Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

for

TMSOTf-catalyzed Synthesis of Trisubstituted Imidazoles Using Hexamethyldisilazane as a Nitrogen Source under Neat and Microwave Irradiation Conditions

Kesatebrhan Haile Asressu, Chieh-Kai Chan, Cheng-Chung Wang* Institute of Chemistry, Academia Sinica Taipei 115, Taiwan

E-mail: wangcc@chem.sinica.edu.tw

I. Crystal data for compounds 3n , 3q , 3s , 3w , 3z and 4h	S-2~S-55
II. ¹ H and ¹³ C NMR spectra for compounds 3a-ab	.S-56~S-111
III. ¹ H and ¹³ C NMR spectra for compounds 4a-m	S-112~S-13 3
IV. ¹ H and ¹³ C NMR spectra for compounds 5a and 5b	S-134~S-137
V. HRMS of ethane-1,2-diimine intermediate H	S-138

Crystal data and structure refinement for compound 3n

Figure S1. Single X-ray crystal structure of imidazole 3n (the thermal ellipsoid was drawn at the 50% probability level)

CCDC	2082023			
Identification code	i18082			
Empirical formula	C22 H18 N2			
Formula weight	310.38			
Temperature	100.0(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	Cc			
Unit cell dimensions	a = 10.7445(3) Å	<i>α</i> = 90°.		
	b = 19.4078(5) Å	β=112.9490(10)°.		
	c = 8.7809(2) Å	$\gamma = 90^{\circ}.$		
Volume	1686.13(8) Å ³			
Z	4			
Density (calculated)	1.223 Mg/m ³			
Absorption coefficient	0.072 mm ⁻¹			
F(000)	656			
Crystal size	$0.245 \ x \ 0.099 \ x \ 0.084 \ mm^3$			
Theta range for data collection	2.764 to 27.494°.			
Index ranges	-13<=h<=13, -25<=k<=25, -11	<=l<=11		

Table S1.	Crystal	data ar	d structure	e refinement	for i18082
-----------	---------	---------	-------------	--------------	------------

Reflections collected	24629
Independent reflections	3652 [R(int) = 0.0527]
Completeness to theta = 25.242°	99.6 %
Absorption correction	Numerical
Max. and min. transmission	0.9987 and 0.9811
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3652 / 2 / 223
Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0334, wR2 = 0.0757
R indices (all data)	R1 = 0.0419, wR2 = 0.0808
Absolute structure parameter	2(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.155 and -0.164 e.Å ⁻³

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for i18082. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
N(1)	5306(2)	4864(1)	3924(2)	17(1)
N(2)	4925(2)	4338(1)	5938(2)	17(1)
C(1)	4583(2)	4864(1)	4888(2)	17(1)
C(2)	6145(2)	4296(1)	4339(2)	18(1)
C(3)	5908(2)	3975(1)	5608(2)	17(1)
C(4)	3619(2)	5418(1)	4802(2)	20(1)
C(5)	2378(2)	5284(1)	4920(3)	24(1)
C(6)	1545(3)	5847(1)	4837(3)	34(1)
C(7)	1920(3)	6513(1)	4652(4)	39(1)
C(8)	3140(3)	6637(1)	4526(3)	33(1)
C(9)	3989(2)	6090(1)	4594(3)	24(1)
C(10)	1907(2)	4567(1)	5083(3)	31(1)
C(11)	6982(2)	4130(1)	3409(2)	19(1)
C(12)	7640(2)	4650(1)	2914(3)	23(1)
C(13)	8376(2)	4492(1)	1960(3)	29(1)
C(14)	8456(2)	3818(1)	1493(3)	32(1)
C(15)	7823(2)	3299(1)	1991(3)	30(1)
C(16)	7084(2)	3450(1)	2938(3)	24(1)
C(17)	6548(2)	3368(1)	6608(3)	19(1)

C(18)	7901(2)	3196(1)	6971(3)	23(1)
C(19)	8469(2)	2616(1)	7905(3)	27(1)
C(20)	7716(2)	2200(1)	8511(3)	28(1)
C(21)	6388(2)	2372(1)	8189(3)	26(1)
C(22)	5810(2)	2951(1)	7257(3)	22(1)

Table S3. Bond lengths [Å] and angles [°] for i18082.

N(1)-C(1)	1.354(3)
N(1)-C(2)	1.381(3)
N(1)-H(1)	0.90(3)
N(2)-C(1)	1.327(3)
N(2)-C(3)	1.390(3)
C(1)-C(4)	1.473(3)
C(2)-C(3)	1.383(3)
C(2)-C(11)	1.467(3)
C(3)-C(17)	1.470(3)
C(4)-C(9)	1.397(3)
C(4)-C(5)	1.402(3)
C(5)-C(6)	1.396(3)
C(5)-C(10)	1.507(3)
C(6)-C(7)	1.381(4)
C(6)-H(6)	0.9500
C(7)-C(8)	1.380(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.385(3)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(12)	1.394(3)
C(11)-C(16)	1.400(3)
C(12)-C(13)	1.391(3)
C(12)-H(12)	0.9500
C(13)-C(14)	1.385(4)
C(13)-H(13)	0.9500

C(14)-C(15)	1.378(4)
C(14)-H(14)	0.9500
C(15)-C(16)	1.387(3)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
C(17)-C(22)	1.400(3)
C(17)-C(18)	1.402(3)
C(18)-C(19)	1.386(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.388(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.383(3)
C(20)-H(20)	0.9500
C(21)-C(22)	1.386(3)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500
C(1)-N(1)-C(2)	108.00(17)
C(1)-N(1)-H(1)	125.8(17)
C(2)-N(1)-H(1)	126.0(17)
C(1)-N(2)-C(3)	105.82(16)
N(2)-C(1)-N(1)	111.27(17)
N(2)-C(1)-C(4)	126.55(18)
N(1)-C(1)-C(4)	122.06(18)
N(1)-C(2)-C(3)	105.40(17)
N(1)-C(2)-C(11)	120.41(18)
C(3)-C(2)-C(11)	134.09(19)
C(2)-C(3)-N(2)	109.48(17)
C(2)-C(3)-C(17)	130.60(18)
N(2)-C(3)-C(17)	119.88(17)
C(9)-C(4)-C(5)	120.6(2)
C(9)-C(4)-C(1)	117.27(19)
C(5)-C(4)-C(1)	122.09(19)
C(6)-C(5)-C(4)	117.4(2)
C(6)-C(5)-C(10)	119.8(2)
C(4)-C(5)-C(10)	122.8(2)
C(7)-C(6)-C(5)	121.9(2)
C(7)-C(6)-H(6)	119.1

C(5)-C(6)-H(6)	119.1
C(8)-C(7)-C(6)	120.2(2)
C(8)-C(7)-H(7)	119.9
C(6)-C(7)-H(7)	119.9
C(7)-C(8)-C(9)	119.5(2)
C(7)-C(8)-H(8)	120.2
C(9)-C(8)-H(8)	120.2
C(8)-C(9)-C(4)	120.4(2)
C(8)-C(9)-H(9)	119.8
C(4)-C(9)-H(9)	119.8
C(5)-C(10)-H(10A)	109.5
C(5)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(5)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(16)	118.79(19)
C(12)-C(11)-C(2)	120.75(19)
C(16)-C(11)-C(2)	120.40(19)
C(13)-C(12)-C(11)	120.4(2)
C(13)-C(12)-H(12)	119.8
C(11)-C(12)-H(12)	119.8
C(14)-C(13)-C(12)	120.1(2)
C(14)-C(13)-H(13)	120.0
C(12)-C(13)-H(13)	120.0
C(15)-C(14)-C(13)	120.1(2)
C(15)-C(14)-H(14)	119.9
C(13)-C(14)-H(14)	119.9
C(14)-C(15)-C(16)	120.3(2)
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-H(15)	119.9
C(15)-C(16)-C(11)	120.4(2)
C(15)-C(16)-H(16)	119.8
C(11)-C(16)-H(16)	119.8
C(22)-C(17)-C(18)	118.12(19)
C(22)-C(17)-C(3)	119.93(18)
C(18)-C(17)-C(3)	121.93(19)
C(19)-C(18)-C(17)	120.4(2)

C(19)-C(18)-H(18)	119.8
C(17)-C(18)-H(18)	119.8
C(18)-C(19)-C(20)	120.7(2)
C(18)-C(19)-H(19)	119.6
C(20)-C(19)-H(19)	119.6
C(21)-C(20)-C(19)	119.4(2)
C(21)-C(20)-H(20)	120.3
C(19)-C(20)-H(20)	120.3
C(20)-C(21)-C(22)	120.3(2)
C(20)-C(21)-H(21)	119.8
C(22)-C(21)-H(21)	119.8
C(21)-C(22)-C(17)	121.0(2)
C(21)-C(22)-H(22)	119.5
C(17)-C(22)-H(22)	119.5

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (Ųx 10³)for i18082. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	19(1)	19(1)	15(1)	1(1)	7(1)	2(1)
N(2)	18(1)	18(1)	16(1)	-1(1)	6(1)	2(1)
C(1)	19(1)	18(1)	14(1)	-2(1)	7(1)	0(1)
C(2)	19(1)	18(1)	17(1)	-2(1)	6(1)	2(1)
C(3)	16(1)	17(1)	17(1)	-2(1)	6(1)	1(1)
C(4)	23(1)	21(1)	13(1)	-1(1)	5(1)	5(1)
C(5)	23(1)	30(1)	20(1)	-3(1)	7(1)	5(1)
C(6)	26(1)	39(1)	36(1)	-4(1)	11(1)	11(1)
C(7)	38(1)	33(1)	42(2)	-2(1)	12(1)	19(1)
C(8)	41(2)	22(1)	34(1)	1(1)	13(1)	9(1)
C(9)	30(1)	22(1)	22(1)	0(1)	10(1)	5(1)
C(10)	22(1)	36(1)	34(1)	1(1)	12(1)	1(1)
C(11)	16(1)	25(1)	16(1)	0(1)	6(1)	4(1)
C(12)	21(1)	30(1)	19(1)	3(1)	7(1)	4(1)
C(13)	22(1)	44(1)	24(1)	11(1)	12(1)	5(1)
C(14)	27(1)	51(2)	24(1)	4(1)	15(1)	14(1)

C(15)	32(1)	35(1)	24(1)	-5(1)	12(1)	11(1)
C(16)	24(1)	26(1)	24(1)	-3(1)	9(1)	3(1)
C(17)	22(1)	17(1)	16(1)	-4(1)	6(1)	1(1)
C(18)	20(1)	22(1)	24(1)	-1(1)	5(1)	0(1)
C(19)	20(1)	25(1)	29(1)	-3(1)	2(1)	4(1)
C(20)	29(1)	17(1)	27(1)	2(1)	0(1)	4(1)
C(21)	30(1)	22(1)	24(1)	1(1)	6(1)	-4(1)
C(22)	20(1)	21(1)	21(1)	1(1)	5(1)	0(1)

Crystal data and structure refinement for compound 3q

Figure S2. Single X-ray crystal structure of imidazole 3q (the thermal ellipsoid was drawn at the 50% probability level)

	Table S5.	Crystal data	and structure	refinement	for i18108
--	-----------	--------------	---------------	------------	------------

CCDC	2082029
Identification code	i18108
Empirical formula	C47 H41 Cl3 N4 O4
Formula weight	832.19
Temperature	100.0(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/c

Unit cell dimensions	a = 10.2370(4) Å	$\alpha = 90^{\circ}$.
	b = 18.3683(6) Å	$\beta = 95.8070(10)^{\circ}.$
	c = 22.3540(8) Å	$\gamma = 90^{\circ}$.
Volume	4181.8(3) Å ³	
Z	4	
Density (calculated)	1.322 Mg/m ³	
Absorption coefficient	0.269 mm ⁻¹	
F(000)	1736	
Crystal size	$0.216 \text{ x} 0.155 \text{ x} 0.040 \text{ mm}^3$	
Theta range for data collection	2.141 to 27.103°.	
Index ranges	-13<=h<=13, -23<=k<=23, -28<=l<=28	
Reflections collected	167934	
Independent reflections	9215 [R(int) = 0.1039]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Numerical	
Max. and min. transmission	0.9971 and 0.9646	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9215 / 0 / 535	
Goodness-of-fit on F ²	1.054	
Final R indices [I>2sigma(I)]	R1 = 0.0627, wR2 = 0.1759	
R indices (all data)	R1 = 0.0857, wR2 = 0.1928	
Extinction coefficient	n/a	
Largest diff. peak and hole	est diff. peak and hole 1.274 and -1.052 e.Å ⁻³	

	Х	у	Z	U(eq)
Cl(1)	7496(1)	3601(1)	4147(1)	50(1)
Cl(2)	8235(1)	4966(1)	4716(1)	55(1)
Cl(3)	8207(1)	3665(1)	5431(1)	57(1)
O(1)	1293(2)	7033(1)	7240(1)	18(1)
O(2)	2411(2)	8961(1)	6056(1)	18(1)
O(3)	5272(2)	4495(1)	5660(1)	26(1)
O(4)	6993(2)	6815(1)	6028(1)	20(1)
N(1)	6568(2)	8639(1)	7664(1)	12(1)
N(2)	6260(2)	7497(1)	7927(1)	12(1)
N(3)	5151(2)	6080(1)	8071(1)	12(1)
N(4)	4032(2)	5081(1)	7809(1)	12(1)
C(1)	5714(2)	8073(1)	7643(1)	12(1)
C(2)	7732(2)	8418(1)	7980(1)	12(1)
C(3)	7524(2)	7706(1)	8139(1)	12(1)
C(4)	4389(2)	8074(1)	7320(1)	12(1)
C(5)	3481(2)	7557(1)	7475(1)	13(1)
C(6)	2261(2)	7515(1)	7134(1)	14(1)
C(7)	1945(2)	7981(1)	6656(1)	14(1)
C(8)	2835(2)	8514(1)	6522(1)	14(1)
C(9)	4072(2)	8563(1)	6846(1)	14(1)
C(10)	1587(3)	6516(2)	7714(1)	22(1)
C(11)	3269(3)	9543(2)	5923(1)	23(1)
C(12)	8893(2)	8891(1)	8068(1)	13(1)
C(13)	8789(3)	9616(1)	8251(1)	16(1)
C(14)	9883(3)	10067(2)	8300(1)	21(1)
C(15)	11089(3)	9806(2)	8167(1)	22(1)
C(16)	11204(3)	9085(2)	7988(1)	20(1)
C(17)	10119(3)	8633(1)	7938(1)	16(1)
C(18)	8394(2)	7187(1)	8487(1)	16(1)
C(19)	9151(3)	7394(2)	9012(1)	21(1)
C(20)	9883(3)	6879(2)	9357(1)	28(1)
C(21)	9860(3)	6151(2)	9184(2)	29(1)
C(22)	9122(3)	5942(2)	8661(2)	25(1)

Table S6. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$)for i18108. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(23)	8397(3)	6456(1)	8309(1)	19(1)
C(24)	4850(2)	5583(1)	7628(1)	12(1)
C(25)	4475(2)	5902(1)	8554(1)	11(1)
C(26)	3787(2)	5275(1)	8383(1)	12(1)
C(27)	5319(2)	5609(1)	7031(1)	13(1)
C(28)	5094(3)	5012(1)	6647(1)	15(1)
C(29)	5477(3)	5046(1)	6069(1)	18(1)
C(30)	6100(3)	5659(1)	5871(1)	17(1)
C(31)	6350(3)	6244(1)	6258(1)	15(1)
C(32)	5957(2)	6231(1)	6838(1)	14(1)
C(33)	4762(4)	3823(2)	5868(2)	38(1)
C(34)	7363(4)	7409(2)	6419(1)	32(1)
C(35)	4565(3)	6351(1)	9102(1)	13(1)
C(36)	5761(3)	6651(1)	9333(1)	15(1)
C(37)	5850(3)	7072(1)	9852(1)	19(1)
C(38)	4745(3)	7198(2)	10146(1)	20(1)
C(39)	3547(3)	6908(2)	9918(1)	20(1)
C(40)	3451(3)	6485(1)	9399(1)	17(1)
C(41)	2829(2)	4853(1)	8695(1)	12(1)
C(42)	3011(3)	4687(1)	9308(1)	15(1)
C(43)	2046(3)	4304(1)	9573(1)	16(1)
C(44)	902(3)	4086(1)	9237(1)	16(1)
C(45)	726(3)	4241(1)	8625(1)	16(1)
C(46)	1679(2)	4624(1)	8358(1)	14(1)
C(47)	7452(4)	4125(2)	4798(2)	40(1)

Cl(1)-C(47)	1.750(4)
Cl(2)-C(47)	1.759(4)
Cl(3)-C(47)	1.758(4)
O(1)-C(6)	1.367(3)
O(1)-C(10)	1.433(3)
O(2)-C(8)	1.363(3)
O(2)-C(11)	1.433(3)
O(3)-C(29)	1.365(3)
O(3)-C(33)	1.434(4)
O(4)-C(31)	1.366(3)
O(4)-C(34)	1.426(3)
N(1)-C(1)	1.355(3)
N(1)-C(2)	1.383(3)
N(1)-H(1)	0.79(3)
N(2)-C(1)	1.328(3)
N(2)-C(3)	1.387(3)
N(3)-C(24)	1.359(3)
N(3)-C(25)	1.379(3)
N(3)-H(3)	0.74(4)
N(4)-C(24)	1.335(3)
N(4)-C(26)	1.380(3)
C(1)-C(4)	1.471(3)
C(2)-C(3)	1.378(3)
C(2)-C(12)	1.469(3)
C(3)-C(18)	1.471(3)
C(4)-C(5)	1.398(3)
C(4)-C(9)	1.403(3)
C(5)-C(6)	1.398(4)
C(5)-H(5)	0.9500
C(6)-C(7)	1.381(4)
C(7)-C(8)	1.390(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.397(4)
C(9)-H(9)	0.9500
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800

Tabla 67	Dand langths [Å] and angles [0] for \$19109
Table 57.	bonu lenguis [A] and angles [] for 116106.

_

C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
С(11)-Н(11С)	0.9800
C(12)-C(17)	1.398(4)
C(12)-C(13)	1.401(4)
C(13)-C(14)	1.388(4)
C(13)-H(13)	0.9500
C(14)-C(15)	1.384(4)
C(14)-H(14)	0.9500
C(15)-C(16)	1.392(4)
C(15)-H(15)	0.9500
C(16)-C(17)	1.382(4)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-C(19)	1.393(4)
C(18)-C(23)	1.401(4)
C(19)-C(20)	1.391(4)
C(19)-H(19)	0.9500
C(20)-C(21)	1.391(5)
C(20)-H(20)	0.9500
C(21)-C(22)	1.380(5)
C(21)-H(21)	0.9500
C(22)-C(23)	1.394(4)
C(22)-H(22)	0.9500
C(23)-H(23)	0.9500
C(24)-C(27)	1.465(3)
C(25)-C(26)	1.383(3)
C(25)-C(35)	1.471(3)
C(26)-C(41)	1.478(3)
C(27)-C(28)	1.398(3)
C(27)-C(32)	1.405(3)
C(28)-C(29)	1.390(4)
C(28)-H(28)	0.9500
C(29)-C(30)	1.388(4)
C(30)-C(31)	1.389(4)
C(30)-H(30)	0.9500
C(31)-C(32)	1.395(4)

C(32)-H(32)	0.9500
C(33)-H(33A)	0.9800
C(33)-H(33B)	0.9800
C(33)-H(33C)	0.9800
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(35)-C(36)	1.394(4)
C(35)-C(40)	1.399(4)
C(36)-C(37)	1.390(4)
C(36)-H(36)	0.9500
C(37)-C(38)	1.384(4)
C(37)-H(37)	0.9500
C(38)-C(39)	1.386(4)
C(38)-H(38)	0.9500
C(39)-C(40)	1.391(4)
C(39)-H(39)	0.9500
C(40)-H(40)	0.9500
C(41)-C(46)	1.397(4)
C(41)-C(42)	1.398(4)
C(42)-C(43)	1.394(4)
C(42)-H(42)	0.9500
C(43)-C(44)	1.386(4)
C(43)-H(43)	0.9500
C(44)-C(45)	1.390(4)
C(44)-H(44)	0.9500
C(45)-C(46)	1.387(4)
C(45)-H(45)	0.9500
C(46)-H(46)	0.9500
C(47)-H(47)	1.0000
C(6)-O(1)-C(10)	117.2(2)
C(8)-O(2)-C(11)	117.0(2)
C(29)-O(3)-C(33)	117.3(2)
C(31)-O(4)-C(34)	117.7(2)
C(1)-N(1)-C(2)	108.2(2)
C(1)-N(1)-H(1)	125(2)
C(2)-N(1)-H(1)	127(2)

C(1)-N(2)-C(3)	106.0(2)
C(24)-N(3)-C(25)	108.5(2)
C(24)-N(3)-H(3)	125(3)
C(25)-N(3)-H(3)	125(3)
C(24)-N(4)-C(26)	106.3(2)
N(2)-C(1)-N(1)	110.9(2)
N(2)-C(1)-C(4)	123.9(2)
N(1)-C(1)-C(4)	125.1(2)
C(3)-C(2)-N(1)	105.2(2)
C(3)-C(2)-C(12)	132.1(2)
N(1)-C(2)-C(12)	122.6(2)
C(2)-C(3)-N(2)	109.7(2)
C(2)-C(3)-C(18)	130.5(2)
N(2)-C(3)-C(18)	119.8(2)
C(5)-C(4)-C(9)	120.9(2)
C(5)-C(4)-C(1)	118.8(2)
C(9)-C(4)-C(1)	120.2(2)
C(4)-C(5)-C(6)	118.8(2)
C(4)-C(5)-H(5)	120.6
C(6)-C(5)-H(5)	120.6
O(1)-C(6)-C(7)	114.7(2)
O(1)-C(6)-C(5)	124.3(2)
C(7)-C(6)-C(5)	121.0(2)
C(6)-C(7)-C(8)	119.7(2)
C(6)-C(7)-H(7)	120.1
C(8)-C(7)-H(7)	120.1
O(2)-C(8)-C(7)	115.1(2)
O(2)-C(8)-C(9)	124.0(2)
C(7)-C(8)-C(9)	120.9(2)
C(8)-C(9)-C(4)	118.7(2)
C(8)-C(9)-H(9)	120.7
C(4)-C(9)-H(9)	120.7
O(1)-C(10)-H(10A)	109.5
O(1)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
O(1)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5

O(2)-C(11)-H(11A)	109.5
O(2)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
O(2)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(17)-C(12)-C(13)	118.6(2)
C(17)-C(12)-C(2)	120.2(2)
C(13)-C(12)-C(2)	121.1(2)
C(14)-C(13)-C(12)	120.4(2)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(15)-C(14)-C(13)	120.4(3)
C(15)-C(14)-H(14)	119.8
C(13)-C(14)-H(14)	119.8
C(14)-C(15)-C(16)	119.7(3)
C(14)-C(15)-H(15)	120.2
C(16)-C(15)-H(15)	120.2
C(17)-C(16)-C(15)	120.2(3)
C(17)-C(16)-H(16)	119.9
C(15)-C(16)-H(16)	119.9
C(16)-C(17)-C(12)	120.7(2)
C(16)-C(17)-H(17)	119.6
C(12)-C(17)-H(17)	119.6
C(19)-C(18)-C(23)	119.0(2)
C(19)-C(18)-C(3)	121.6(2)
C(23)-C(18)-C(3)	119.3(2)
C(20)-C(19)-C(18)	120.3(3)
C(20)-C(19)-H(19)	119.9
C(18)-C(19)-H(19)	119.9
C(21)-C(20)-C(19)	120.4(3)
C(21)-C(20)-H(20)	119.8
C(19)-C(20)-H(20)	119.8
C(22)-C(21)-C(20)	119.7(3)
C(22)-C(21)-H(21)	120.1
C(20)-C(21)-H(21)	120.1
C(21)-C(22)-C(23)	120.3(3)
C(21)-C(22)-H(22)	119.8

C(23)-C(22)-H(22)	119.8
C(22)-C(23)-C(18)	120.3(3)
C(22)-C(23)-H(23)	119.9
C(18)-C(23)-H(23)	119.9
N(4)-C(24)-N(3)	110.3(2)
N(4)-C(24)-C(27)	124.9(2)
N(3)-C(24)-C(27)	124.8(2)
N(3)-C(25)-C(26)	105.2(2)
N(3)-C(25)-C(35)	121.7(2)
C(26)-C(25)-C(35)	133.1(2)
N(4)-C(26)-C(25)	109.7(2)
N(4)-C(26)-C(41)	119.6(2)
C(25)-C(26)-C(41)	130.5(2)
C(28)-C(27)-C(32)	120.1(2)
C(28)-C(27)-C(24)	119.0(2)
C(32)-C(27)-C(24)	120.9(2)
C(29)-C(28)-C(27)	119.4(2)
C(29)-C(28)-H(28)	120.3
C(27)-C(28)-H(28)	120.3
O(3)-C(29)-C(30)	115.6(2)
O(3)-C(29)-C(28)	123.3(2)
C(30)-C(29)-C(28)	121.0(2)
C(29)-C(30)-C(31)	119.4(2)
C(29)-C(30)-H(30)	120.3
C(31)-C(30)-H(30)	120.3
O(4)-C(31)-C(30)	115.1(2)
O(4)-C(31)-C(32)	124.0(2)
C(30)-C(31)-C(32)	120.9(2)
C(31)-C(32)-C(27)	119.1(2)
C(31)-C(32)-H(32)	120.5
C(27)-C(32)-H(32)	120.5
O(3)-C(33)-H(33A)	109.5
O(3)-C(33)-H(33B)	109.5
H(33A)-C(33)-H(33B)	109.5
O(3)-C(33)-H(33C)	109.5
H(33A)-C(33)-H(33C)	109.5
H(33B)-C(33)-H(33C)	109.5
O(4)-C(34)-H(34A)	109.5

O(4)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B)	109.5
O(4)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(36)-C(35)-C(40)	118.7(2)
C(36)-C(35)-C(25)	120.6(2)
C(40)-C(35)-C(25)	120.6(2)
C(37)-C(36)-C(35)	120.8(2)
C(37)-C(36)-H(36)	119.6
C(35)-C(36)-H(36)	119.6
C(38)-C(37)-C(36)	120.1(3)
C(38)-C(37)-H(37)	120.0
C(36)-C(37)-H(37)	120.0
C(37)-C(38)-C(39)	119.8(2)
C(37)-C(38)-H(38)	120.1
C(39)-C(38)-H(38)	120.1
C(38)-C(39)-C(40)	120.5(3)
C(38)-C(39)-H(39)	119.8
C(40)-C(39)-H(39)	119.8
C(39)-C(40)-C(35)	120.2(3)
C(39)-C(40)-H(40)	119.9
C(35)-C(40)-H(40)	119.9
C(46)-C(41)-C(42)	118.9(2)
C(46)-C(41)-C(26)	117.8(2)
C(42)-C(41)-C(26)	123.2(2)
C(43)-C(42)-C(41)	119.9(2)
C(43)-C(42)-H(42)	120.1
C(41)-C(42)-H(42)	120.1
C(44)-C(43)-C(42)	120.8(2)
C(44)-C(43)-H(43)	119.6
C(42)-C(43)-H(43)	119.6
C(43)-C(44)-C(45)	119.5(2)
C(43)-C(44)-H(44)	120.2
C(45)-C(44)-H(44)	120.2
C(46)-C(45)-C(44)	120.1(2)
C(46)-C(45)-H(45)	120.0
C(44)-C(45)-H(45)	120.0

C(45)-C(46)-C(41)	120.8(2)
C(45)-C(46)-H(46)	119.6
C(41)-C(46)-H(46)	119.6
Cl(1)-C(47)-Cl(3)	111.0(2)
Cl(1)-C(47)-Cl(2)	110.3(2)
Cl(3)-C(47)-Cl(2)	109.8(2)
Cl(1)-C(47)-H(47)	108.6
Cl(3)-C(47)-H(47)	108.6
Cl(2)-C(47)-H(47)	108.6

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	52(1)	60(1)	38(1)	-9(1)	8(1)	-2(1)
Cl(2)	69(1)	47(1)	51(1)	-3(1)	21(1)	-5(1)
Cl(3)	67(1)	60(1)	41(1)	6(1)	-6(1)	14(1)
O (1)	13(1)	14(1)	28(1)	6(1)	0(1)	-3(1)
O(2)	15(1)	19(1)	20(1)	8(1)	-3(1)	-2(1)
O(3)	44(1)	18(1)	19(1)	-8(1)	13(1)	-12(1)
O(4)	28(1)	14(1)	19(1)	2(1)	8(1)	-7(1)
N(1)	12(1)	7(1)	15(1)	1(1)	1(1)	1(1)
N(2)	11(1)	8(1)	16(1)	0(1)	1(1)	0(1)
N(3)	13(1)	7(1)	15(1)	0(1)	3(1)	-1(1)
N(4)	12(1)	9(1)	15(1)	0(1)	3(1)	1(1)
C(1)	12(1)	9(1)	14(1)	-1(1)	2(1)	1(1)
C(2)	11(1)	12(1)	13(1)	-1(1)	1(1)	1(1)
C(3)	10(1)	12(1)	15(1)	1(1)	1(1)	0(1)
C(4)	11(1)	10(1)	14(1)	-2(1)	1(1)	3(1)
C(5)	12(1)	11(1)	16(1)	1(1)	0(1)	2(1)
C(6)	12(1)	10(1)	21(1)	-2(1)	4(1)	0(1)
C(7)	11(1)	13(1)	18(1)	-1(1)	-1(1)	1(1)
C(8)	15(1)	10(1)	15(1)	0(1)	1(1)	3(1)
C(9)	13(1)	11(1)	18(1)	1(1)	1(1)	0(1)
C(10)	20(1)	17(1)	30(2)	10(1)	2(1)	-3(1)
C(11)	20(1)	20(1)	27(2)	11(1)	-2(1)	-4(1)
C(12)	14(1)	13(1)	13(1)	2(1)	-1(1)	-1(1)
C(13)	17(1)	14(1)	18(1)	-2(1)	0(1)	-1(1)
C(14)	23(1)	15(1)	23(1)	-3(1)	-1(1)	-4(1)
C(15)	21(1)	21(1)	23(1)	0(1)	-3(1)	-10(1)
C(16)	14(1)	23(1)	22(1)	1(1)	2(1)	-2(1)
C(17)	15(1)	13(1)	20(1)	0(1)	0(1)	-1(1)
C(18)	11(1)	15(1)	21(1)	6(1)	4(1)	1(1)
C(19)	16(1)	23(1)	23(1)	7(1)	-1(1)	-2(1)
C(20)	17(1)	40(2)	27(2)	17(1)	-1(1)	-2(1)
C(21)	14(1)	33(2)	41(2)	26(1)	8(1)	7(1)
C(22)	16(1)	20(1)	42(2)	14(1)	12(1)	5(1)

Table S8. Anisotropic displacement parameters (Å²x 10³) for i18108. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

S-20

C(23)	13(1)	16(1)	29(2)	6(1)	6(1)	4(1)
C(24)	11(1)	7(1)	16(1)	1(1)	0(1)	1(1)
C(25)	11(1)	9(1)	14(1)	0(1)	2(1)	1(1)
C(26)	12(1)	11(1)	13(1)	1(1)	1(1)	1(1)
C(27)	12(1)	11(1)	15(1)	1(1)	1(1)	1(1)
C(28)	16(1)	12(1)	18(1)	-2(1)	4(1)	-2(1)
C(29)	20(1)	16(1)	17(1)	-3(1)	2(1)	-1(1)
C(30)	20(1)	18(1)	14(1)	2(1)	4(1)	-1(1)
C(31)	15(1)	13(1)	18(1)	4(1)	2(1)	0(1)
C(32)	15(1)	11(1)	15(1)	1(1)	2(1)	0(1)
C(33)	67(2)	19(2)	32(2)	-12(1)	23(2)	-21(2)
C(34)	49(2)	23(2)	24(2)	-1(1)	9(1)	-20(1)
C(35)	17(1)	7(1)	15(1)	2(1)	1(1)	0(1)
C(36)	15(1)	14(1)	16(1)	1(1)	2(1)	-1(1)
C(37)	20(1)	14(1)	21(1)	0(1)	-3(1)	-2(1)
C(38)	29(2)	14(1)	16(1)	-3(1)	1(1)	1(1)
C(39)	23(1)	18(1)	21(1)	-3(1)	8(1)	2(1)
C(40)	17(1)	15(1)	19(1)	-3(1)	3(1)	-2(1)
C(41)	13(1)	7(1)	16(1)	-1(1)	4(1)	0(1)
C(42)	15(1)	13(1)	16(1)	0(1)	1(1)	-1(1)
C(43)	21(1)	14(1)	14(1)	1(1)	3(1)	1(1)
C(44)	17(1)	13(1)	20(1)	2(1)	7(1)	-1(1)
C(45)	14(1)	13(1)	20(1)	-1(1)	1(1)	-2(1)
C(46)	17(1)	10(1)	15(1)	0(1)	3(1)	1(1)
C(47)	42(2)	45(2)	34(2)	-2(2)	7(2)	7(2)

Crystal data and structure refinement for compound 3s

Figure S3. Single X-ray crystal structure of imidazole 3s (the thermal ellipsoid was drawn at the 50% probability level)

CCDC	2082025	
Identification code	i18083	
Empirical formula	C23 H19 Br N2 O2	
Formula weight	435.31	
Temperature	100.0(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 9.2089(2) Å	$\alpha = 90^{\circ}$.
	b = 19.8306(3) Å	$\beta = 101.4920(10)^{\circ}.$
	c = 10.4519(2) Å	$\gamma = 90^{\circ}.$
Volume	1870.44(6) Å ³	
Z	4	
Density (calculated)	$1.546 \ Mg/m^3$	
Absorption coefficient	2.220 mm ⁻¹	
F(000)	888	
Crystal size	$0.201 \text{ x } 0.185 \text{ x } 0.095 \text{ mm}^3$	
Theta range for data collection	2.054 to 30.518°.	
Index ranges	-13<=h<=13, -28<=k<=28, -14	<=l<=14

Table S9. Crystal data and structure refinement for i18083.

Reflections collected	78302
Independent reflections	5710 [R(int) = 0.0527]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Numerical
Max. and min. transmission	1 and 0.9203
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5710 / 0 / 259
Goodness-of-fit on F ²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0262, wR2 = 0.0562
R indices (all data)	R1 = 0.0366, wR2 = 0.0603
Extinction coefficient	n/a
Largest diff. peak and hole	0.457 and -0.365 e.Å ⁻³

	Х	у	Z	U(eq)
Br(1)	671(1)	7092(1)	3732(1)	16(1)
O(1)	3529(1)	9029(1)	6611(1)	19(1)
O(2)	4595(1)	8243(1)	8533(1)	17(1)
N(1)	2709(1)	5839(1)	5063(1)	14(1)
N(2)	2329(1)	5853(1)	7092(1)	14(1)
C(1)	2592(2)	6225(1)	6114(1)	13(1)
C(2)	2251(2)	5196(1)	6637(1)	13(1)
C(3)	2482(2)	5177(1)	5370(1)	13(1)
C(4)	2763(2)	6963(1)	6164(1)	13(1)
C(5)	2085(2)	7404(1)	5192(1)	13(1)
C(6)	2344(2)	8097(1)	5282(1)	14(1)
C(7)	3225(2)	8361(1)	6399(1)	14(1)
C(8)	3845(2)	7929(1)	7434(1)	14(1)
C(9)	3647(2)	7240(1)	7296(1)	14(1)
C(10)	3483(2)	9441(1)	5488(2)	30(1)
C(11)	5575(2)	7836(1)	9459(1)	19(1)
C(12)	1942(2)	4633(1)	7460(1)	14(1)
C(13)	2765(2)	4037(1)	7535(1)	18(1)
C(14)	2457(2)	3501(1)	8299(2)	22(1)
C(15)	1339(2)	3558(1)	9008(2)	24(1)
C(16)	531(2)	4153(1)	8953(2)	25(1)
C(17)	819(2)	4685(1)	8178(2)	20(1)
C(18)	2430(2)	4629(1)	4416(1)	13(1)
C(19)	1336(2)	4133(1)	4320(1)	16(1)
C(20)	1237(2)	3621(1)	3395(1)	19(1)
C(21)	2233(2)	3601(1)	2561(1)	22(1)
C(22)	3326(2)	4090(1)	2648(2)	22(1)
C(23)	3432(2)	4604(1)	3570(1)	19(1)

Table S10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for i18083. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(5)	1.9022(13)
O(1)-C(7)	1.3634(16)
O(1)-C(10)	1.4237(19)
O(2)-C(8)	1.3675(16)
O(2)-C(11)	1.4328(17)
N(1)-C(1)	1.3611(17)
N(1)-C(3)	1.3780(17)
N(1)-H(1)	0.85(2)
N(2)-C(1)	1.3220(18)
N(2)-C(2)	1.3839(17)
C(1)-C(4)	1.4716(18)
C(2)-C(3)	1.3835(19)
C(2)-C(12)	1.4714(19)
C(3)-C(18)	1.4700(18)
C(4)-C(5)	1.3896(18)
C(4)-C(9)	1.4073(18)
C(5)-C(6)	1.3960(18)
C(6)-C(7)	1.3838(19)
C(6)-H(6)	0.9500
C(7)-C(8)	1.4093(19)
C(8)-C(9)	1.3807(18)
C(9)-H(9)	0.9500
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-C(17)	1.397(2)
C(12)-C(13)	1.397(2)
C(13)-C(14)	1.391(2)
C(13)-H(13)	0.9500
C(14)-C(15)	1.387(2)
C(14)-H(14)	0.9500
C(15)-C(16)	1.391(2)
C(15)-H(15)	0.9500

Table S11.	Bond lengths [Å] and angles [°] for i18083.

_

C(16)-C(17)	1.387(2)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-C(19)	1.3973(19)
C(18)-C(23)	1.401(2)
C(19)-C(20)	1.3925(19)
C(19)-H(19)	0.9500
C(20)-C(21)	1.387(2)
C(20)-H(20)	0.9500
C(21)-C(22)	1.388(2)
C(21)-H(21)	0.9500
C(22)-C(23)	1.392(2)
C(22)-H(22)	0.9500
C(23)-H(23)	0.9500
C(7)-O(1)-C(10)	116.87(12)
C(8)-O(2)-C(11)	117.14(11)
C(1)-N(1)-C(3)	107.92(12)
C(1)-N(1)-H(1)	125.0(13)
C(3)-N(1)-H(1)	127.0(13)
C(1)-N(2)-C(2)	105.44(11)
N(2)-C(1)-N(1)	111.47(12)
N(2)-C(1)-C(4)	124.27(12)
N(1)-C(1)-C(4)	124.26(12)
C(3)-C(2)-N(2)	110.25(12)
C(3)-C(2)-C(12)	128.64(12)
N(2)-C(2)-C(12)	121.11(12)
N(1)-C(3)-C(2)	104.92(12)
N(1)-C(3)-C(18)	122.22(12)
C(2)-C(3)-C(18)	132.74(12)
C(5)-C(4)-C(9)	117.99(12)
C(5)-C(4)-C(1)	124.72(12)
C(9)-C(4)-C(1)	117.28(12)
C(4)-C(5)-C(6)	121.63(12)
C(4)-C(5)-Br(1)	121.21(10)
C(6)-C(5)-Br(1)	117.05(10)
C(7)-C(6)-C(5)	119.51(12)
C(7)-C(6)-H(6)	120.2

C(5)-C(6)-H(6)	120.2
O(1)-C(7)-C(6)	124.88(13)
O(1)-C(7)-C(8)	115.29(12)
C(6)-C(7)-C(8)	119.80(12)
O(2)-C(8)-C(9)	124.90(12)
O(2)-C(8)-C(7)	115.31(12)
C(9)-C(8)-C(7)	119.78(12)
C(8)-C(9)-C(4)	121.05(12)
C(8)-C(9)-H(9)	119.5
C(4)-C(9)-H(9)	119.5
O(1)-C(10)-H(10A)	109.5
O(1)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
O(1)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
O(2)-C(11)-H(11A)	109.5
O(2)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
O(2)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(17)-C(12)-C(13)	118.92(13)
C(17)-C(12)-C(2)	120.54(13)
C(13)-C(12)-C(2)	120.54(13)
C(14)-C(13)-C(12)	120.48(14)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(15)-C(14)-C(13)	120.17(15)
C(15)-C(14)-H(14)	119.9
C(13)-C(14)-H(14)	119.9
C(14)-C(15)-C(16)	119.62(14)
C(14)-C(15)-H(15)	120.2
C(16)-C(15)-H(15)	120.2
C(17)-C(16)-C(15)	120.43(15)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(16)-C(17)-C(12)	120.37(14)

C(16)-C(17)-H(17)	119.8
С(12)-С(17)-Н(17)	119.8
C(19)-C(18)-C(23)	119.10(13)
C(19)-C(18)-C(3)	119.67(13)
C(23)-C(18)-C(3)	121.19(13)
C(20)-C(19)-C(18)	120.64(14)
C(20)-C(19)-H(19)	119.7
C(18)-C(19)-H(19)	119.7
C(21)-C(20)-C(19)	119.81(14)
C(21)-C(20)-H(20)	120.1
C(19)-C(20)-H(20)	120.1
C(20)-C(21)-C(22)	120.09(14)
C(20)-C(21)-H(21)	120.0
C(22)-C(21)-H(21)	120.0
C(21)-C(22)-C(23)	120.43(15)
C(21)-C(22)-H(22)	119.8
C(23)-C(22)-H(22)	119.8
C(22)-C(23)-C(18)	119.93(14)
C(22)-C(23)-H(23)	120.0
C(18)-C(23)-H(23)	120.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	16(1)	15(1)	14(1)	-1(1)	-2(1)	-1(1)
O(1)	27(1)	10(1)	19(1)	-1(1)	2(1)	-2(1)
O(2)	20(1)	16(1)	13(1)	-3(1)	-1(1)	-3(1)
N(1)	17(1)	12(1)	13(1)	1(1)	5(1)	-1(1)
N(2)	14(1)	13(1)	13(1)	-1(1)	2(1)	-1(1)
C(1)	13(1)	13(1)	13(1)	-1(1)	0(1)	0(1)
C(2)	13(1)	13(1)	13(1)	-1(1)	2(1)	0(1)
C(3)	14(1)	12(1)	14(1)	0(1)	2(1)	-1(1)
C(4)	13(1)	12(1)	14(1)	-1(1)	5(1)	0(1)
C(5)	13(1)	14(1)	12(1)	-2(1)	0(1)	-1(1)
C(6)	16(1)	14(1)	14(1)	1(1)	2(1)	2(1)
C(7)	16(1)	10(1)	16(1)	-2(1)	5(1)	-1(1)
C(8)	14(1)	14(1)	12(1)	-3(1)	3(1)	-2(1)
C(9)	15(1)	14(1)	12(1)	0(1)	2(1)	0(1)
C(10)	47(1)	16(1)	25(1)	3(1)	6(1)	-9(1)
C(11)	18(1)	23(1)	15(1)	-1(1)	-1(1)	-2(1)
C(12)	17(1)	14(1)	11(1)	-1(1)	1(1)	-3(1)
C(13)	19(1)	17(1)	16(1)	2(1)	1(1)	1(1)
C(14)	27(1)	17(1)	19(1)	5(1)	-3(1)	0(1)
C(15)	36(1)	21(1)	14(1)	4(1)	1(1)	-11(1)
C(16)	31(1)	26(1)	20(1)	-2(1)	12(1)	-10(1)
C(17)	23(1)	18(1)	19(1)	-2(1)	8(1)	-3(1)
C(18)	16(1)	12(1)	11(1)	1(1)	1(1)	3(1)
C(19)	15(1)	16(1)	15(1)	-1(1)	1(1)	1(1)
C(20)	20(1)	16(1)	19(1)	-2(1)	-4(1)	0(1)
C(21)	35(1)	18(1)	12(1)	-2(1)	0(1)	7(1)
C(22)	33(1)	20(1)	16(1)	1(1)	10(1)	7(1)
C(23)	24(1)	16(1)	18(1)	2(1)	7(1)	2(1)

Table S12. Anisotropic displacement parameters (Å²x 10³)for i18083. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

Crystal data and structure refinement for compound 3w

Figure S4. Single X-ray crystal structure of imidazole **3w** (the thermal ellipsoid was drawn at the 50% probability level)

CCDC	2082032		
Identification code	i18117		
Empirical formula	C38 H28 N4 O2		
Formula weight	572.64		
Temperature	100.0(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P n a 21		
Unit cell dimensions	a = 8.9585(4) Å	$\alpha = 90^{\circ}$.	
	b = 11.3947(5) Å	β= 90°.	
	c = 28.7859(13) Å	$\gamma = 90^{\circ}.$	
Volume	2938.4(2) Å ³		
Z	4		
Density (calculated)	1.294 Mg/m ³		
Absorption coefficient	0.644 mm ⁻¹		
F(000)	1200		
Crystal size	$0.320 \text{ x } 0.090 \text{ x } 0.060 \text{ mm}^3$		
Theta range for data collection	3.070 to 66.595°.		

Table S13. Crystal data and structure refinement for i18117.

Index ranges	-10<=h<=9, -13<=k<=13, -33<=l<=34
Reflections collected	27891
Independent reflections	5125 [R(int) = 0.1401]
Completeness to theta = 66.595°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7528 and 0.6024
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5125 / 1 / 403
Goodness-of-fit on F ²	1.017
Final R indices [I>2sigma(I)]	R1 = 0.0871, wR2 = 0.2137
R indices (all data)	R1 = 0.1249, wR2 = 0.2411
Absolute structure parameter	0.1(4)
Extinction coefficient	n/a
Largest diff. peak and hole	0.550 and -0.323 e.Å ⁻³

	X	У	Z	U(eq)
O(1)	1603(7)	3907(5)	5150(2)	36(2)
O(2)	5472(7)	6077(5)	4919(2)	40(2)
N(1)	3283(8)	1445(6)	5762(2)	28(2)
N(2)	1123(9)	2322(6)	5888(3)	28(2)
N(3)	3780(9)	8541(7)	4306(2)	34(2)
N(4)	5962(9)	7675(7)	4171(3)	34(2)
C(1)	2351(10)	2299(8)	5627(3)	33(2)
C(2)	2570(9)	889(7)	6133(3)	25(2)
C(3)	1206(10)	1447(8)	6209(3)	28(2)
C(4)	2628(10)	3023(7)	5219(3)	31(2)
C(5)	3612(11)	2976(9)	4877(3)	38(2)
C(6)	3227(12)	3909(10)	4564(4)	46(3)
C(7)	2011(11)	4432(9)	4741(4)	42(2)
C(8)	3310(10)	-78(7)	6384(3)	31(2)
C(9)	4331(10)	-788(8)	6145(3)	34(2)
C(10)	5026(10)	-1699(8)	6372(3)	36(2)
C(11)	4757(11)	-1918(8)	6840(4)	42(2)
C(12)	3749(11)	-1208(8)	7076(4)	40(2)
C(13)	3035(11)	-311(8)	6852(3)	31(2)
C(14)	-41(9)	1206(8)	6522(3)	29(2)
C(15)	-585(10)	58(8)	6587(4)	33(2)
C(16)	-1799(10)	-154(9)	6864(3)	35(2)
C(17)	-2559(11)	768(8)	7068(4)	41(2)
C(18)	-2030(10)	1905(8)	7021(3)	34(2)
C(19)	-789(9)	2123(8)	6744(3)	29(2)
C(20)	4720(10)	7714(7)	4443(3)	29(2)
C(21)	4469(10)	9092(7)	3940(3)	30(2)
C(22)	5837(9)	8569(7)	3850(3)	28(2)
C(23)	4481(10)	6968(8)	4840(3)	33(2)
C(24)	3439(11)	6995(9)	5188(3)	39(2)
C(25)	3831(12)	6079(10)	5505(4)	46(3)
C(26)	5028(12)	5545(8)	5324(3)	39(2)
C(27)	3673(10)	10069(8)	3712(3)	32(2)

Table S14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for i18117. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	2642(11)	10714(8)	3959(4)	38(2)
C(29)	1827(11)	11622(8)	3764(3)	41(2)
C(30)	2067(11)	11889(9)	3286(3)	39(2)
C(31)	3109(10)	11268(8)	3036(3)	32(2)
C(32)	3911(11)	10352(8)	3247(3)	32(2)
C(33)	7041(10)	8817(8)	3516(3)	31(2)
C(34)	7492(10)	9985(8)	3427(3)	34(2)
C(35)	8664(11)	10196(9)	3134(3)	36(2)
C(36)	9441(11)	9280(9)	2925(3)	41(2)
C(37)	8983(11)	8128(8)	3011(3)	35(2)
C(38)	7807(10)	7904(8)	3296(3)	35(2)

O(1)-C(7)	1.371(12)
O(1)-C(4)	1.377(10)
O(2)-C(23)	1.368(11)
O(2)-C(26)	1.372(11)
N(1)-C(1)	1.339(11)
N(1)-C(2)	1.398(11)
N(2)-C(1)	1.332(12)
N(2)-C(3)	1.361(12)
N(2)-H(2)	0.91(10)
N(3)-C(20)	1.324(12)
N(3)-C(21)	1.374(11)
N(4)-C(20)	1.362(12)
N(4)-C(22)	1.380(12)
N(4)-H(4)	0.90(11)
C(1)-C(4)	1.458(12)
C(2)-C(3)	1.395(12)
C(2)-C(8)	1.474(12)
C(3)-C(14)	1.461(12)
C(4)-C(5)	1.323(13)
C(5)-C(6)	1.435(15)
C(5)-H(5)	0.9500
C(6)-C(7)	1.341(15)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-C(13)	1.397(12)
C(8)-C(9)	1.402(13)
C(9)-C(10)	1.375(12)
C(9)-H(9)	0.9500
C(10)-C(11)	1.389(14)
C(10)-H(10)	0.9500
C(11)-C(12)	1.390(14)
C(11)-H(11)	0.9500
C(12)-C(13)	1.367(13)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500
C(14)-C(19)	1.397(12)

Table 615	Dand langths [Å] and analos [9] for \$19117
Table S15.	Bond lengths [A] and angles [°] for 118117.

C(14)-C(15)	1.408(12)
C(15)-C(16)	1.369(13)
C(15)-H(15)	0.9500
C(16)-C(17)	1.383(14)
C(16)-H(16)	0.9500
C(17)-C(18)	1.386(13)
C(17)-H(17)	0.9500
C(18)-C(19)	1.390(12)
C(18)-H(18)	0.9500
C(19)-H(19)	0.9500
C(20)-C(23)	1.441(13)
C(21)-C(22)	1.387(12)
C(21)-C(27)	1.476(13)
C(22)-C(33)	1.473(12)
C(23)-C(24)	1.368(14)
C(24)-C(25)	1.431(15)
C(24)-H(24)	0.9500
C(25)-C(26)	1.339(15)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
C(27)-C(28)	1.378(13)
C(27)-C(32)	1.392(13)
C(28)-C(29)	1.386(13)
C(28)-H(28)	0.9500
C(29)-C(30)	1.424(14)
C(29)-H(29)	0.9500
C(30)-C(31)	1.376(13)
C(30)-H(30)	0.9500
C(31)-C(32)	1.406(13)
C(31)-H(31)	0.9500
C(32)-H(32)	0.9500
C(33)-C(38)	1.397(12)
C(33)-C(34)	1.414(12)
C(34)-C(35)	1.368(13)
C(34)-H(34)	0.9500
C(35)-C(36)	1.392(14)
C(35)-H(35)	0.9500
C(36)-C(37)	1.397(14)

C(36)-H(36)	0.9500
C(37)-C(38)	1.360(13)
C(37)-H(37)	0.9500
C(38)-H(38)	0.9500
C(7)-O(1)-C(4)	105.4(7)
C(23)-O(2)-C(26)	106.3(7)
C(1)-N(1)-C(2)	105.4(7)
C(1)-N(2)-C(3)	108.8(8)
C(1)-N(2)-H(2)	125(6)
C(3)-N(2)-H(2)	126(6)
C(20)-N(3)-C(21)	105.6(8)
C(20)-N(4)-C(22)	107.2(8)
C(20)-N(4)-H(4)	130(7)
C(22)-N(4)-H(4)	122(7)
N(2)-C(1)-N(1)	111.5(8)
N(2)-C(1)-C(4)	125.7(8)
N(1)-C(1)-C(4)	122.6(8)
C(3)-C(2)-N(1)	108.2(7)
C(3)-C(2)-C(8)	131.2(8)
N(1)-C(2)-C(8)	120.6(7)
N(2)-C(3)-C(2)	106.1(8)
N(2)-C(3)-C(14)	120.9(8)
C(2)-C(3)-C(14)	132.8(8)
C(5)-C(4)-O(1)	111.5(8)
C(5)-C(4)-C(1)	133.7(9)
O(1)-C(4)-C(1)	114.7(8)
C(4)-C(5)-C(6)	106.0(9)
C(4)-C(5)-H(5)	127.0
C(6)-C(5)-H(5)	127.0
C(7)-C(6)-C(5)	106.7(9)
C(7)-C(6)-H(6)	126.7
C(5)-C(6)-H(6)	126.7
C(6)-C(7)-O(1)	110.4(9)
C(6)-C(7)-H(7)	124.8
O(1)-C(7)-H(7)	124.8
C(13)-C(8)-C(9)	118.6(8)
C(13)-C(8)-C(2)	122.4(8)
C(9)-C(8)-C(2)	119.0(8)
-------------------	----------
C(10)-C(9)-C(8)	119.9(9)
C(10)-C(9)-H(9)	120.0
C(8)-C(9)-H(9)	120.0
C(9)-C(10)-C(11)	121.1(9)
C(9)-C(10)-H(10)	119.5
C(11)-C(10)-H(10)	119.5
C(10)-C(11)-C(12)	118.9(9)
C(10)-C(11)-H(11)	120.6
C(12)-C(11)-H(11)	120.6
C(13)-C(12)-C(11)	120.6(9)
C(13)-C(12)-H(12)	119.7
C(11)-C(12)-H(12)	119.7
C(12)-C(13)-C(8)	121.0(9)
C(12)-C(13)-H(13)	119.5
C(8)-C(13)-H(13)	119.5
C(19)-C(14)-C(15)	117.8(8)
C(19)-C(14)-C(3)	120.6(8)
C(15)-C(14)-C(3)	121.5(8)
C(16)-C(15)-C(14)	121.2(9)
C(16)-C(15)-H(15)	119.4
C(14)-C(15)-H(15)	119.4
C(15)-C(16)-C(17)	120.2(9)
C(15)-C(16)-H(16)	119.9
C(17)-C(16)-H(16)	119.9
C(16)-C(17)-C(18)	120.1(9)
C(16)-C(17)-H(17)	120.0
C(18)-C(17)-H(17)	120.0
C(17)-C(18)-C(19)	119.7(9)
C(17)-C(18)-H(18)	120.1
C(19)-C(18)-H(18)	120.1
C(18)-C(19)-C(14)	120.9(8)
C(18)-C(19)-H(19)	119.6
C(14)-C(19)-H(19)	119.6
N(3)-C(20)-N(4)	111.8(8)
N(3)-C(20)-C(23)	124.2(8)
N(4)-C(20)-C(23)	124.0(8)
N(3)-C(21)-C(22)	110.1(8)

N(3)-C(21)-C(27)	118.0(8)
C(22)-C(21)-C(27)	131.9(8)
N(4)-C(22)-C(21)	105.3(8)
N(4)-C(22)-C(33)	121.3(8)
C(21)-C(22)-C(33)	133.4(8)
O(2)-C(23)-C(24)	109.8(8)
O(2)-C(23)-C(20)	118.2(8)
C(24)-C(23)-C(20)	131.9(9)
C(23)-C(24)-C(25)	106.5(9)
C(23)-C(24)-H(24)	126.8
C(25)-C(24)-H(24)	126.8
C(26)-C(25)-C(24)	106.1(9)
C(26)-C(25)-H(25)	126.9
C(24)-C(25)-H(25)	126.9
C(25)-C(26)-O(2)	111.3(9)
C(25)-C(26)-H(26)	124.3
O(2)-C(26)-H(26)	124.3
C(28)-C(27)-C(32)	118.4(9)
C(28)-C(27)-C(21)	119.7(8)
C(32)-C(27)-C(21)	121.9(8)
C(27)-C(28)-C(29)	122.8(9)
C(27)-C(28)-H(28)	118.6
C(29)-C(28)-H(28)	118.6
C(28)-C(29)-C(30)	118.1(9)
C(28)-C(29)-H(29)	121.0
C(30)-C(29)-H(29)	121.0
C(31)-C(30)-C(29)	119.9(9)
C(31)-C(30)-H(30)	120.0
C(29)-C(30)-H(30)	120.0
C(30)-C(31)-C(32)	120.1(8)
C(30)-C(31)-H(31)	120.0
C(32)-C(31)-H(31)	120.0
C(27)-C(32)-C(31)	120.7(9)
C(27)-C(32)-H(32)	119.7
C(31)-C(32)-H(32)	119.7
C(38)-C(33)-C(34)	118.6(8)
C(38)-C(33)-C(22)	120.8(8)
C(34)-C(33)-C(22)	120.5(8)

C(35)-C(34)-C(33)	119.8(9)
C(35)-C(34)-H(34)	120.1
C(33)-C(34)-H(34)	120.1
C(34)-C(35)-C(36)	121.2(9)
C(34)-C(35)-H(35)	119.4
C(36)-C(35)-H(35)	119.4
C(35)-C(36)-C(37)	118.7(9)
C(35)-C(36)-H(36)	120.6
C(37)-C(36)-H(36)	120.6
C(38)-C(37)-C(36)	120.8(9)
C(38)-C(37)-H(37)	119.6
C(36)-C(37)-H(37)	119.6
C(37)-C(38)-C(33)	120.8(8)
C(37)-C(38)-H(38)	119.6
C(33)-C(38)-H(38)	119.6

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
						_
O(1)	33(3)	34(3)	41(4)	13(3)	-2(3)	2(3)
O(2)	46(4)	36(4)	40(4)	7(3)	0(3)	-2(3)
N(1)	30(4)	25(4)	29(4)	7(3)	-2(3)	1(3)
N(2)	30(4)	22(4)	31(4)	4(3)	-1(3)	3(3)
N(3)	38(5)	33(4)	32(4)	0(3)	-1(3)	-8(3)
N(4)	42(5)	29(4)	31(4)	-4(3)	-3(4)	-3(3)
C(1)	37(5)	27(5)	34(5)	9(4)	-3(4)	-7(4)
C(2)	18(4)	29(4)	29(5)	2(4)	-5(3)	-4(3)
C(3)	35(5)	27(4)	24(4)	-3(4)	0(4)	-3(4)
C(4)	36(5)	26(5)	31(5)	6(4)	-2(4)	2(4)
C(5)	41(5)	41(6)	32(5)	3(4)	11(4)	0(4)
C(6)	47(6)	53(6)	37(5)	17(5)	-6(5)	-10(5)
C(7)	40(6)	39(6)	48(6)	21(5)	-2(5)	-4(4)
C(8)	29(5)	23(5)	41(5)	5(4)	-1(4)	-7(3)
C(9)	36(5)	28(5)	38(5)	-2(4)	3(4)	3(4)
C(10)	33(5)	31(5)	45(6)	-9(4)	-7(4)	10(4)
C(11)	41(5)	31(5)	55(6)	2(5)	-21(5)	-2(4)
C(12)	47(6)	32(5)	41(5)	-1(4)	-11(4)	2(4)
C(13)	39(5)	30(5)	26(5)	-2(4)	0(4)	-4(4)
C(14)	25(4)	31(5)	30(5)	-5(4)	-11(4)	1(4)
C(15)	34(5)	25(5)	40(5)	4(4)	10(4)	1(4)
C(16)	32(5)	37(5)	35(5)	5(4)	-5(4)	-6(4)
C(17)	31(5)	42(6)	50(6)	14(5)	3(4)	1(4)
C(18)	36(5)	36(5)	29(5)	0(4)	-6(4)	12(4)
C(19)	26(4)	33(5)	29(5)	5(4)	-8(4)	2(3)
C(20)	33(5)	25(4)	30(5)	-4(4)	-4(4)	-3(4)
C(21)	37(5)	28(5)	25(4)	-6(4)	-3(4)	1(4)
C(22)	31(5)	24(4)	30(5)	-4(4)	0(4)	-2(3)
C(23)	34(5)	33(5)	31(5)	6(4)	-5(4)	2(4)
C(24)	45(6)	40(5)	32(5)	3(5)	-3(4)	-2(4)
C(25)	49(6)	53(6)	36(5)	4(5)	0(5)	-14(5)
C(26)	48(6)	36(5)	34(5)	10(4)	-2(5)	-9(5)
C(27)	30(5)	25(5)	40(5)	-4(4)	5(4)	-4(4)

Table S16. Anisotropic displacement parameters (Å²x 10³)for i18117. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

S-40

C(28)	39(6)	38(5)	37(5)	3(4)	3(4)	-2(4)
C(29)	44(6)	36(5)	43(6)	10(4)	-1(5)	5(4)
C(30)	40(5)	39(5)	39(5)	1(4)	-4(4)	2(4)
C(31)	44(5)	29(5)	24(4)	5(4)	1(4)	-3(4)
C(32)	41(5)	22(4)	34(5)	-1(4)	-5(4)	-2(4)
C(33)	34(5)	30(5)	29(5)	4(4)	3(4)	-2(4)
C(34)	34(5)	38(5)	30(5)	-8(4)	-9(4)	-2(4)
C(35)	45(6)	31(5)	33(5)	11(4)	-6(4)	-11(4)
C(36)	39(6)	49(6)	35(5)	1(5)	1(4)	-5(4)
C(37)	38(5)	38(5)	30(5)	-5(4)	2(4)	7(4)
C(38)	47(6)	28(5)	31(5)	-3(4)	-1(4)	6(4)

Crystal data and structure refinement for compound $\mathbf{4h}$

Figure S5. Single X-ray crystal structure of imidazole 4h (the thermal ellipsoid was drawn at the 50% probability level)

Table S17. Crystal data and structure refinement for i181.	16.
--	-----

CCDC	2082036
Identification code	i18116
Empirical formula	C17 H12 N2 S2
Formula weight	308.41
Temperature	100.0(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic

Space group	P 21/c		
Unit cell dimensions	a = 11.1404(4) Å	<i>α</i> = 90°.	
	b = 14.6012(6) Å	$\beta = 104.4970(10)^{\circ}.$	
	c = 9.2447(3) Å	$\gamma = 90^{\circ}$.	
Volume	1455.89(9) Å ³		
Z	4		
Density (calculated)	1.407 Mg/m ³		
Absorption coefficient	0.359 mm ⁻¹		
F(000)	640		
Crystal size	$0.210 \ge 0.160 \ge 0.058 \text{ mm}^3$		
Theta range for data collection	2.669 to 27.102°.		
Index ranges	-13<=h<=14, -18<=k<=18, -11<=l<=11		
Reflections collected	42960		
Independent reflections	3206 [R(int) = 0.0754]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Numerical		
Max. and min. transmission	1 and 0.9613		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	3206 / 0 / 191		
Goodness-of-fit on F ²	1.049		
Final R indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.0999		
R indices (all data)	R1 = 0.0566, wR2 = 0.1065		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.593 and -0.453 e.Å ⁻³		

	Х	У	Z	U(eq)
S(1)	3650(1)	3829(1)	9063(1)	24(1)
S(2)	4148(1)	4670(1)	2772(1)	29(1)
C(15)	2296(1)	4673(1)	4269(1)	34(1)
S(2')	2296(1)	4673(1)	4269(1)	34(1)
C(15')	4148(1)	4670(1)	2772(1)	29(1)
N(1)	5217(2)	2647(1)	6984(2)	16(1)
N(2)	5418(1)	3202(1)	4828(2)	15(1)
C(1)	5913(2)	2659(1)	5978(2)	15(1)
C(2)	4213(2)	3213(1)	6462(2)	16(1)
C(3)	4354(2)	3557(1)	5123(2)	16(1)
C(4)	7067(2)	2138(1)	6133(2)	16(1)
C(5)	7933(2)	2442(2)	5378(2)	21(1)
C(6)	9021(2)	1964(2)	5494(2)	28(1)
C(7)	9280(2)	1193(2)	6387(3)	30(1)
C(8)	8436(2)	886(2)	7146(2)	26(1)
C(9)	7320(2)	1351(1)	7011(2)	20(1)
C(10)	3274(2)	3351(1)	7298(2)	18(1)
C(11)	2032(2)	3115(2)	6872(2)	24(1)
C(12)	1413(2)	3327(2)	8010(3)	27(1)
C(13)	2166(2)	3705(2)	9238(2)	25(1)
C(14)	3623(2)	4231(1)	4113(2)	18(1)
C(16)	2118(2)	5342(2)	2856(3)	34(1)
C(17)	3036(2)	5339(2)	2142(2)	29(1)

Table S18. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103)for i18116. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-C(13)	1.710(2)
S(1)-C(10)	1.7265(19)
S(2)-C(17)	1.571(3)
S(2)-C(14)	1.629(2)
C(15)-C(16)	1.603(3)
C(15)-C(14)	1.653(2)
C(15)-H(15)	0.9500
S(2')-C(16)	1.603(3)
S(2')-C(14)	1.653(2)
C(15')-C(17)	1.571(3)
C(15')-C(14)	1.629(2)
C(15')-H(15')	0.9500
N(1)-C(1)	1.351(2)
N(1)-C(2)	1.378(2)
N(1)-H(1)	0.8800
N(2)-C(1)	1.330(2)
N(2)-C(3)	1.381(2)
C(1)-C(4)	1.470(3)
C(2)-C(3)	1.381(3)
C(2)-C(10)	1.462(3)
C(3)-C(14)	1.458(3)
C(4)-C(9)	1.394(3)
C(4)-C(5)	1.398(3)
C(5)-C(6)	1.379(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.383(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.381(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.394(3)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(10)-C(11)	1.384(3)
C(11)-C(12)	1.428(3)
C(11)-H(11)	0.9500
C(12)-C(13)	1.349(3)

Table S19.	Bond lengths [Å] and angles [°] for i18116.

_

C(12)-H(12)	0.9500
C(13)-H(13)	0.9500
C(16)-C(17)	1.349(4)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(13)-S(1)-C(10)	92.01(10)
C(17)-S(2)-C(14)	97.24(12)
C(16)-C(15)-C(14)	95.60(12)
C(16)-C(15)-H(15)	132.2
C(14)-C(15)-H(15)	132.2
C(16)-S(2')-C(14)	95.60(12)
C(17)-C(15')-C(14)	97.24(12)
C(17)-C(15')-H(15')	131.4
C(14)-C(15')-H(15')	131.4
C(1)-N(1)-C(2)	107.87(15)
C(1)-N(1)-H(1)	126.1
C(2)-N(1)-H(1)	126.1
C(1)-N(2)-C(3)	105.66(15)
N(2)-C(1)-N(1)	111.30(17)
N(2)-C(1)-C(4)	124.35(17)
N(1)-C(1)-C(4)	124.35(17)
N(1)-C(2)-C(3)	105.46(16)
N(1)-C(2)-C(10)	121.57(17)
C(3)-C(2)-C(10)	132.98(18)
C(2)-C(3)-N(2)	109.71(17)
C(2)-C(3)-C(14)	130.45(18)
N(2)-C(3)-C(14)	119.73(16)
C(9)-C(4)-C(5)	119.24(18)
C(9)-C(4)-C(1)	121.90(18)
C(5)-C(4)-C(1)	118.87(18)
C(6)-C(5)-C(4)	120.2(2)
C(6)-C(5)-H(5)	119.9
C(4)-C(5)-H(5)	119.9
C(5)-C(6)-C(7)	120.5(2)
C(5)-C(6)-H(6)	119.8
C(7)-C(6)-H(6)	119.8
C(8)-C(7)-C(6)	120.0(2)

C(8)-C(7)-H(7)	120.0
C(6)-C(7)-H(7)	120.0
C(7)-C(8)-C(9)	120.1(2)
C(7)-C(8)-H(8)	119.9
C(9)-C(8)-H(8)	119.9
C(4)-C(9)-C(8)	120.0(2)
C(4)-C(9)-H(9)	120.0
C(8)-C(9)-H(9)	120.0
C(11)-C(10)-C(2)	127.68(18)
C(11)-C(10)-S(1)	111.02(15)
C(2)-C(10)-S(1)	121.27(15)
C(10)-C(11)-C(12)	111.62(19)
C(10)-C(11)-H(11)	124.2
C(12)-C(11)-H(11)	124.2
C(13)-C(12)-C(11)	113.3(2)
C(13)-C(12)-H(12)	123.4
C(11)-C(12)-H(12)	123.4
C(12)-C(13)-S(1)	112.07(16)
C(12)-C(13)-H(13)	124.0
S(1)-C(13)-H(13)	124.0
C(3)-C(14)-S(2)	120.27(15)
C(3)-C(14)-C(15')	120.27(15)
C(3)-C(14)-C(15)	125.21(15)
S(2)-C(14)-C(15)	114.37(12)
C(3)-C(14)-S(2')	125.21(15)
C(15')-C(14)-S(2')	114.37(12)
C(17)-C(16)-C(15)	116.25(19)
C(17)-C(16)-S(2')	116.25(19)
C(17)-C(16)-H(16)	121.9
C(15)-C(16)-H(16)	121.9
C(16)-C(17)-S(2)	116.47(18)
C(16)-C(17)-C(15')	116.47(18)
C(16)-C(17)-H(17)	121.8
S(2)-C(17)-H(17)	121.8

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
S (1)	26(1)	29(1)	19(1)	-3(1)	8(1)	4(1)
S(2)	36(1)	23(1)	23(1)	4(1)	-1(1)	2(1)
C(15)	32(1)	36(1)	32(1)	8(1)	4(1)	8(1)
S(2')	32(1)	36(1)	32(1)	8(1)	4(1)	8(1)
C(15')	36(1)	23(1)	23(1)	4(1)	-1(1)	2(1)
N(1)	18(1)	18(1)	12(1)	1(1)	5(1)	1(1)
N(2)	18(1)	16(1)	12(1)	-1(1)	3(1)	-1(1)
C(1)	17(1)	16(1)	12(1)	-2(1)	4(1)	-4(1)
C(2)	17(1)	18(1)	14(1)	-3(1)	4(1)	0(1)
C(3)	18(1)	17(1)	13(1)	-3(1)	4(1)	-1(1)
C(4)	17(1)	19(1)	12(1)	-4(1)	3(1)	-1(1)
C(5)	21(1)	26(1)	16(1)	-1(1)	5(1)	-2(1)
C(6)	19(1)	40(1)	26(1)	-5(1)	9(1)	-4(1)
C(7)	21(1)	38(1)	30(1)	-9(1)	4(1)	8(1)
C(8)	31(1)	23(1)	23(1)	-1(1)	3(1)	8(1)
C(9)	24(1)	20(1)	18(1)	-1(1)	7(1)	1(1)
C(10)	24(1)	18(1)	14(1)	0(1)	7(1)	2(1)
C(11)	26(1)	27(1)	22(1)	-2(1)	13(1)	0(1)
C(12)	24(1)	28(1)	32(1)	-1(1)	14(1)	-1(1)
C(13)	33(1)	23(1)	25(1)	0(1)	15(1)	4(1)
C(14)	22(1)	18(1)	14(1)	-2(1)	3(1)	1(1)
C(16)	29(1)	31(1)	36(1)	-10(1)	-6(1)	11(1)
C(17)	44(1)	22(1)	18(1)	1(1)	0(1)	-6(1)

Table S20. Anisotropic displacement parameters (Å²x 10³) for i18116. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

Crystal data and structure refinement for compound 3z

Figure S6. Single X-ray crystal structure of imidazole 3z (the thermal ellipsoid was drawn at the 50% probability level)

CCDC	2098033	
Identification code	i18259	
Empirical formula	C19 H20 N2	
Formula weight	276.37	
Temperature	100.0(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 16.5878(5) Å	$\alpha = 90^{\circ}$.
	b = 9.2549(3) Å	β= 90°.
	c = 20.0075(6) Å	$\gamma=90^{\circ}.$
Volume	3071.52(16) Å ³	
Z	8	
Density (calculated)	1.195 Mg/m ³	
Absorption coefficient	0.070 mm ⁻¹	
F(000)	1184	
Crystal size	0.317 x 0.169 x 0.167 mm ³	
Theta range for data collection	2.036 to 27.101°.	
Index ranges	-21<=h<=21, -11<=k<=11, -25<=l<=25	
Reflections collected	61188	
Independent reflections	3375 [R(int) = 0.0853] S-48	

Table S21. Crystal data and structure refinement for i18259.

Completeness to theta = 25.242° 100.0 % Absorption correction Numerical Max. and min. transmission 1 and 0.8011 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 3375 / 0 / 191 Goodness-of-fit on F² 1.056 Final R indices [I>2sigma(I)] R1 = 0.0398, wR2 = 0.0900R indices (all data) R1 = 0.0529, wR2 = 0.0972Extinction coefficient n/a 0.240 and -0.210 e.Å⁻³ Largest diff. peak and hole

	X	у	Z	U(eq)
N(1)	3099(1)	6079(1)	2710(1)	18(1)
N(2)	2590(1)	3912(1)	2893(1)	18(1)
C(1)	2505(1)	5176(1)	2563(1)	18(1)
C(2)	3585(1)	5355(1)	3165(1)	17(1)
C(3)	3279(1)	3998(1)	3281(1)	17(1)
C(4)	1789(1)	5538(1)	2141(1)	21(1)
C(5)	1495(1)	4318(1)	1688(1)	21(1)
C(6)	2083(1)	3931(2)	1132(1)	27(1)
C(7)	1795(1)	2644(2)	721(1)	34(1)
C(8)	4276(1)	6111(1)	3471(1)	18(1)
C(9)	4732(1)	7083(1)	3093(1)	21(1)
C(10)	5367(1)	7840(1)	3379(1)	24(1)
C(11)	5560(1)	7632(2)	4046(1)	25(1)
C(12)	5109(1)	6679(1)	4428(1)	24(1)
C(13)	4470(1)	5929(1)	4146(1)	21(1)
C(14)	3537(1)	2754(1)	3684(1)	18(1)
C(15)	4348(1)	2343(1)	3715(1)	21(1)
C(16)	4576(1)	1109(2)	4061(1)	26(1)
C(17)	4000(1)	265(2)	4381(1)	28(1)
C(18)	3198(1)	677(2)	4362(1)	25(1)
C(19)	2966(1)	1915(1)	4020(1)	21(1)

Table S22. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for i18259. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(1)	1.3252(17)
N(1)-C(2)	1.3889(16)
N(2)-C(1)	1.3501(16)
N(2)-C(3)	1.3831(16)
N(2)-H(2)	0.8800
C(1)-C(4)	1.4960(18)
C(2)-C(3)	1.3748(17)
C(2)-C(8)	1.4746(18)
C(3)-C(14)	1.4697(17)
C(4)-C(5)	1.5278(18)
C(4)-H(4A)	0.9900
C(4)-H(4AB)	0.9900
C(5)-C(6)	1.521(2)
C(5)-H(5A)	0.9900
C(5)-H(5AB)	0.9900
C(6)-C(7)	1.524(2)
C(6)-H(6A)	0.9900
C(6)-H(6AB)	0.9900
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-C(13)	1.3983(18)
C(8)-C(9)	1.3984(18)
C(9)-C(10)	1.3885(19)
C(9)-H(9)	0.9500
C(10)-C(11)	1.386(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.386(2)
C(11)-H(11)	0.9500
C(12)-C(13)	1.3874(19)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500
C(14)-C(19)	1.3983(19)
C(14)-C(15)	1.3998(19)
C(15)-C(16)	1.3876(18)
C(15)-H(15)	0.9500

Table S23.	Bond lengths [Å] and angles [°] for i18259.

1.390(2)
0.9500
1.384(2)
0.9500
1.3890(18)
0.9500
0.9500
105.83(10)
108.05(11)
126.0
126.0
111.16(11)
125.05(11)
123.56(12)
109.61(11)
130.63(11)
119.63(11)
105.34(11)
134.39(12)
120.25(11)
114.98(11)
108.5
108.5
108.5
108.5
107.5
113.79(11)
108.8
108.8
108.8
108.8
107.7
112.17(12)
109.2
109.2
109.2
109.2

H(6A)-C(6)-H(6AB)	107.9
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(6)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(13)-C(8)-C(9)	118.37(12)
C(13)-C(8)-C(2)	121.48(12)
C(9)-C(8)-C(2)	120.08(11)
C(10)-C(9)-C(8)	120.85(13)
C(10)-C(9)-H(9)	119.6
C(8)-C(9)-H(9)	119.6
C(11)-C(10)-C(9)	120.08(13)
С(11)-С(10)-Н(10)	120.0
C(9)-C(10)-H(10)	120.0
C(10)-C(11)-C(12)	119.70(13)
C(10)-C(11)-H(11)	120.2
C(12)-C(11)-H(11)	120.2
C(11)-C(12)-C(13)	120.43(13)
С(11)-С(12)-Н(12)	119.8
С(13)-С(12)-Н(12)	119.8
C(12)-C(13)-C(8)	120.55(13)
С(12)-С(13)-Н(13)	119.7
C(8)-C(13)-H(13)	119.7
C(19)-C(14)-C(15)	118.59(12)
C(19)-C(14)-C(3)	120.12(12)
C(15)-C(14)-C(3)	121.23(12)
C(16)-C(15)-C(14)	120.52(13)
C(16)-C(15)-H(15)	119.7
C(14)-C(15)-H(15)	119.7
C(15)-C(16)-C(17)	120.34(13)
C(15)-C(16)-H(16)	119.8
C(17)-C(16)-H(16)	119.8
C(18)-C(17)-C(16)	119.57(13)
C(18)-C(17)-H(17)	120.2
C(16)-C(17)-H(17)	120.2
C(17)-C(18)-C(19)	120.45(13)

C(17)-C(18)-H(18)	119.8
C(19)-C(18)-H(18)	119.8
C(18)-C(19)-C(14)	120.51(13)
C(18)-C(19)-H(19)	119.7
C(14)-C(19)-H(19)	119.7

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	21(1)	15(1)	19(1)	0(1)	-1(1)	2(1)
N(2)	19(1)	14(1)	21(1)	1(1)	-2(1)	0(1)
C(1)	22(1)	14(1)	19(1)	0(1)	-1(1)	2(1)
C(2)	19(1)	16(1)	16(1)	0(1)	-1(1)	2(1)
C(3)	19(1)	16(1)	17(1)	-1(1)	-1(1)	2(1)
C(4)	22(1)	17(1)	25(1)	2(1)	-4(1)	2(1)
C(5)	22(1)	18(1)	24(1)	3(1)	-4(1)	-1(1)
C(6)	31(1)	25(1)	24(1)	0(1)	-1(1)	-2(1)
C(7)	44(1)	31(1)	28(1)	-5(1)	-4(1)	-1(1)
C(8)	18(1)	14(1)	22(1)	-2(1)	0(1)	3(1)
C(9)	21(1)	19(1)	23(1)	0(1)	0(1)	2(1)
C(10)	21(1)	18(1)	34(1)	-1(1)	3(1)	0(1)
C(11)	21(1)	20(1)	35(1)	-8(1)	-4(1)	1(1)
C(12)	27(1)	23(1)	22(1)	-5(1)	-5(1)	6(1)
C(13)	24(1)	17(1)	22(1)	-2(1)	1(1)	2(1)
C(14)	24(1)	14(1)	16(1)	-2(1)	-2(1)	1(1)
C(15)	25(1)	17(1)	21(1)	-2(1)	-2(1)	1(1)
C(16)	29(1)	20(1)	28(1)	-4(1)	-7(1)	6(1)
C(17)	41(1)	17(1)	25(1)	2(1)	-7(1)	5(1)
C(18)	36(1)	19(1)	22(1)	2(1)	-1(1)	-2(1)
C(19)	23(1)	20(1)	20(1)	0(1)	-1(1)	1(1)

Table S24. Anisotropic displacement parameters (Å²x 10³) for i18259. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

Figure S6. ¹H NMR spectrum of compound **3a** (500 MHz, DMSO-d₆, 25 °C)

Figure S7. ¹³C NMR spectrum of compound **3a** (125 MHz, DMSO-d₆, 25 °C)

Figure S8. ¹H NMR spectrum of compound **3b** (500 MHz, DMSO-d₆, 25 °C)

Figure S9. ¹³C NMR spectrum of compound 3b (125 MHz, DMSO-d₆, 25 °C)

Figure S10. ¹H NMR spectrum of compound 3c (500 MHz, DMSO-d₆, 25 °C)

Figure S11. ¹³C NMR spectrum of compound 3c (125 MHz, DMSO-d₆, 25 °C)

Figure S12. ¹H NMR spectrum of compound 3d (500 MHz, DMSO-d₆, 25 °C)

Figure S13. ¹³C NMR spectrum of compound 3d (125 MHz, DMSO-d₆, 25 °C)

Figure S14. ¹H NMR spectrum of compound **3e** (500 MHz, DMSO-d₆, 25 °C)

Figure S15. ¹³C NMR spectrum of compound 3e (125 MHz, DMSO-d₆, 25 °C)

Figure S16. ¹H NMR spectrum of compound **3f** (500 MHz, DMSO-d₆, 25 °C)

Figure S17. ¹³C NMR spectrum of compound **3f** (125 MHz, DMSO-d₆, 25 °C)

Figure S18. ¹H NMR spectrum of compound 3g (500 MHz, DMSO-d₆, 25 °C)

Figure S19. ¹³C NMR spectrum of compound 3g (125 MHz, DMSO-d₆, 25 °C)

Figure S20. ¹H NMR spectrum of compound **3h** (500 MHz, DMSO-d₆, 25 °C)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 ppm

Figure S21. ¹³C NMR spectrum of compound **3h** (125 MHz, DMSO-d₆, 25 °C)

Figure S22. ¹H NMR spectrum of compound **3i** (500 MHz, DMSO-d₆, 25 °C)

Figure S23. ¹³C NMR spectrum of compound **3i** (125 MHz, DMSO-d₆, 25 °C)

Figure S24. ¹H NMR spectrum of compound **3j** (500 MHz, DMSO-d₆, 25 °C)

Figure S25. ¹³C NMR spectrum of compound **3j** (125 MHz, DMSO-d₆, 25 °C)

Figure S26. ¹H NMR spectrum of compound 3k (500 MHz, DMSO-d₆, 25 °C)

Figure S27. ¹³C NMR spectrum of compound 3k (125 MHz, DMSO-d₆, 25 °C)

Figure S28. ¹H NMR spectrum of compound 3l (500 MHz, CDCl₃, 25 °C)

	143.33 143.33 131.01 131.01 121.05 129.69 128.467 128.467 128.10 128.10 127.92 127.21 127.21 127.21	77.41
Current Data Parameters NAME KHA 581 F1-30 EXENO 2 PROCNO 1		
F2 - Acquisition Parameters Date_ 20201225 Time 7.58 INSTRUM spect PROBD 5 mm CPPBB0 BB FULPROG zgpg30 TD 36196 SOLVENT CDC13 NS 15500 DS 0 SWH 30303.031 Hz FIDRES 0.837193 Hz AQ 0.5972340 sec RG 7298.2 DW 16.500 usec DE 25.00 usec TE 298.0 K D1 2.00000000 sec D11 0.0300000 sec TD0 1		
CHANNEL f1 Second NUC1 13C P1 11.90 usec PL1 1.60 dB PL1W 48.13708115 W SFO1 125.7892253 MHz		
CHANNEL f2 CPDPRG[2 waltz16 NUC2 IH PCPD2 80.00 usec PL1 0.40 dB PL12 16.39 dB PL13 19.40 dB PL2W 16.6515961 W PL12W 0.40950423 W PL13W 0.20476626 W SFO2 500.2020008 MHz		
F2 - Processing parameters SI 32768 SF 125.7753960 MHz WDW EM SSB 0 LB 2.000 Hz GB 0 FC 1.00		

185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 ppm

Figure S29. ¹³C NMR spectrum of compound 3l (125 MHz, CDCl₃, 25 °C)

Figure S30. ¹H NMR spectrum of compound **3m** (500 MHz, CDCl₃, 25 °C)

Figure S31. ¹³C NMR spectrum of compound **3m** (125 MHz, CDCl₃, 25 °C)

Figure S32. ¹H NMR spectrum of compound **3n** (500 MHz, CDCl₃, 25 °C)

Figure S33. ¹³C NMR spectrum of compound **3n** (125 MHz, CDCl₃, 25 °C)

Figure S34. ¹H NMR spectrum of compound **30** (500 MHz, CDCl₃, 25 °C)

Figure S35. ¹³C NMR spectrum of compound **30** (125 MHz, CDCl₃, 25 °C)

Figure S36. ¹H NMR spectrum of compound **3p** (500 MHz, CDCl₃, 25 °C)

Figure S37. ¹³C NMR spectrum of compound **3p** (125 MHz, CDCl₃, 25 °C)

Figure S38. ¹H NMR spectrum of compound 3q (500 MHz, DMSO-d₆, 25 °C)

Figure S39. ¹³C NMR spectrum of compound 3q (125 MHz, DMSO-d₆, 25 °C)

Figure S40. ¹H NMR spectrum of compound **3r** (400 MHz, CDCl₃, 25 °C)

Figure S41. ¹³C NMR spectrum of compound **3r** (100 MHz, CDCl₃, 25 °C)

Figure S42. ¹H NMR spectrum of compound 3s (500 MHz, CDCl₃, 25 °C)

Figure S43. ¹³C NMR spectrum of compound 3s (125 MHz, CDCl₃, 25 °C)

Figure S44. ¹H NMR spectrum of compound **3t** (400 MHz, DMSO-d₆, 25 °C)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 ppm

Figure S45. ¹³C NMR spectrum of compound **3t** (100 MHz, DMSO-d₆, 25 °C)

Figure S46. ¹H NMR spectrum of compound 3u (400 MHz, DMSO-d₆, 25 °C)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 ppm

Figure S47. ¹³C NMR spectrum of compound **3u** (100 MHz, DMSO-d₆, 25 °C)

Figure S48. ¹H NMR spectrum of compound **3v** (500 MHz, DMSO-d₆, 25 °C)

Figure S49. ¹³C NMR spectrum of compound 3v (125 MHz, DMSO-d₆, 25 °C)

Figure S50. ¹H NMR spectrum of compound **3w** (500 MHz, CDCl₃, 25 °C)

	$ \begin{array}{c c} - 145.68 \\ - 142.43 \\ - 142.43 \\ - 139.05 \\ - 130.456 \\ - 1314.56 \\ - 128.65 \\ - 128.65 \\ - 127.31 \\ - 127.31 \end{array} $	 77.41 77.16 76.90
Current Data Parameters NAME KHA 586 F1-15 EXENO 2 PROCNO 1		
F2 - Acquisition Parameters Date_ 20210107 Time 21.47 INSTRUM spect PROBID 5 mm CPPBBO BB PULPROG zqpg30 TD 36196 SOLVENT CDC13 NS 16000 DS 0 SWH 30303.031 Hz FIDRES 0.837193 Hz AQ 0.5972340 sec RG 13004 DW 16.500 usec DE 25.00 usec TE 298.0 K D1 2.00000000 sec D1 1.03000000 sec TD0 1 ======= CHANNEL f1		
Pl 11.90 usec PL1 1.60 dB PL1W 48.13708115 W SF01 125.7892253 MHz		
CPDPRG[2 waltz16 NUC2 1H PCED2 80.00 usec PL2 0.40 dB PL12 16.39 dB PL13 19.40 dB PL2W 16.26515961 W PL12W 0.40950423 W PL13W 0.20476626 W SFO2 500.2020008 MHz F2 - Processing parameters SI 32768		
SI 32/08 SF 125.7753747 MHz WDW EM SSB 0 LB 2.00 Hz GB 0 FC 1.00		

185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 ppm

...

Figure S51. ¹³C NMR spectrum of compound **3w** (125 MHz, CDCl₃, 25 °C)

Figure S52. ¹H NMR spectrum of compound **3x** (500 MHz, CDCl₃, 25 °C)

Figure S53. ¹³C NMR spectrum of compound 3x (125 MHz, CDCl₃, 25 °C)

Figure S54. ¹H NMR spectrum of compound 3y (500 MHz, CDCl₃, 25 °C)

Figure S55. ¹³C NMR spectrum of compound **3y** (125 MHz, CDCl₃, 25 °C)

Figure S56. ¹H NMR spectrum of compound 3z (500 MHz, CDCl₃, 25 °C)

Figure S57. ¹³C NMR spectrum of compound **3z** (125 MHz, CDCl₃, 25 °C)

Figure S58. ¹H NMR spectrum of compound 3aa (500 MHz, CDCl₃, 25 °C)

Figure S59. ¹³C NMR spectrum of compound 3y (125 MHz, CDCl₃, 25 °C)

Figure S60. ¹H NMR spectrum of compound 3ab (500 MHz, CDCl₃, 25 °C)

Figure S61. ¹³C NMR spectrum of compound 3ab (125 MHz, CDCl₃, 25 °C)

Figure S62. ¹H NMR spectrum of compound 4a (500 MHz, DMSO-d₆, 25 °C)

Figure S63. ¹³C NMR spectrum of compound 4a (125 MHz, DMSO-d₆, 25 °C)

Figure S64. ¹H NMR spectrum of compound **4b** (500 MHz, DMSO-d₆, 25 °C)

Current Data Parameters NAME KHA 593 F16-25 EXPNO 2 PROCNO 1	146.51	130.55 129.20 128.97 125.76	40.50 40.33 40.25 40.16 39.83
F2 - Acquisition Parameters Date_ 20210117 Time 13.05 INSTRUM spect PROBHD 5 nm PABBO BB/ PULPROG zgpq30 TD 34612 SOLVENT DMSO NS 22337 DS 0 SWH 28846.154 FIDRES 0.633415 AQ 0.5999413 Succ 26 DW 17.333 UE 6.50 US 0.5990413 DE 0.6300000 SEC 72 DE 6.50 DI 2.00000000 TE 298.0 K D11 0.03000000 TD0 1			
CHANNEL f1 Fill SF01 125.7716219 MHz NUC1 13C P1 10.75 usec PLW1 50.11899948 W			
CHANNEL f2 SF02 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 19.95299911 W PLW12 0.63826001 W PLW13 0.41374001 W			
F2 - Processing parameters SI 32768 SF 125.7577875 MHz WDW EM SSE 0 LB 2.00 Hz GB 0 PC 1.00			

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 ppm

Figure S65. ¹³C NMR spectrum of compound 4b (125 MHz, DMSO-d₆, 25 °C)

Figure S66. ¹H NMR spectrum of compound 4c (500 MHz, DMSO-d₆, 25 °C)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 ppm

Figure S67. ¹³C NMR spectrum of compound 4c (125 MHz, DMSO-d₆, 25 °C)

Figure S68. ¹H NMR spectrum of compound 4d (500 MHz, DMSO-d₆, 25 °C)

Figure S69. ¹³C NMR spectrum of compound 4d (125 MHz, DMSO-d₆, 25 °C)

Figure S70. ¹H NMR spectrum of compound 4e (500 MHz, CDCl₃, 25 °C)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 ppm

Figure S71. ¹³C NMR spectrum of compound 4e (125 MHz, CDCl₃, 25 °C)

Figure S72. ¹H NMR spectrum of compound 4f (400 MHz, CDCl₃, 25 °C)

185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 ppm

Figure S73. ¹³C NMR spectrum of compound 4f (100 MHz, CDCl₃, 25 °C)

Figure S74. ¹H NMR spectrum of compound **4g** (500 MHz, CDCl₃, 25 °C)

	148.63 148.03 146.21	134.21 132.72 129.98 129.92 129.53 128.71 128.71 128.71 126.92 119.14		77.41 77.36 77.16 76.90	55.40 55.40
Current Data Parameters NAME KHA 600 F4-5-DRX500 EXPNO 2 FROCNO 1			ОМе		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
	ll_l	ll_wurl			

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 ppm

Figure S75. ¹³C NMR spectrum of compound 4g (125 MHz, CDCl₃, 25 °C)

Figure S76. ¹H NMR spectrum of compound 4h (500 MHz, DMSO-*d*₆, 25 °C)

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 ppm

Figure S77. ¹³C NMR spectrum of compound **4h** (125 MHz, DMSO-*d*₆, 25 °C)

Figure S78. ¹H NMR spectrum of compound 4i (500 MHz, CDCl₃, 25 °C)

Current Data Parameters NAME KHA 597 F1-18-DrRX500 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date 20210127 Time 21.38 INSTRUM spect PROBED 5 mm PABBO BB/ PULPROG zgp30 TD 34612 SOLVENT CDC13 NS 15481 DS 0	
Current Data Parameters NAME KHA 597 F1-18-DrRX500 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20210127 Time 21.38 INSTRUM spect PROBHD 5 mm PABEO BE/ PULEROG zgp30 TD 34612 SOLVENT CDC13 NS 15481 DS 0	
F2 - Acquisition Parameters Date_ 20210127 Time 21.38 INSTRUM spect PROBHD 5 mm PABBO BE/ PULPROG zgpg30 TD 34612 SOLVENT CDC13 NS 15481 DS 0	
SWH 28846.154 Hz FIDRES 0.833415 Hz AQ 0.5399413 sec RG 1.04 DW 17.333 usec DE 6.50 usec TE 298.4 K D1 2.0000000 sec D11 0.030000 sec TD0 1	
====== CHANNEL f1 ===== SF01 125.7716219 MHz NUC1 13C P1 10.55 usec PLW1 50.11899948 W	
====== CHANNEL f2 ===== SF02 500.1320005 MHz NUC2 1H CPDPR6[2 waltz16 PCPD2 80.00 usec PLW12 0.64863002 W PLW13 0.43705001 W	
F2 - Processing parameters SI 32768 SF 125.7577743 MHz WDW EM SSB 0 LB 2.00 Hz GB 0 PC 1.00	

Figure S79. ¹³C NMR spectrum of compound 4i (125 MHz, CDCl₃, 25 °C)

Figure S80. ¹H NMR spectrum of compound 4j (500 MHz, CDCl₃, 25 °C)

Figure S81. ¹³C NMR spectrum of compound 4j (125 MHz, CDCl₃, 25 °C)

Figure S82. ¹H NMR spectrum of compound 4m (500 MHz, CDCl₃, 25 °C)

Figure S83. ¹³C NMR spectrum of compound 4m (125 MHz, CDCl₃, 25 °C)

Figure S84. ¹H NMR spectrum of compound 5a (500 MHz, CDCl₃, 25 °C)

Figure S85. ¹³C NMR spectrum of compound 5a (125 MHz, CDCl₃, 25 °C)

Figure S86. ¹H NMR spectrum of compound **5b** (500 MHz, CDCl₃, 25 °C)

Figure S87. ¹³C NMR spectrum of compound 5b (125 MHz, CDCl₃, 25 °C)

Figure S88. HRMS of ethane-1,2-diimine intermediate H