## Supporting Information for

## Effect of Dehydrofluorinated Reaction on Structure and Properties of PVDF Electrospun Fibers

Yuxin Wang<sup>1</sup>, Haijun Wang<sup>1</sup>, Kun Liu<sup>1</sup>, Chunlei Yuan<sup>1</sup>, Tong Wang<sup>1</sup>, Haibo Yang<sup>1</sup>

<sup>1</sup> Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China



**Figure S1**. GPC chromatogram of dehydrofluorinated PVDF with varying reaction times.

**Table S1**. Fraction of  $\beta$ -phase in dehydrofluorinated PVDF nanofibers with varying reaction times.

| Time/h       | 0     | 2     | 5     | 8     | 12    | 24    |
|--------------|-------|-------|-------|-------|-------|-------|
| <b>F</b> (β) | 83.3% | 89.5% | 92.1% | 86.2% | 84.6% | 59.9% |

Table S2. The total surface energy and their components of the testing liquid.

|                 | $\gamma^{LW} (mJ m^{-2})$ | $\gamma^+$ (mJ m <sup>-2</sup> ) | $\gamma^{-}(mJ m^{-2})$ | $\gamma_L (mJ m^{-2})$ |
|-----------------|---------------------------|----------------------------------|-------------------------|------------------------|
| Water           | 21.8                      | 25.5                             | 25.5                    | 72.8                   |
| Ethylene glycol | 29.0                      | 1.9                              | 47.0                    | 50.8                   |
| Glycerol        | 34.0                      | 3.9                              | 57.4                    | 64.0                   |

**Table S3.** Contact angle of dehydrofluorinated PVDF films with varying reaction times.

<sup>&</sup>lt;sup>1</sup> Corresponding author. Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.

E-mail address: wanghaijun@sust.edu.cn

| Reaction time<br>Contact angle (°) | 0 h   | 2 h  | 5 h  | 8 h   | 12 h  |
|------------------------------------|-------|------|------|-------|-------|
| Water                              | 102.2 | 98.5 | 91.7 | 87.6  | 78.8  |
| Ethylene glycol                    | 70.5  | 67.3 | 62.5 | 58.4  | 51.2  |
| Glycerol                           | 87.3  | 89.9 | 92.6 | 102.4 | 113.3 |

## **Supplementary Notes**

The specific process of calculating surface energy and the theory are as follows: (1) DI water, ethylene glycol, and glycerol were used as the testing liquids. The total surface energy and their components of three testing liquids are list in Tab. S2.<sup>33,34</sup> (2) In the LW–AB model, the total surface energy is composed of a dispersion component  $\gamma^{LW}$  due to Lifshitz–vander Waals interactions (SE–LW) and an acid–base component  $\gamma^{AB}$  due to Lewis interactions (SE–AB). Therefore, the surface energy is expressed as:

$$\gamma = \gamma^{LW} + \gamma^{AB}$$

where the acid–base component  $\gamma^{AB}$  consists of two contributions, one from an electron acceptor  $\gamma^+$  and other from an electron donor  $\gamma^-$ . Accordingly, this component is written as:

$$\gamma^{AB} = 2\sqrt{\gamma^+\gamma^-}$$

(3) Furthermore, the liquid–solid interface energy is calculated as:

$$\gamma_{LS} = \gamma_L + \gamma_S - 2\left(\sqrt{\gamma_L^{LW}\gamma_S^{LW}} + \sqrt{\gamma_L^+\gamma_s^-} + \sqrt{\gamma_S^+\gamma_L^-}\right)$$

where  $\gamma_L$  and  $\gamma_S$  are the liquid and solid surface energy, respectively.

(4) Combining the Young equation, it is acquired that:

$$\left(\gamma_L^{LW} + 2\sqrt{\gamma_L^+\gamma_L^-}\right)\left(1 + \cos\theta\right) = 2\left(\sqrt{\gamma_L^{LW}\gamma_S^{LW}} + \sqrt{\gamma_L^+\gamma_S^-} + \sqrt{\gamma_S^+\gamma_L^-}\right)$$

where  $\theta$  is the contact angle of the films.