## Supporting Information

# A highly selective pyridoxal-based chemosensor for the detection of Zn(II) and application in live cell imaging; X-ray crystallography of pyridoxal-TRIS Schiffbase Zn(II) and Cu(II) complexes.

Anwar Hussain,<sup>a</sup> Kadarkaraisamy Mariappan,<sup>a</sup> Dawson C. Cork,<sup>a</sup> Luke Lewandowski,<sup>a</sup> Prem K. Shrestha,<sup>a</sup> Samiksha Giri,<sup>b</sup> Xuejun Wang,<sup>b</sup> and Andrew G. Sykes<sup>\*a</sup>

| <sup>a.</sup> Contribution from the Department of Chemistry, University of South Dakota, Vermillion, SD 57069, United States of America. <sup>b.</sup> Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, United States of America.                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Corresponding author: Email: <u>Andrew.Sykes@usd.edu</u>                                                                                                                                                                                                                                                                                                                                                     |
| Figure S1: <sup>1</sup> H NMR of compound 1 in DMSO-d62                                                                                                                                                                                                                                                                                                                                                      |
| Figure S2: <sup>1</sup> H NMR of compound 1 in DMSO-d6 with added D <sub>2</sub> O                                                                                                                                                                                                                                                                                                                           |
| Figure S3: <sup>1</sup> H- <sup>1</sup> H Correlation Spectroscopy (COSY) NMR of 1 shows the correlation between hydrogens coupled to                                                                                                                                                                                                                                                                        |
| each other in the 'H NMR spectrum in DMSO-d6                                                                                                                                                                                                                                                                                                                                                                 |
| Figure S4: <sup>13</sup> C-CPD NMR of compound 1 in DMSO-d6                                                                                                                                                                                                                                                                                                                                                  |
| Figure S5: <sup>13</sup> C-DEPT135 NMR of 1 in DMSO-d64                                                                                                                                                                                                                                                                                                                                                      |
| Figure S6: IR spectrum of compound 14                                                                                                                                                                                                                                                                                                                                                                        |
| Figure S7: ESI-MS Spectra of 1 showing a molecular ion peak at 271.2 [M+H] <sup>+</sup> referring to the molar mass of                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                              |
| Figure S8: Fluorescence emission spectra of compound 1 in the presence of $2n(11)$ followed by addition of $Na_2EDTA$<br>and followed by the addition of $Zn(11)$ ( $\lambda ex=413$ nm)                                                                                                                                                                                                                     |
| Figure S9: ESI-MS Spectra of recovered <b>1</b> after addition of EDTA showing a molecular ion peak at 271.1 [M+H] <sup>+</sup> referring to the molar mass of compound <b>1</b> (270.28 g/mol).                                                                                                                                                                                                             |
| Figure S10: Effect of the pH on the fluorescence intensity of compound 1 in the presence of 2 equivalent of $Zn(II)$<br>ions ( $\lambda ex=413$ nm)                                                                                                                                                                                                                                                          |
| Figure S11: UV-Vis spectra of compound <b>1</b> (5.0 x10 <sup>-5</sup> M) in CH <sub>3</sub> OH before (black) and after the addition of 2.0 equivalents of anions as tetrabutylammonium salts.                                                                                                                                                                                                              |
| Figure S12: Emission spectra of compound <b>1</b> (5.0 x10 <sup>-5</sup> M, $\lambda_{ext}$ = 413 nm) in CH <sub>3</sub> OH before (black) and after the addition of 2.0 equivalents of anions as tetrabutylammonium salts.                                                                                                                                                                                  |
| Figure S13: Normalized response of fluorescence signal of 1 (5.0×10 <sup>-5</sup> M, CH <sub>3</sub> OH) in the presence of the increasing amount of $Zn(II)$ (5 – 25 ×10 <sup>-6</sup> M ACN) ( $\lambda$ = 413 nm; $\lambda$ = 470 nm)                                                                                                                                                                     |
| Figure S 14: Electrospray mass spectrum (ESI-MS positive) of Cu(II) complex of compound 1 8                                                                                                                                                                                                                                                                                                                  |
| Figure S15: Relative fluorescence intensity at 470 nm on the added equivalent of Zn(II); best fit for 2:1 compound 1:Zn(II) association. Association constant for 2:1 best fit equal $6.0 \times 10^9 \text{ M}^{-2}$ (±10%)                                                                                                                                                                                 |
| Figure S16: Relative fluorescence intensity of compound 1 at 470 nm on addition of 2.0 equivalents Zn(II) as perchlorate salts in different fraction of CH <sub>3</sub> OH and H <sub>2</sub> O (0.1 M HEPES buffer, pH = 7.3) showing the loss of emission at higher content of water. 20 scans with interval of 1 min, 10 <sup>th</sup> scan: approx. 15 mins, and 20 <sup>th</sup> scan: approx. 30 mins. |
| Since \$17. Deletive flueresees intensity of semenous 4.4 + 470 are an addition of 2.0 + 1.4 + 7.40                                                                                                                                                                                                                                                                                                          |
| Figure S17: Relative fluorescence intensity of compound 1 at 470 nm on addition of 2.0 equivalents Zn(II) as                                                                                                                                                                                                                                                                                                 |
| perchlorate salts in different fraction of DMSO and $H_2O$ (0.1 M HEPES buffer, pH = 7.3) showing the loss of emission                                                                                                                                                                                                                                                                                       |
| at higher content of water. 20 scans with interval of 1 min, 10 <sup>m</sup> scan: approx. 15 mins, and 20 <sup>m</sup> scan: approx. 30 mins.                                                                                                                                                                                                                                                               |
| Figure \$18: Mean fluorescence intensity(MEI) of compound 1 in HEK293 cells calculated using Fiji software 10                                                                                                                                                                                                                                                                                                |
| Figure S19: Job's plot of $1$ with Zn(II). Fluorescence intensity monitored at 470 nm vs. a function of the molar ratio                                                                                                                                                                                                                                                                                      |
| of $[\mathbf{Zn}(\mathbf{II})]/([1] + [\mathbf{Zn}(\mathbf{II})]), \lambda_{\infty} = 413$ nm. 11                                                                                                                                                                                                                                                                                                            |



Figure S1: <sup>1</sup>H NMR of compound 1 in DMSO-d6.



Figure S2: <sup>1</sup>H NMR of compound 1 in DMSO-d6 with added  $D_2O$ .



Figure S3: <sup>1</sup>H-<sup>1</sup>H Correlation Spectroscopy (COSY) NMR of 1 shows the correlation between hydrogens coupled to each other in the <sup>1</sup>H NMR spectrum in DMSO-d6.



Figure S4: <sup>13</sup>C-CPD NMR of compound 1 in DMSO-d6.



Figure S5: <sup>13</sup>C-DEPT135 NMR of 1 in DMSO-d6.



Figure S6: IR spectrum of compound 1.



Figure S7: ESI-MS Spectra of **1** showing a molecular ion peak at 271.2  $[M+H]^+$  referring to the molar mass of compound **1** (270.28 g/mol).



Figure S8: Fluorescence emission spectra of compound 1 in the presence of Zn(II) followed by addition of  $Na_2EDTA$  and followed by the addition of Zn(II) ( $\lambda ex=413$  nm).



Figure S9: ESI-MS Spectra of recovered **1** after addition of EDTA showing a molecular ion peak at 271.1 [M+H]<sup>+</sup> referring to the molar mass of compound **1** (270.28 g/mol).



Figure S10: Effect of the pH on the fluorescence intensity of compound 1 in the presence of 2 equivalent of Zn(II) ions ( $\lambda ex=413$  nm).



Figure S11: UV-Vis spectra of compound **1** (5.0 x10<sup>-5</sup> M) in CH<sub>3</sub>OH before (black) and after the addition of 2.0 equivalents of anions as tetrabutylammonium salts.



Figure S12: Emission spectra of compound **1** (5.0 x10<sup>-5</sup> M,  $\lambda_{ext}$  = 413 nm) in CH<sub>3</sub>OH before (black) and after the addition of 2.0 equivalents of anions as tetrabutylammonium salts.



Figure S13: Normalized response of fluorescence signal of 1 (5.0×10<sup>-5</sup> M, CH<sub>3</sub>OH) in the presence of the increasing amount of Zn(II) (5 – 25 ×10<sup>-6</sup> M, ACN) ( $\lambda_{ex}$  = 413nm;  $\lambda_{em}$  = 470nm)



Figure S 14: Electrospray mass spectrum (ESI-MS positive) of Cu(II) complex of compound 1.



Figure S15: Relative fluorescence intensity at 470 nm on the added equivalent of Zn(II); best fit for 2:1 compound 1:Zn(II) association. Association constant for 2:1 best fit equal 6.0 x 10<sup>9</sup> M<sup>-2</sup> (±10%).



Figure S16: Relative fluorescence intensity of compound 1 at 470 nm on addition of 2.0 equivalents Zn(II) as perchlorate salts in different fraction of  $CH_3OH$  and  $H_2O$  (0.1 M HEPES buffer, pH = 7.3) showing the loss of emission at higher content of water. 20 scans with interval of 1 min, 10<sup>th</sup> scan: approx. 15 mins, and 20<sup>th</sup> scan: approx. 30 mins.



Figure S17: Relative fluorescence intensity of compound 1 at 470 nm on addition of 2.0 equivalents Zn(II) as perchlorate salts in different fraction of DMSO and  $H_2O$  (0.1 M HEPES buffer, pH = 7.3) showing the loss of emission at higher content of water. 20 scans with interval of 1 min, 10<sup>th</sup> scan: approx. 15 mins, and 20<sup>th</sup> scan: approx. 30 mins.



Figure S18: Mean fluorescence intensity(MFI) of compound 1 in HEK293 cells calculated using Fiji software.

#### Job's Plot

5 x 10<sup>-5</sup> M of the compound **1** in methanol and 5 x 10<sup>-5</sup> M Zn(II) as acetate salt in acetonitrile solution were prepared from concentrated stock solutions and 0.25 - 3 mL of **3** and 0 - 2.75 mL of Zn(II) solution were taken in a cuvettes to make total volume of 3 mL and fluorescence spectra were recorded.



Figure S19: Job's plot of **1** with Zn(II) with a maxima near to 0.33 confirms the formation of  $L_2Zn(II)$  complex. Fluorescence intensity monitored at 470 nm vs. a function of the molar ratio of [Zn(II)]/([1] + [Zn(II)]),  $\lambda_{ex} = 413$ nm.

## Calculation of Quantum Yield

$$\phi_{sample} = \phi_{reference} X \frac{A_{sample}}{A_{reference}} X \frac{Abs_{reference}}{Abs_{sample}} X \frac{\eta_{sample}^2}{\eta_{reference}^2}$$
(1)

#### Quantum Yield of Compound 1:

$$\phi_1 = 0.27 X \frac{1.74 \times 10^6}{6.93 \times 10^7} X \frac{0.247}{0.042} X \frac{1.36^2}{1.36^2}$$

or, 
$$\phi_1 = 0.27 X 2.51 x 10^{-2} X 5.88 X 1 = 0.0398 \cong 0.04$$

Quantum Yield of Zinc complex:

$$\phi_1 = 0.27 X \frac{7.86 x 10^7}{6.93 x 10^7} X \frac{0.247}{0.157} X \frac{1.36^2}{1.36^2}$$

or,  $\phi_1 = 0.27 X 1.13 X 1.57 X 1 = 0.479 \cong 0.48$ 

### Calculation of Detection Limit

$$Detection \ Limit = \frac{3 \sigma}{K}$$
(2)

or, Detection Limit =  $\frac{3 \times 240.145}{26029} \times 10^{-6} = 2.77 \times 10^{-8} M$