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S1. Experimental section  

S1.1 Materials and chemicals

Sodium borohydride (NaBH4), AgNO3, HAuCl4·4H2O, trisodium citrate, and sodium 

chloride (NaCl) were purchased from Shanghai Chemical Reagent Co., Ltd. (China). 

The clinical isolates of S. aureus, E. coli, Acinetobacter baumannii (A. baumannii), P. 

aeruginosa, Streptococcus pneumoniae (S. pneumoniae), Staphylococcus epidermidis 

(S. epidermidis), L. monocytogenes and Salmonella typhimurium (S. typhimurium) 

were obtained from the Affiliated Hospital of Xuzhou Medical University. The 

experiment procedure was approved by the Ethics Committee of the Institute of the 

Affiliated Hospital of Xuzhou Medical University. The aptamers for S. aureus 

(aptamerSa) and E. coli (aptamerE) were synthesized by Sangon Biotech (Shanghai). 

AptamerSa: 

Electronic Supplementary Material (ESI) for RSC Advances.
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5’-

GCAATGGTACTTCCACTTAGGTCGAGGTTAGTTTGTCTTGCTGGCGCATCC

ACTGAGCGCAAAAGTGCACGCTACTTTGCTAA-3’; 

AptamerE: 5’-

GCAATGGTACGGTACTTCCTCGGCACGTTCTCAGTAGCGCTCGCTGGTCAT

CCCACAGCTACGTCAAAAGTGCACGCTACTTTGCTA-3’

The S. aureus and E. coli aptamers used in this study was isolated by Shao et al. and 

Kim et al. respectively, by using bacterial cell-SELEX.

S.1.2 Instruments

Transmission electron microscope (TEM) images were obtained using a Hitachi H-

7650 TEM at an accelerating voltage of 80 kV. Dynamic light scattering with a 

Brookhaven Zeta PALS instrument was used to measure the zeta potential of the 

prepared nanoparticles and bacteria samples The UV-Vis spectra were measured 

using a Shimadzu 2600 spectrometer. The Raman spectrum was recorded with a 

portable Raman system (B&W Tek, i-Raman Plus BWS465–785H spectrometer). All 

bacteria samples were excited by a 785-nm laser with a power of 25 mW and a total 

acquisition time of 20 s for each SERS spectrum. Five spectra from each sample were 

collected and averaged to ensure signal reproducibility.

S1.3 Preparation of bacterial sample

The ordinary plate counting method was used to determine bacterial concentrations. 

The experiment procedure was performed according to the previous publication. In 

brief, S. aureus, and E. coli were cultured at 37 °C for 5 h in Luria–Bertani (LB) 

medium. Then, 0.1 mL of the bacterial culture was diluted with LB medium for 1 × 

105 times, coated onto the agar plates, and cultured at 37 °C overnight. Finally, the 

number of colony-forming units (CFUs) was counted and thus the orignal bacteria 

concentration can be calculated.

S1.4 SERS detection protocol

A total of 0.1 mL of MSSA and MRSA were incubated with 200 nM aptamer for 20 

min. Then, the S. aureus-aptamer complexes were centrifuged at 4000 rpm for 4 min 
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and the supernatant was discarded. The precipitate was redispersed in 100 μL of 

AgNO3 solution (10 mM), and the mixture was intensely vortexed for 1 min. 

Subsequently, 100 μL of NaBH4 solution was added into the tube, and mixture was 

vortexed intensely for another 1 min. The formed bacteria-aptamer@Ag complexes 

were collected by centrifugation, and then dropped on a Si substrate for the 

measurement of their SERS spectra.

S1.5 Spectrum measurements

For each species, bacteria samples were prepared across 25 strains chosen at random 

in 30 with the concentration of 107 cells/mL, and we measured Raman spectra at 40 

sites randomly of a solution from each strain. In general, 1000 MRSA and MSSA 

SERS spectra were measured for model training, respectively. 

By the same approach, the independent test dataset was measured at bacteria 

solution from the 10 strains bacteria (5 strains of MRSA and 5 strains of MSSA) with 

the concentration of 105 cells/mL. 40 SERS spectra were measured from one bacterial 

strain, thus total 400 spectra (200 of MRSA and 200 of MSSA) were used for 

prediction at one cell density.

To assess the repeatability of the proposed method, 10 different batches of 
MSSA and MRSA samples (~107 cells/mL) were tested. The relative standard 
deviation (RSD) values of the SERS intensities at 730 cm−1 were calculated by the 
following equation: 

RSD =
 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑀𝑒𝑎𝑛 𝑆𝐸𝑅𝑆 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

S1.6 CNN architecture and training 

Fig. 4 displayed the shallow CNN model used in this work, it is mainly composed by 

two convolutional layers and one fully connected layer (Dense in Fig.4). At the first 

beginning, the input data shape of spectra is 664 × 1 (550 cm-1-1800 cm-1). In the first 

and second convolutional layers, 32 and 128 kernels(filters) with the mask size of 9 × 

1 were used to do convolution operation with the input data, respectively. Followed 

every convolutional layer, the outputs of the convolutional layer were transmitted into 
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an activation function of “Relu”, for the introduce of nonlinear factor. The input 

spectra with data shape of 664 × 1 was reshaped as 648 × 128 after two convolutional 

operation and two activation operation. In flatten layer, the input data with shape of 

648 × 128 was merged and reorganized as a 1D vector with shape of 82944 × 1, and 

was output into fully-connected layer (dense). The fully-connected layer is the last 

layer and it generally connect the predict tags with each unit of the past 1D vector 

using weighted matrices and a “sigmoid” activation function for binary classification 

task. In model compiling, we utilized a 10-fold cross-validation in model training, 90% 

data were used to generate parameters of 1D filters and the weighted matrices, then 

the last 10% data were verified by CNN with current parameters. When model iterates, 

the parameters were auto adjusted to purchase the minimum predict error until 

average accuracy is stable. The “binary_crossentropy” loss function is used for the 

binary task herein, and we use “sigmoid” optimizer with learning rate 0.001 and batch 

size 32, the number iterates at the reference data for 200 epochs. We also 

experimented with a 30 layers depth network based on residual architectures, but 

found that the shallow architecture performed best in binary task.

Fig. S1 UV-vis spectra of the formed MSSA–aptamer, MRSA–aptamer, MSSA–
aptamer@AgNP, and MRSA–aptamer@AgNP.
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Fig. S2 SERS spectra of MSSA–aptamerS@AgNP (blue line) and MSSA–
aptamerE@AgNP (red line).

Fig. S3 Optimization of (a) aptamer concentration and (b) AgNO3 concentration for S. 

aureus detection.
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Fig. S4 SERS spectra of ten different batches bacteria: (a) MSSA-aptamer@AgNP 
(107 cells/mL); (b) MRSA-aptamer@AgNP (107 cells/mL), (c) MSSA-
aptamer@AgNP (106 cells/mL) and (d) MRSA-aptamer@AgNP (106 cells/mL).
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Fig. S5 The loss and accuracy of training data and validation data in the process of 
model iteration, the point represents training data, the line represents validation data. 

Fig. S6 SERS spectra take from the S. aureus–aptamer@Ag complexes with different 
concentrations of S. aureus (107-104 cells/mL).
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Table S1 Identification performance of the CNN classifier on Raman spectra of 
different bacterial concentrations (107-104 cells/mL).

Concentration

104 cells/mL 105 cells/mL 106 cells/mL 107 cells/mL

Identyfication accuracy 

for MRSA
98 100 100 100

Identyfication accuracy 

for MSSA
95 100 100 100

Average accuracies (%) 96.5 100 100 100

Fig. S7 Contribution of each Raman bands to the correct classification.

In the classification processing of CNN based classifier, each element in the 
original data is associated with the final decision through a weight. Gradient-weighted 
class activation mapping (Grad-CAM) is an algorithm that can be used to output all 
weights as a contribution matrix (Int J Comput Vision, 2020, 128, 336-359). In the 
flatten layer of the constructed CNN model, the initial input spectra of 664 × 1 was 
transformed into a 648 × 128 matrix through convolution operation, and each element 
in this matrix has matching a weight from the contribution matrix for the final 
decision of classification. In our study, we have accumulated the contribution matrix 
row by row to get a 648 × 1 vector, then reshaped the new vector as the same size of 



9

original spectra (664 × 1) to characterization the contribution of each spectral bands to 
the correct classification. The spectral weight vector was shown in Fig. S7. The value 
corresponding to the abscissa reflect the importance of this band to distinguish MRSA 
from MSSA. It can be observed that the bands of 955-1040 cm-1 make the largest 
contribution. According to Table 1, these signals are from the molecular vibration of 
proteins and cyanides. 


