-1-NH2 and KCC-1-NH2-dPA were used to
evaluate the porous nature of the nanoparticles. The specific surface area and porosity of the
materials were determined using the adsorption isotherm and calculated by BET. BJH method
was used to determine the pore volume of the KCC-1, KCC-1-NH2 and KCC-1-NH2-dPA.
Table S1 lists the average pore size, surface area and pore volume of KCC-1, KCC-1-NH:z and
KCC-1-NH2-dPA. The pore volumes were changed from 1.52 to 1.10 and 0.13 cm?*/g for KCC-
1, KCC-1-NH2 and KCC-1-NH2-dPA, respectively. Also, surface area were obtained as 78.2,
367 and 617 m*/g for KCC-1, KCC-1-NH2, and KCC-1-NHz-dPA, respectively. Mean pore
diameter distribution of the materials were 9.87, 11.9 and 6.7 nm for KCC-1, KCC-1-NHz and
KCC-1-NH2-dPA, respectively (Fig. S5). The pore size, pore volumes and surface area of

KCC-1, KCC-1-NH:z and KCC-1-NH2-dPA are obviously approved by the reported results [+°],



Zeta potentials of KCC-1, KCC-1-NH2 and KCC-1-NH2-dPA were checked at pH 7.5 to
determine the surface charge to conclude the possible surface modification. The KCC-1 bare
fibrous nanomaterials display negative charge at pH 7.5 which could be resulted from Si-OH
functional groups. However, the zeta potential of the KCC-1-NH2 and KCC-1-NH2-dPA show
positive charges which confirms the anchoring amine and -SH groups on the surface of the
fibrous materials, respective. Also, DLS results of the KCC-1, KCC-1-NH2 and KCC-1-NHo-
dPA show an increase on the hydrodynamic diameter of the nanomaterials from KCC-1 to
KCC-1-NH2-dPA which approve again the proper surface functionalization with NH2 and FA
groups. The XRD patterns of KCC-1, KCC-1-NH2 and KCC-1-NH2-dPA were performed from
3.0° (20) to 70.0° (20) (Fig. S6) to test the crystallinity of the produced KCC-1 based
nanomaterials where two major peak could be observed which the crystallinity increased from
KCC-1 to KCC-1-NHz2-dPA. The broad peak from 20° and 30° is assigned to the amorphous
silica [6]. Also, compared to the KCC-1, the KCC-1-NH2 and KCC-1-NH2-dPA patterns were

shifted to the higher 20 values which is a reason for the surface functionalization of KCC-1.
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Fig. S2. FE-SEM images of KCC-1 (A), KCC-1-NH: (B) and KCC-1-NHz-dPA (C).
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Fig. S3. EDX analysis of KCC-1 (A), KCC-1-NH: (B) and KCC-1-NHz-dPA (C).
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Fig. S4. FT-IR Spectra of KCC-1 (A), KCC-1-NH2 (B) and KCC-1-NH2-dPA (C).
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Fig. S5. BJH, BET and nitrogen adsorption/desorption isotherm of KCC-1 (A), KCC-1-NH:2

(B) and KCC-1-NH2-dPA (C). (P/P° - relative pressure (surface pressure/preliminary

pressure)).



Table. S1. Surface area, average pore size, and pore volume of KCC-1, KCC-1-NH2 and KCC-

1-NH2-dPA.
Material type Pore size (nm)? Pore volume (cm? g!)° Surface Area (m? g')
KCC-1 9.87 1.52 617
KCC-1-NH; 11.99 1.10 367
KCC-1-NH,-dPA 6.7 0.13 78.2
a Pore size was calculated by BET. b Pore volume determined by BJH.
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Fig. S6. XRD analysis of KCC-1 (A), KCC-1-NH: (B) and KCC-1-NH:-dPA (C).
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Figure S7. A-H) FE-SEM of P (B-CD)/Au electrode in different magnifications and I) EDS

of P (B-CD)/Au electrode.
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Figure S8. A-H) FE-SEM image of KCC-1-NH2-DPA/P (B-CD)/Au electrode in different

magnifications and I) EDS for of KCC-1-NH2-DPA/P (B-CD)/Au electrode.
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Figure S9. A-H) FE-SEM image of aptamer/KCC-1-NH2-DPA/P (B-CD)/Au electrode in

different magnifications and I) EDS for of aptamer/KCC-1-NH2-DPA/P (-CD)/Au electrode.
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Figure S10. A-F) FE-SEM image of RAC/aptamer/KCC-1-NH2-DPA/P (5-CD)/Au electrode
in different magnifications and G) EDS for of RAC/aptamer/KCC-1-NH2-DPA/P (B-CD)/Au

electrode.
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Figure S11. A-B) DPVs of aptamer/KCC-1-NH2-DPA/P (B-CD)/Au electrode in different
incubation time of aptamer (20, 60, 120, 180, 360 and 720 min) at a potential range of -1 to +1
V in 0.01M [Fe(CN)s]*”#/KCl solution as electrochemical probe and histogram of peak current
versus time (n=3, SD=1.29). C-D) ChAs of aptamer incubation time on the KCC-1-NHz-
DPA/P (B-CD)/Au electrode with calibration curves at the potential of 0.5V during 50 seconds

(n=3, SD=2.04).
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Figure S12. A) CVs of KCC-1-NH2-DPA/P (B-CD)/Au electrode at the potential range -1 to

+1 V with different scan rate (10, 50, 100, 150, 200, 250,300, 350, 400, 450, 500, 600, 700,



800, 900 and 1000 mV /s ) in 0.01 M [Fe(CN)s]*"*/KCl solution as electrolyte support. B)
Variations of oxidation peak currents versus different sweep rate. C) Variations of oxidation
peak currents versus square root of different sweep rate. D) Variation of oxidation peak
potential versus Neperian logarithm of sweep rate. E) Calibration curve of oxidation peak’s

current versus sweep rate in terms of Neperian logarithm.
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Figure S14. A-F) CVs, SWVs and ChAs of apta-platform in the presence of RAC (0.0001 M),
glutamic acid (0.0001 M), aspartic acid (0.0001 M), L-cysteine (0.0001 M) and valine (0.0001
M) 0.01 M [Fe(CN)s]*"*/KCI 0.01 M solution is support electrolyte with histogram of peak
current versus type of interfering species. (n=3, SD=1.29 for CV), (n=3, SD=1.06 for DPV),

and (n=3, SD=1.12 for ChA).
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Figure S17. A) CVs of intraday assessment in 0.01 M [Fe(CN)s]*"*/KC1 0.01 M solution as
electrolyte support and in the potential range -1 to 1 V and the scan rate of 100 mV/s. B)

histogram of peak current versus time of storage (n=3, SD=1.97).
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