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Synthesis. 
 
General Methods. All reagents were purchased from commercial sources and used as received, unless 
otherwise noted. NMR spectra were acquired at room temperature on a Bruker Avance-III-HD 600 MHz 
(1H 600 MHz, 13C 151 MHz, 19F 565 MHz, 2H 76.75 MHz) spectrometer with a Prodigy multinuclear 
broadband BBO CryoProbe. 1H and 13C chemical shifts (δ) are reported in ppm relative to residual CHCl3 
(1H: 7.26 ppm, 13C: 77.16 ppm), CH3CN (1H: 1.94 ppm, 13C: 118.26 ppm), or DMSO (1H: 2.50 ppm, 13C: 
39.52 ppm) shifts. 19F chemical shifts are referenced to CFCl3 (δ = 0 ppm) as an external standard. 2H 
chemical shifts are reported in ppm relative to residual CDCl3 (7.26 ppm), CD3CN (1.94), or DMSO-d6 
(2.50 ppm).  High-resolution mass spectra (HRMS) were recorded on a Waters XEVO G2-SX mass 
spectrometer. Tetrabutylammonium hydrosulfide (TBASH),[1] 2,6-diiodo-4-trifluoromethylaniline,[2] 4-
tertbutyl-2-((trimethylsilyl)ethynyl)aniline,[3] and host 2H[4] were synthesized according to previous 
reports. Note: Hydrogen sulfide and related salts are highly toxic and should be handled carefully to 
avoid exposure. 
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Scheme S1. Synthetic pathway to the selective deuteration of anion receptor 2D. 
 
2,6-Diiodo-4-trifluoromethyldiazonium tetrafluoroborate (3). This preparation was adapted from 
previous reports.[5] A solution of 2,6-diiodo-4-trifluoromethylaniline[2] (0.25 g, 0.61 mmol), glacial AcOH 
(1.0 mL), and 48% HBF4 (0.18 mL) was stirred at 25 °C. Isoamyl nitrite (0.14 mL) was combined with 
glacial AcOH (2.0 mL) and added dropwise over 5 min to produce a bright yellow solution. After stirring 
the reaction mixture at 25 °C for 15 min, diethyl ether (2.0 mL) was slowly added. The resulting liquid 
was placed in a -20 °C freezer for 16 h, and the solid product was isolated by vacuum filtration and 
washed with diethyl ether to afford 3 (0.25 g, 0.48 mmol, 71%) as a bright yellow solid. Note: Caution 
should be observed when working with isoamyl nitrite or isolating diazonium salts as a solid as these 
compounds are known to be shock sensitive and explosive.[6,7] 1H NMR (600 MHz, CD3CN) δ: 8.59 (s, 2H). 
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13C NMR (151 MHz, CD3CN) δ: 140.2 (q, J = 34.7), 139.7 (q, J = 3.0), 133.1, 121.4 (q, J = 274.8), 102.9. 19F 
(565 MHz, CD3CN) δ: 4.7, -151.8. 
 
1,3-Diiodo-2-duetero-5-trifluoromethylbenzene (4D) 
This preparation was adapted from previous reports.[8] A solution of FeSO4 (0.54 g, 2.0 mmol) and DMF-
d7 (10 mL) was allowed to stir for 15 min. A separate solution containing 2 (1.0 g, 2.0 mmol) dissolved in 
DMF-d7 (4 mL) was added dropwise over 10 min to the stirring solution. The solution was allowed to stir 
for an additional 15 min before adding water to precipitate a solid. The precipitate was isolated by 
vacuum filtration and washed with water to afford 4D (0.28 g, 0.71 mmol, 36%) as a tan solid. 1H NMR 
(600 MHz, CDCl3) δ: 7.91 (s, 2H). 13C NMR (151 MHz, CDCl3) δ: 148.3 (t, J = 27.2), δ 133.7 (q, J = 33.7), δ 
133.7 (q, J = 1.5), δ 121.9 (q, J = 273.8), δ 94.6. 19F (565 MHz, CDCl3) δ -63.0. 2H (76.75 MHz, CDCl3) δ 
8.29. HRMS (TOF-MS-ASAP) [M]+ calc’d for C7H2DF3I2 398.8339, found 398.8317. 
 
Deuterated dianiline intermediate (5D) 
This preparation was adapted from previous reports.[4] A suspension of 4-tertbutyl-2-
((trimethylsilyl)ethynyl)aniline[3] (0.68 g, 2.4 mmol), K2CO3 (1.90 g, 13.8 mmol), MeOH (20 mL), and Et2O 
(10 mL) was stirred at 25 °C for 3 h. The suspension was diluted with water and extracted with CH2Cl2 
(15 mL, x3) and washed with brine (15 mL, x2). The organic layer was dried (Na2SO4) and concentrated in 
vacuo to afford a dark brown oil. The oil was dissolved in THF (20 mL) and DIPA (20 mL) and purged with 
N2 for 40 min. The solution was cannulated into an N2-purged solution of 4D (0.36 g, 0.92 mmol), 
Pd(PPh3)4 (0.032 g, 0.046 mmol), CuI (0.0017 g, 0.0092 mmol), THF (20 mL), and i-PrNH2 (20 mL). The 
solution was stirred for 18 h at 50 °C, cooled, and concentrated in vacuo. The resulting oil was dissolved 
in CH2Cl2 and filtered through a 3 cm silica plug, which was washed with additional CH2Cl2. The filtrate 
was concentrated in vacuo and the resulting brown oil was purified by column chromatography (5:1 
hexanes/EtOAc) to afford 5D (0.20 g, 0.41 mmol, 45%) as a brown solid. 1H NMR (600 MHz, CDCl3) δ: 7.71 
(s, 2H), 7.40, (d, J = 2.0, 2H), 7.24 (dd, J = 8.4, 2H), 6.70 (d, J = 8.4, 2H), 4.19 (s, 4H), 1.30 (s, 18H). 13C 
NMR (151 MHz, CDCl3) δ: 145.8, 141.2, 136.7 (t, J = 25.7), 131.5 (q, J = 33.2), 129.0, 128.0, 127.4 (q, J = 
3), 124.9, 124.6 (q, J = 273.3), 114.6, 106.6, 92.1, 89.1, 34.1, 31.5. 19F (565 MHz, CDCl3) -63.1. 2H (76.75 
MHz, CDCl3) δ: 7.90. HRMS (TOF-MS-ASAP) [M+H]+ calc’d for C31H31DN2F3 490.2580, found 490.2549. 
 
Deuterated arylethynyl bisurea host (2D) 
This preparation was adapted from previous reports.[4] All glassware was dried in a 110  °C oven 
overnight. A round bottom flask was charged with dry toluene (100 mL) and 5D (0.20 g, 0.41 mmol). 4-
Methoxyphenyl isocyanate (0.16 mL, 1.2 mmol) was added dropwise, and the solution was stirred for 46 
h at 50 °C. The reaction became cloudy upon completion, and the precipitate was collected by vacuum 
filtration to afford 2D (0.11 g, 0.14 mmol, 34%). 1H NMR (600 MHz, 10% DMSO-d6/CD3CN) δ: 8.87 (s, 2H), 
8.08 (d, J = 8.8, 2H), 7.99 (s, 2H), 7.96 (s, 2H), 7.56 (d, J = 2.2, 2H), 7.45 (dd, J = 8.8, 2H), 7.38 (d, J = 8.9, 
4H), 6.84 (d, J = 8.9, 4H), 3.72 (s, 6H), 1.31 (s, 18H). 13C NMR (151 MHz, 10% DMSO-d6/CD3CN) δ: 156.2, 
153.9, 145.9, 139.5, 133.5, 131.8 (q, J = 32.2), 129.8, 128.7 (q, J = 3.6), 128.3, 125.4, 124.5 (q, J = 272.8), 
121.8, 120.7, 114.9, 111.6, 93.2, 89.2, 55.9, 34.8, 31.4. 19F (565 MHz, 10% DMSO-d6/CD3CN) δ: -63.2. 2H 
(76.75 MHz, 10% DMSO-d6/CD3CN) δ: 8.28. HRMS (TOF-MS-ASAP) [M+H]+ calc’d for C47H45DN4O4F3 
788.3534, found 788.3543. 
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NMR Spectra. 
 

 
Figure S1. 1H NMR spectrum of 3 in CD3CN. 
 

 
Figure S2. 13C{1H} NMR spectrum of 3 in CD3CN. 
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Figure S3. 19F NMR spectrum of 3 in CD3CN. 
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Figure S4. 1H NMR spectrum of 4D in CDCl3. 
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Figure S5. 13C{1H} NMR spectrum of 4D in CDCl3. 
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Figure S6. 19F NMR spectrum of 4D in CDCl3. 
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Figure S7. 2H NMR spectrum of 4D in CHCl3. 
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Figure S8. 1H NMR spectrum of 5D in CDCl3. 
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Figure S9. 13C{1H} NMR spectrum of 5D in CDCl3. 
 

 
Figure S10. 19F NMR spectrum of 5D in CDCl3. 
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Figure S11. 2H NMR spectrum of 5D in CHCl3. 
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Figure S12. 1H NMR spectrum of 2D in 10% DMSO-d6/CD3CN. 
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Figure S13. 13C{1H} NMR spectrum of 2D in 10% DMSO-d6/CD3CN. 
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Figure S14. 19F NMR spectrum of 2D in 10% DMSO-d6/CD3CN. 
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Figure S15. 2H NMR spectrum of 2D in 10% DMSO/CH3CN. 
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Competitive Titration of 2H and 2D. 
 
General Methods. Samples were prepared under an inert atmosphere using an Innovative Atmospheres 
N2-filled glovebox. CD3CN and DMSO-d6 were distilled from calcium hydride under reduced pressure, 
deoxygenated by purging with N2 and stored over 4 Å molecular sieves in an inert atmosphere glove 
box. Tetrabutylammonium chloride (TBACl) and tetrabutylammonium bromide (TBABr) were 
recrystallized by layering an anhydrous THF solution under anhydrous Et2O. Tetrabutylammonium 
hydrosulfide (TBASH) was synthesized according to previous reports.[1] Note: Hydrogen sulfide and 
related salts are highly toxic and should be handled carefully to avoid exposure.  
 
General Procedure for NMR Titrations.  
Method A. 
A solution of 2H and 2D in 10% DMSO-d6/CD3CN (combined concentration between 5.71 and 13.46 mM) 
was prepared and 500 μL was added to a septum-sealed NMR tube. A stock solution of guest (TBASH, 
TBACl, or TBABr) was prepared in 10% DMSO-d6/CD3CN (54.69 – 223.09 mM). Aliquots of the guest 
solution were added to the NMR tube using Hamilton gas-tight syringes, and 13C NMR spectra were 
recorded at 25°C after each addition of guest. The ∆δ of the Cab, C1, and C2 of 2H and 2D were used to 
follow the progress of the titration, and DEIE were determined using the Perrin method.[9] 
 
Method B. 
A solution of 2H and 2D in 10% DMSO-d6/CD3CN (combined concentration between 4.65 and 6.04 mM) 
was prepared and 500 μL aliquots were added to four J-young NMR tubes. A stock solution of TBASH 
was prepared in CD3CN (47.18 – 81.29 mM). For each point in the titration, TBASH stock solution and 
DMSO-d6 were added to a new solution of 2H and 2D inside an N2-glovebox shortly before obtaining a 13C 
NMR spectra. The ∆δ of the Cab, C1, and C2 of 2H and 2D were used to follow the progress of the titration, 
and DEIE were determined using the Perrin method.[9] 
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Competitive 13C NMR Titration Representative Data. 
 
Table S1. Representative competitive titration between 2H and 2D with Cl– in 10% DMSO-d6/CD3CN at 
25°C. 

Entry 
VGuest 
(μL) 

[2H] 
(mM) 

 
[2D] 
(mM) 

[Cl–] 
(mM) 

δ Cab 
(2H) 

(ppm) 

δ Cab 
(2D) 

(ppm) 

δ C1 
(2H) 

(ppm) 

δ C1 
(2D) 

(ppm) 

δ C2 
(2H) 

(ppm) 

δ C2 
(2D) 

(ppm) 
1 0 7.4 2.8 0 125.5158 125.4206 93.2006 93.1679 89.1431 89.1625 
2 10 7.2 2.7 1.5 125.4586 125.3627 93.2448 93.2117 89.210 89.1440 
3 50 6.5 2.5 8.0 125.2459 125.1484 93.4583 93.4213 89.0492 89.0715 
4 60 5.8 2.2 14.4 125.1863 125.0894 93.5353 93.4970 89.0370 89.0597 
5 200 4.3 1.3 28.4 125.1896 125.0942 93.5570 93.5180 89.0795 89.1019 

 

 
Figure S16. Binding isotherm for Cl– binding with a mixture of 2H and 2D in 10% DMSO-d6/CD3CN at 25°C. 
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Table S2. Representative competitive titration between 2H and 2D with Br– in 10% DMSO-d6/CD3CN at 
25°C. 

Entry 
VGuest 
(μL) 

[2H] 
(mM) 

 
[2D] 
(mM) 

[Br–] 
(mM) 

δ Cab 
(2H) 

(ppm) 

δ Cab 
(2D) 

(ppm) 

δ C1 
(2H) 

(ppm) 

δ C1 
(2D) 

(ppm) 

δ C2 
(2H) 

(ppm) 

δ C2 
(2D) 

(ppm) 
1 0 9.4 4.1 0 125.5253 125.4301 93.2145 93.1818 89.1588 89.1780 
2 5 9.3 4.0 1.1 125.4977 125.4008 93.2280 93.1959 89.1571 89.1772 
3 10 9.1 3.9 3.2 125.4451 125.3496 93.2538 93.2223 89.1546 89.1743 
4 60 8.1 3.5 14.1 125.2864 125.1897 93.3491 93.3152 89.1485 89.1692 
5 200 5.8 2.5 37.5 125.1987 125.1029 93.4268 93.3909 89.1687 89.1896 
6 500 3.5 1.5 62.6 125.1856 125.0898 93.4606 93.4253 89.2015 89.2217 

 

 
Figure S17. Binding isotherm for Br– binding with a mixture of 2H and 2D in 10% DMSO-d6/CD3CN at 25°C. 
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