Supporting Information for:

Deuterium Equilibrium Isotope Effects in a Supramolecular Receptor for Hydrosulfide

Hazel A. Fargher, Russell A. Nickels, Thaís de Faria, Michael M. Haley,* Michael D. Pluth,* Darren W. Johnson*

Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403-1253, United States

haley@uoregon.edu, pluth@uoregon.edu, dwj@uoregon.edu

Table of Contents	Page
1. Synthesis	S2
2. NMR Spectra	S4
3. Competitive Titrations of 2^H and 2^D	S12
4. Competitive ¹³ C NMR Titration Representative Data	S13
5. References	S15

Synthesis.

General Methods. All reagents were purchased from commercial sources and used as received, unless otherwise noted. NMR spectra were acquired at room temperature on a Bruker Avance-III-HD 600 MHz (¹H 600 MHz, ¹³C 151 MHz, ¹⁹F 565 MHz, ²H 76.75 MHz) spectrometer with a Prodigy multinuclear broadband BBO CryoProbe. ¹H and ¹³C chemical shifts (δ) are reported in ppm relative to residual CHCl₃ (¹H: 7.26 ppm, ¹³C: 77.16 ppm), CH₃CN (¹H: 1.94 ppm, ¹³C: 118.26 ppm), or DMSO (¹H: 2.50 ppm, ¹³C: 39.52 ppm) shifts. ¹⁹F chemical shifts are referenced to CFCl₃ (δ = 0 ppm) as an external standard. ²H chemical shifts are reported in ppm relative to residual CDCl₃ (7.26 ppm), CD₃CN (1.94), or DMSO-*d*₆ (2.50 ppm). High-resolution mass spectra (HRMS) were recorded on a Waters XEVO G2-SX mass spectrometer. Tetrabutylammonium hydrosulfide (TBASH),^[1] 2,6-diiodo-4-trifluoromethylaniline,^[2] 4-tertbutyl-2-((trimethylsilyI)ethynyI)aniline,^[3] and host **2**^{H[4]} were synthesized according to previous reports. *Note*: Hydrogen sulfide and related salts are highly toxic and should be handled carefully to avoid exposure.

Scheme S1. Synthetic pathway to the selective deuteration of anion receptor 2^D.

2,6-Diiodo-4-trifluoromethyldiazonium tetrafluoroborate (3). This preparation was adapted from previous reports.^[5] A solution of 2,6-diiodo-4-trifluoromethylaniline^[2] (0.25 g, 0.61 mmol), glacial AcOH (1.0 mL), and 48% HBF₄ (0.18 mL) was stirred at 25 °C. Isoamyl nitrite (0.14 mL) was combined with glacial AcOH (2.0 mL) and added dropwise over 5 min to produce a bright yellow solution. After stirring the reaction mixture at 25 °C for 15 min, diethyl ether (2.0 mL) was slowly added. The resulting liquid was placed in a -20 °C freezer for 16 h, and the solid product was isolated by vacuum filtration and washed with diethyl ether to afford **3** (0.25 g, 0.48 mmol, 71%) as a bright yellow solid. *Note*: Caution should be observed when working with isoamyl nitrite or isolating diazonium salts as a solid as these compounds are known to be shock sensitive and explosive.^[6,7] ¹H NMR (600 MHz, CD₃CN) δ : 8.59 (s, 2H).

¹³C NMR (151 MHz, CD₃CN) δ: 140.2 (q, *J* = 34.7), 139.7 (q, *J* = 3.0), 133.1, 121.4 (q, *J* = 274.8), 102.9. ¹⁹F (565 MHz, CD₃CN) δ: 4.7, -151.8.

1,3-Diiodo-2-duetero-5-trifluoromethylbenzene (4^D)

This preparation was adapted from previous reports.^[8] A solution of FeSO₄ (0.54 g, 2.0 mmol) and DMFd₇ (10 mL) was allowed to stir for 15 min. A separate solution containing **2** (1.0 g, 2.0 mmol) dissolved in DMF-d₇ (4 mL) was added dropwise over 10 min to the stirring solution. The solution was allowed to stir for an additional 15 min before adding water to precipitate a solid. The precipitate was isolated by vacuum filtration and washed with water to afford **4**^D (0.28 g, 0.71 mmol, 36%) as a tan solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.91 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ : 148.3 (t, *J* = 27.2), δ 133.7 (q, *J* = 33.7), δ 133.7 (q, *J* = 1.5), δ 121.9 (q, *J* = 273.8), δ 94.6. ¹⁹F (565 MHz, CDCl₃) δ -63.0. ²H (76.75 MHz, CDCl₃) δ 8.29. HRMS (TOF-MS-ASAP) [M]⁺ calc'd for C₇H₂DF₃I₂ 398.8339, found 398.8317.

Deuterated dianiline intermediate (5^D)

This preparation was adapted from previous reports.^[4] A suspension of 4-tertbutyl-2-((trimethylsilyl)ethynyl)aniline^[3] (0.68 g, 2.4 mmol), K₂CO₃ (1.90 g, 13.8 mmol), MeOH (20 mL), and Et₂O (10 mL) was stirred at 25 °C for 3 h. The suspension was diluted with water and extracted with CH₂Cl₂ (15 mL, x3) and washed with brine (15 mL, x2). The organic layer was dried (Na₂SO₄) and concentrated *in vacuo* to afford a dark brown oil. The oil was dissolved in THF (20 mL) and DIPA (20 mL) and purged with N₂ for 40 min. The solution was cannulated into an N₂-purged solution of **4**^D (0.36 g, 0.92 mmol), Pd(PPh₃)₄ (0.032 g, 0.046 mmol), Cul (0.0017 g, 0.0092 mmol), THF (20 mL), and i-PrNH₂ (20 mL). The solution was stirred for 18 h at 50 °C, cooled, and concentrated *in vacuo*. The resulting oil was dissolved in CH₂Cl₂ and filtered through a 3 cm silica plug, which was washed with additional CH₂Cl₂. The filtrate was concentrated *in vacuo* and the resulting brown oil was purified by column chromatography (5:1 hexanes/EtOAc) to afford **5**^D (0.20 g, 0.41 mmol, 45%) as a brown solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.71 (s, 2H), 7.40, (d, *J* = 2.0, 2H), 7.24 (dd, *J* = 8.4, 2H), 6.70 (d, *J* = 8.4, 2H), 4.19 (s, 4H), 1.30 (s, 18H). ¹³C NMR (151 MHz, CDCl₃) δ : 145.8, 141.2, 136.7 (t, *J* = 25.7), 131.5 (q, *J* = 33.2), 129.0, 128.0, 127.4 (q, *J* = 3), 124.9, 124.6 (q, *J* = 273.3), 114.6, 106.6, 92.1, 89.1, 34.1, 31.5. ¹⁹F (565 MHz, CDCl₃) -63.1. ²H (76.75 MHz, CDCl₃) δ : 7.90. HRMS (TOF-MS-ASAP) [M+H]⁺ calc'd for C₃₁H₃₁DN₂F₃ 490.2580, found 490.2549.

Deuterated arylethynyl bisurea host (2^D)

This preparation was adapted from previous reports.^[4] All glassware was dried in a 110 °C oven overnight. A round bottom flask was charged with dry toluene (100 mL) and **5**^p (0.20 g, 0.41 mmol). 4-Methoxyphenyl isocyanate (0.16 mL, 1.2 mmol) was added dropwise, and the solution was stirred for 46 h at 50 °C. The reaction became cloudy upon completion, and the precipitate was collected by vacuum filtration to afford **2**^p (0.11 g, 0.14 mmol, 34%). ¹H NMR (600 MHz, 10% DMSO-*d*₆/CD₃CN) δ : 8.87 (s, 2H), 8.08 (d, *J* = 8.8, 2H), 7.99 (s, 2H), 7.96 (s, 2H), 7.56 (d, *J* = 2.2, 2H), 7.45 (dd, *J* = 8.8, 2H), 7.38 (d, *J* = 8.9, 4H), 6.84 (d, *J* = 8.9, 4H), 3.72 (s, 6H), 1.31 (s, 18H). ¹³C NMR (151 MHz, 10% DMSO-*d*₆/CD₃CN) δ : 156.2, 153.9, 145.9, 139.5, 133.5, 131.8 (q, *J* = 32.2), 129.8, 128.7 (q, *J* = 3.6), 128.3, 125.4, 124.5 (q, *J* = 272.8), 121.8, 120.7, 114.9, 111.6, 93.2, 89.2, 55.9, 34.8, 31.4. ¹⁹F (565 MHz, 10% DMSO-*d*₆/CD₃CN) δ : -63.2. ²H (76.75 MHz, 10% DMSO-*d*₆/CD₃CN) δ : 8.28. HRMS (TOF-MS-ASAP) [M+H]⁺ calc'd for C₄₇H₄₅DN₄O₄F₃ 788.3534, found 788.3543.

NMR Spectra.

Figure S2. $^{13}C{^{1}H}$ NMR spectrum of **3** in CD₃CN.

Figure S3. ¹⁹F NMR spectrum of 3 in CD₃CN.

S5

Figure S6. ¹⁹F NMR spectrum of **4**^D in CDCl₃.

Figure S8. ¹H NMR spectrum of 5^D in CDCl₃.

Figure S10. ¹⁹F NMR spectrum of 5^D in CDCl₃.

Figure S12. ¹H NMR spectrum of 2^{D} in 10% DMSO- d_{6} /CD₃CN.

Figure S13. ¹³C{¹H} NMR spectrum of 2^{D} in 10% DMSO- d_{6} /CD₃CN.

Figure S14. ¹⁹F NMR spectrum of 2^{D} in 10% DMSO- d_{6} /CD₃CN.

Figure S15. ²H NMR spectrum of **2**^D in 10% DMSO/CH₃CN.

Competitive Titration of 2^H and 2^D.

General Methods. Samples were prepared under an inert atmosphere using an Innovative Atmospheres N_2 -filled glovebox. CD_3CN and $DMSO-d_6$ were distilled from calcium hydride under reduced pressure, deoxygenated by purging with N_2 and stored over 4 Å molecular sieves in an inert atmosphere glove box. Tetrabutylammonium chloride (TBACI) and tetrabutylammonium bromide (TBABr) were recrystallized by layering an anhydrous THF solution under anhydrous Et_2O . Tetrabutylammonium hydrosulfide (TBASH) was synthesized according to previous reports.^[1] *Note*: Hydrogen sulfide and related salts are highly toxic and should be handled carefully to avoid exposure.

General Procedure for NMR Titrations.

Method A.

A solution of 2^{H} and 2^{D} in 10% DMSO- d_{6} /CD₃CN (combined concentration between 5.71 and 13.46 mM) was prepared and 500 µL was added to a septum-sealed NMR tube. A stock solution of guest (TBASH, TBACl, or TBABr) was prepared in 10% DMSO- d_{6} /CD₃CN (54.69 – 223.09 mM). Aliquots of the guest solution were added to the NMR tube using Hamilton gas-tight syringes, and ¹³C NMR spectra were recorded at 25°C after each addition of guest. The $\Delta\delta$ of the C^{ab}, C¹, and C² of 2^{H} and 2^{D} were used to follow the progress of the titration, and DEIE were determined using the Perrin method.^[9]

Method B.

A solution of 2^{H} and 2^{D} in 10% DMSO- d_{6} /CD₃CN (combined concentration between 4.65 and 6.04 mM) was prepared and 500 µL aliquots were added to four J-young NMR tubes. A stock solution of TBASH was prepared in CD₃CN (47.18 – 81.29 mM). For each point in the titration, TBASH stock solution and DMSO- d_{6} were added to a new solution of 2^{H} and 2^{D} inside an N₂-glovebox shortly before obtaining a ¹³C NMR spectra. The $\Delta\delta$ of the C^{ab}, C¹, and C² of 2^{H} and 2^{D} were used to follow the progress of the titration, and DEIE were determined using the Perrin method.^[9]

Competitive ¹³C NMR Titration Representative Data.

Table S1. Representative competitive titration between 2^{H} and 2^{D} with Cl⁻ in 10% DMSO- d_{6} /CD₃CN at 25°C.

Figure S16. Binding isotherm for Cl⁻ binding with a mixture of 2^{H} and 2^{D} in 10% DMSO- d_{6} /CD₃CN at 25°C.

Table S2. Representative competitive titration between 2^{H} and 2^{D} with Br⁻ in 10% DMSO- d_{6} /CD₃CN at 25°C.

Figure S17. Binding isotherm for Br⁻ binding with a mixture of 2^{H} and 2^{D} in 10% DMSO- d_{6} /CD₃CN at 25°C.

References

- M. D. Hartle, D. J. Meininger, L. N. Zakharov, Z. J. Tonzetich, M. D. Pluth, *Dalton Trans.* 2015, 44, 19782–19785.
- [2] D. M. Lindsay, W. Dohle, A. E. Jensen, F. Kopp, P. Knochel, Org. Lett. 2002, 4, 1819–1822.
- [3] C. N. Carroll, O. B. Berryman, C. A. Johnson, L. N. Zakharov, M. M. Haley, D. W. Johnson, *Chem. Commun.* **2009**, 2520–2522.
- [4] H. A. Fargher, N. Lau, H. C. Richardson, P. H.-Y. Cheong, M. M. Haley, M. D. Pluth, D. W. Johnson, J. Am. Chem. Soc. 2020, 142, 8243–8251.
- [5] B. W. Tresca, A. C. Brueckner, M. M. Haley, P. H.-Y. Cheong, D. W. Johnson, J. Am. Chem. Soc. 2017, 139, 3962–3965.
- [6] M. K. Bernard, J. Chem. Educ. 2010, 87, 583–583.
- [7] J. D. Firth, I. J. S. Fairlamb, Org. Lett. 2020, 22, 7057–7059.
- [8] F. W. Wassmundt, W. F. Kiesman, J. Org. Chem. 1995, 60, 1713–1719.
- [9] C. L. Perrin, M. A. Fabian, Anal. Chem. 1996, 68, 2127–2134.