Table 1S. Microstructure of MNPs

Sam	am Fe₃O₄ (Ar) [Bondarenko et			Fe ₃ O ₄ (air)		Fe ₃ O ₄ /APTES (Ar)		Fe₃O₄/APTES (air)				
ple	e al., 2021]						[Bondarenko et al., 2021]		[Bondarenko et al., 2021]			
hkl	2Q, °	d, Å	FWHM	2Q, °	d <i>,</i> Å	FWHM	2Q, °	d <i>,</i> Å	FWHM	2Q, °	d <i>,</i> Å	FWHM
220	45.45	2.965	0.636(8)	45.65	8.352 (1)	13.759(1)	45.45	2.96	0.504(9)	45.65	2,956	0.721(6)
311	53.90	2.527	0.662(2)	54.05	8.361(5)	13.448(2)	53.95	2.53	0.679(5)	54.05	2,519	1.731(2)
400	66.30	2.095	0.780(1)	66.4	8.368(2)	16.384(1)	66.3	2.095	0.890(4)	66.4	2,089	0.822(1)
422	83.85	1.714	0.975(2)	84.2	8.370(6)	16.967(1)	84.05	1.712	0.844(9)	84.45	1,707	0.785(1)
511	90.70	1.610	0.940(7)	90.7	8.366(9)	16.721(2)	0.75	1.61	0.828(5)	90.7	1,609	1.891(3)
440	101.3	1.481	0.899(1)	101.55	8.364(9)	12.195(3)	101.37	1.481	1.026(6)	101.5	1,477	0.824(4)
	5									5		0.824(4)
a, A		8.3813		8.3641			8.3789			8.3603		
Х		0.37		0.22		0.35		0.187				
δ	δ 0.069		0.162			0.08 0.186						
Structure Fe		Fe _{2,93} O ₄		Fe _{2,84} O ₄			Fe _{2,92} O ₄		Fe _{2,81} O ₄			
% Fe ₃ O ₄ 78.8		50.7			75.8		42.4					
D _{XRD} , I	D _{XRD} , nm 17.1±2.3		14.9±2.02		20.5±3.3		16.5±1.96					
CV, % 13.5		13.5			16.1		9.5					

hkl – Miller indexes; d - interplanar distance, Å; Q - angle at which the reflex was measured; FWHM - full width at half maximum of XRD reflex; a - interplanar distance, Å; X - the Fe^{2+}/Fe^{3+} ratio; δ – calculated value, which range from zero (stoichiometric magnetite) to 1/3 (completely oxidized); D_{XRD} average particle size calculated by the Scherrer equation ± standard deviation, nm

Table 2S. Magnetic properties of bare and modified MNPs

Sample	Saturation magnetization Ms, emu/g	Remanent magnetization Mr, emu/g	Coercive force Hc, Oe
Fe ₃ O ₄ (Ar)	81.2	6.88	74.1
Fe ₃ O 4 (air)	49.9	5.20	160
Fe₃O₄-APTES (Ar)	68.7	6.65	163
Fe ₃ O ₄ -APTES (air)	30.8	4.41	159

Figure 1S. Magnetic properties of MNPs

Table 3S. pH-dependence of samples

Sample	Concentration, mg/L	рН	Zeta potential, mV ± SD	Hydrodynamic diameter, nm
	10,0	5,4	20,1±4.5	473,0±63.3
	1,00	5,8	-8,8±0.9	744,7±102.5
	0,500	6,7	-14,6±1.7	470,9±73.8
Fe3O4 (Ar)	0,100	6,7	-15,4±3.8	443,9±109.9
	0,0100	6,7	-20,8±4.3	404,5±112.4
	10,0	4,0	10,2±1.9	756,4±85.7
	1,00	5,1	-2,1±1.7	769,9±19.4
	0,500	7,5	-13,2±3.6	852,8±27.6
Fe3O4 (air)	0,100	7,5	-15,9±4.7	780,6±97.7
	0,0100	7,6	-15,0±3.2	724,3±23.2
	10,0	6,1	43,6±5.1	672,4±69.1
	1,00	6,1	15,0±2.5	957,1±140.2
Fe3O4/APTES	0,500	6,2	-16,1±0.3	821,3±
(Ar)	0,100	6,5	23,6±3.5	
	0,0100	6,5	-19,6±2.6	606,5±68.5
	10,0	6,4	43,3±2.0	725,6±58.8
	1,00	7,0	43,5±3.5	728,5±62.7
	0,500	7,5	4,4±2.8	737,9±89.2
Fe3O4/APTES	0,100	7,4	-15,6±3.5	720,5±82,2
(air)	0,0100	7,5	-21,2±4.2	748,4±27.4

Table 4S. ANOVA (Tukey's multiple comparisons test and p-value, before fractionation)v of initial MNPs

	mg/L
Row 1	10.0
Row 2	1.00
Row 3	0.500
Row 4	0.100
Row 5	0.0100

	p-value		
	P. caudatum	S. alba	
Fe ₃ O ₄ (Ar)			
Row 1 vs. Row 2	0.0915	0.9996	
Row 1 vs. Row 3	0.1309	0.3511	
Row 1 vs. Row 4	0.082	0.2872	
Row 1 vs. Row 5	0.3109	0.9431	
Row 2 vs. Row 3	0.993	0.4691	
Row 2 vs. Row 4	0.9579	0.3945	
Row 2 vs. Row 5	0.9463	0.9823	
Row 3 vs. Row 4	0.9305	>0.9999	
Row 3 vs. Row 5	0.9999	0.794	
Row 4 vs. Row 5	0.9494	0.7223	
Fe₃O₄ (air)			
Row 1 vs. Row 2	0.0496	0.9996	
Row 1 vs. Row 3	0.0404	0.9997	
Row 1 vs. Row 4	0.0391	0.9903	
Row 1 vs. Row 5	0.0079	0.5839	
Row 2 vs. Row 3	0.9987	>0.9999	
Row 2 vs. Row 4	0.9926	0.9616	
Row 2 vs. Row 5	>0.9999	0.7119	
Row 3 vs. Row 4	0.9964	0.9643	
Row 3 vs. Row 5	>0.9999	0.704	
Row 4 vs. Row 5	0.9657	0.3171	
Fe₃O₄/APTES (Ar)			
Row 1 vs. Row 2	0.0354	0.3149	
Row 1 vs. Row 3	0.0007	0.9818	

Row 1 vs. Row 4	0.0022	0.8465		
Row 1 vs. Row 5	0.0004	>0.9999		
Row 2 vs. Row 3	0.1086	0.1167		
Row 2 vs. Row 4	0.047	0.8846		
Row 2 vs. Row 5	0.1677	0.304		
Row 3 vs. Row 4	0.5082	0.5314		
Row 3 vs. Row 5	0.4321	0.9844		
Row 4 vs. Row 5	0.9545	0.8362		
Fe₃O₄/APTES (air)				
Row 1 vs. Row 2	0.4857	0.5227		
Row 1 vs. Row 3	0.0427	0.9939		
Row 1 vs. Row 4	0.002	0.9923		
Row 1 vs. Row 5	0.0099	0.9641		
Row 2 vs. Row 3	0.1052	0.7693		
Row 2 vs. Row 4	0.0413	0.7841		
Row 2 vs. Row 5	0.1529	0.1919		
Row 3 vs. Row 4	0.496	>0.9999		
Row 3 vs. Row 5	0.8348	0.8232		
Row 4 vs. Row 5	0.9998	0.8096		
Fe_3O_4 (Ar) vs. Fe_3O_4 (air)	0.7586	0.7104		
Fe ₃ O ₄ (Ar) vs. Fe ₃ O ₄ /APTES (Ar)	0.9412	0.9842		
Fe ₃ O ₄ (Ar) vs. Fe ₃ O ₄ /APTES (air)	0.2243	0.9425		
Fe ₃ O ₄ (air) vs. Fe ₃ O ₄ /APTES (Ar)	0.9754	0.4922		
Fe ₃ O ₄ (air) vs. Fe ₃ O ₄ /APTES (air)	0.0247	0.4377		
Fe ₃ O ₄ /APTES (Ar) vs. Fe ₃ O ₄ /APTES (air)	0.0695	0.9949		

Table 55. ANOVA (Tukey's multiple comparisons test and p-value, after fractionation) of initial, centrifuged and filtered MNPs

		p-value		
	P. caudatum	S. alba		
Fe ₃ O ₄ (Ar)				
ini vs. cent	<0.0001	0.0639		
ini vs. filtr	<0.0001	0.9249		
cent vs. filtr	0.1969	0.1332		
Fe₃O₄ (air)				
ini vs. cent	0.9681	0.0002		
ini vs. filtr	0.9681	0.9996		
cent vs. filtr	>0.9999	0.0002		
Fe ₃ O ₄ /APTES (Ar)				
ini vs. cent	<0.0001	0.9997		
ini vs. filtr	<0.0001	0.0889		
cent vs. filtr	0.5136	0.0849		
Fe₃O₄ APTES (air)				
ini vs. cent	<0.0001	0.0013		
ini vs. filtr	0.0005	<0.0001		
cent vs. filtr	0.1588	0.4086		
initial				
Fe_3O_4 (Ar) vs. Fe_3O_4 (air)	0.0966	0.5715		
Fe ₃ O ₄ (Ar) vs. Fe ₃ O ₄ /APTES (Ar)	0.0992	0.9963		
Fe ₃ O ₄ (Ar) vs. Fe ₃ O ₄ /APTES (air)	0.3264	0.0004		
Fe ₃ O ₄ (air) vs. Fe ₃ O ₄ /APTES (Ar)	0.9937	0.7025		
Fe ₃ O ₄ (air) vs. Fe ₃ O ₄ /APTES (air)	<0.0001	<0.0001		
Fe_3O_4 /APTES (Ar) vs. Fe_3O_4 /APTES (air)	0.0003	0.0003		
centrifugation				
Fe_3O_4 (Ar) vs. Fe_3O_4 (air)	0.0028	<0.0001		
Fe ₃ O ₄ (Ar) vs. Fe ₃ O ₄ /APTES (Ar)	0.9789	0.1557		
Fe ₃ O ₄ (Ar) vs. Fe ₃ O ₄ /APTES (air)	0.4124	0.0251		

Fe ₃ O ₄ (air) vs. Fe ₃ O ₄ /APTES (Ar)	0.0017	0.0066
Fe_3O_4 (air) vs. Fe_3O_4 /APTES (air)	0.0018	0.0502
Fe_3O_4 /APTES (Ar) vs. Fe_3O_4 /APTES (air)	0.5484	0.8121
filtration		
Fe_3O_4 (Ar) vs. Fe_3O_4 (air)	0.0006	0.8073
Fe ₃ O ₄ (Ar) vs. Fe ₃ O ₄ /APTES (Ar)	0.824	0.1967
Fe_3O_4 (Ar) vs. Fe_3O_4 /APTES (air)	0.2991	0.9955
Fe_3O_4 (air) vs. Fe_3O_4 /APTES (Ar)	0.0089	0.6575
Fe ₃ O ₄ (air) vs. Fe ₃ O ₄ /APTES (air)	0.0025	0.9094
Fe_3O_4 /APTES (Ar) vs. Fe_3O_4 /APTES (air)	0.9409	0.2872

* ini – initial, cent – centrifugation, filtr - filtration