Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

New quinoxaline-based VEGFR-2 inhibitors: design, synthesis, and antiproliferative evaluation with in silico docking, ADMET, toxicity, and DFT studies

Mohammed M. Alanazi^a, Hazem Elkady^{b*}, Nawaf A. Alsaif^a, Ahmad J. Obaidullah^a, Hamad M. Alkahtani^a, Manal M. Alanazi^a, Madhawi A. Alharbi^a, Ibrahim H. Eissa^{b*}, Mohammed A. Dahab^{b*}. ^a Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11541, Saudi Arabia.

^b Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt

* Corresponding authors:

mohammeddahab@azhar.edu.eg

Mohammed A. Dahab

Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt

Ibrahim H. Eissa

Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt

ibrahimeissa@azhar.edu.eg

Hazem Elkady

Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt

Hazemelkady@azhar.edu.eg

Content

1	Chemical structures of the target compounds
2	In silico studies
3	Experimental section
	1. Chemistry
	2. Biological testing
	3. In silico studies
4	Spectral analyses
5	References

Chemical structures of the target compounds 15a-d, 16, 17a-d, and 18

In silico studies

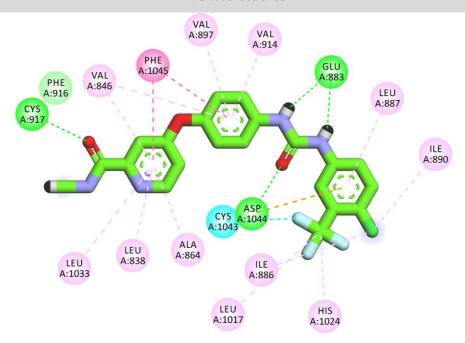
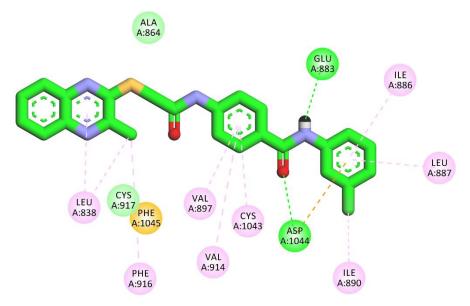
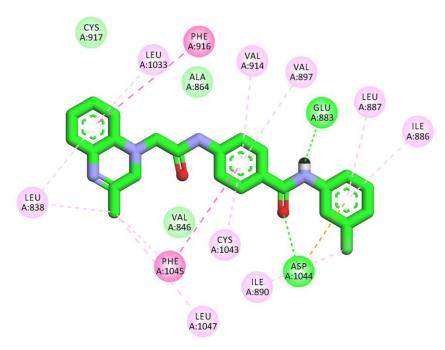




Fig. 1: Interaction of sorafenib with the essential amino acids inside VEGFR-2 active site (2D)

Fig. 2: Mapping surface of **15b.** Green dashed lines = hydrogen bonds, Orange lines = hydrophobic interactions (**2D**)

Fig. 3: Mapping surface of **17b**. Green dashed lines = hydrogen bonds, orange lines = hydrophobic interactions (**2D**).

Fig. 4: The predicted binding pattern of compound 16 with the active site of VEGFR-2 (2D).

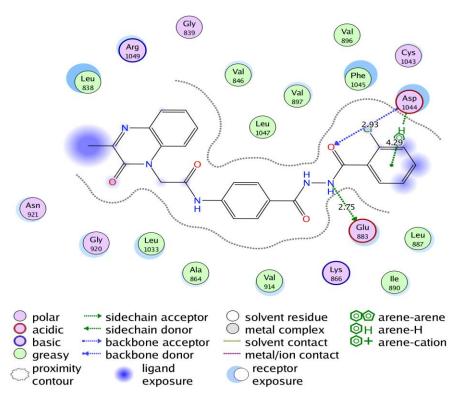
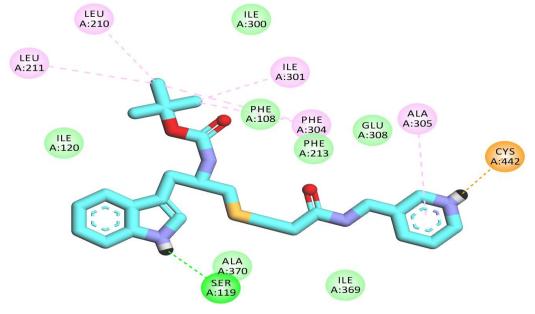



Fig. 5: The predicted binding pattern of compound 18 with the active site of VEGFR-2 (2D).

Fig. 6. 2D Structure of co-crystallized ligand (PKT) docked into active pocket of cytochrome P450.

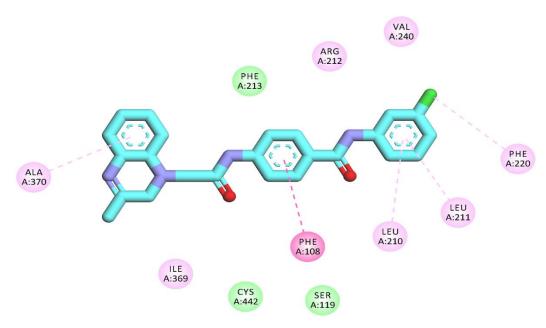
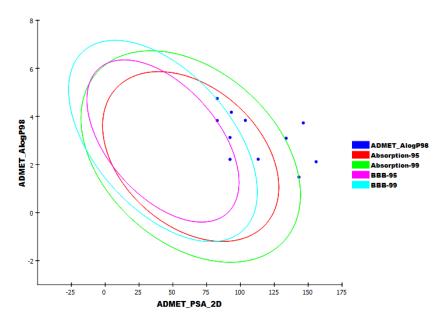


Fig. 7. 2D Structure of compound 17b docked into active pocket of cytochrome P450.

In silico ADMET studies

Blood brain barrier(BBB) penetration, intestinal absorption, aqueous solubility, CYP2D6 binding, and plasma protein binding properties of the synthesized compounds were calculated using Discovery studio 4.0. The BBB penetration levels of the tested compounds were in the low and very low range except compounds **15a** which was showed medium level of BBB penetration. Depending on these results, it may be concluded that there are no CNS side effects associated with these compounds. The tested compounds showed low or good levels of aqueous solubility. In addition, compounds **15a**, **15b**, **15c**, **17a**, **17b**, and **17c** showed good levels of intestinal absorption. For cytochrome P450 2D6 (CYP2D6) inhibition, all compounds were predicted as non-inhibitors. Finally, all compounds were expected to bind plasma protein less than 90% except **15b** and **17b** (**Table 1 & Fig. 8**)


Table 1. ADMET parameters for the synthesized compounds.

Comp.	BBB level ^a	Solubility level b	Absorption level ^c	CYP2D6 prediction ^d	PPB prediction
15a	++	++	0	F	Less than 90%
15b	++++	++	0	F	More than 90%
15c	++++	++	0	F	Less than 90%
15d	++++	++	++	F	Less than 90%
16	++++	++	++	F	Less than 90%

17a	+++	+++	0	F	Less than 90%
17b	+++	++	0	F	More than 90%
17c	++++	+++	0	F	Less than 90%
17d	++++	+++	+++	F	Less than 90%
18	++++	+++	++	F	Less than 90%
Sorafenib	++++	+	0	F	More than 90%

^a BBB level, blood brain barrier level, 0 = very high, + = high, + = medium, + + + = low, + + + + = very low.

^e PBB, plasma protein binding (less than 90% or more than 90%)

Fig. 8: The expected ADMET study

In silico toxicity studies

Toxicity profile of the synthesized compounds was predicted according to the built-in models of Discovery studio 4.0 software ^{1, 2}. Seven toxicity parameters were calculated and summarized in **Table 2.**

At first, the carcinogenic potency TD_{50} values (from 9.366 to 142.906 mg/kg body weight/day) of the tested compounds were higher than that of the reference molecule; sorafenib ($TD_{50} = 19.236$ mg/kg body weight/day), except compounds **15d** and **16**. In addition, the maximum

^b Solubility level, += very low, ++ = low, +++ = good, ++++ = optimal.

^c Absorption level, 0 = good, + = moderate, ++ = poor, ++ = very poor.

^d CYP2D6, cytochrome P2D6, T = inhibitor, F = non inhibitor.

tolerated dose values (from 0.096 to 0.333 g/kg body weight) of all compounds were higher than sorafenib (0.089 g/kg body weight). Furthermore, the tested compounds showed oral LD₅₀ values ranging from 4.703 to 12.496 mg/kg body weight/day which were higher than that of sorafenib (0.823 mg/kg body weight/day). For rat chronic lowest observed adverse effect level (LOAEL), the tested molecules showed higher values (from 0.072 to 0.583 g/kg body weight) than sorafenib (0.005 g/kg body weight). Moreover, the tested compound was predicted to be mild irritant against eyes and non-irritant against skin. For aerobic biodegradability model, all compounds were anticipated to be non-degradable except compound **17a.**

Table 2: Toxicity profile of the synthesized compounds

Comp.	Carcinogenic Potency TD ₅₀ (Mouse) ^a	Rat Maxim um Tolerat ed Dose (Feed) b	Rat Oral LD ₅₀	Rat Chron ic LOA EL ^b	Ocular Irritancy	Skin Irritancy	Aerobic Biodegradab ility
15a	40.565	0.132	12.4 96	0.583	Mild	Non- Irritant	Non- Degradable
15b	9.366	0.123	4.96 9	0.114	Mild	Non- Irritant	Non- Degradable
15c	17.665	0.333	5.93 2	0.181	Mild	Non- Irritant	Non- Degradable
15d	31.468	0.244	6.81 1	0.091	Mild	Non- Irritant	Non- Degradable
16	16.061	0.364	4.70	0.382	Mild	Non- Irritant	Non- Degradable
17a	142.906	0.097	18.1 36	0.334	Mild	Non- Irritant	Degradable
17b	33.153	0.096	7.45 0	0.072	Mild	Non- Irritant	Non- Degradable
17c	62.436	0.259	7.86 8	0.132	Mild	Non- Irritant	Non- Degradable
17d	111.609	0.191	5.47 0	0.103	Mild	Non- Irritant	Non- Degradable
18	56.955	0.284	5.95 6	0.271	Mild	Non- Irritant	Non- Degradable
Sorafe nib	19.236	0.089	0.82	0.005	Mild	Non- Irritant	Non- Degradable

^a Unit: mg/kg body weight/day

^b Unit: g/kg body weight

Physico-chemical properties

The A logP values express the degree of lipophilicity of the chemical compound, where the LogD values express the degree of lipophilicity of the chemical compound taking into account the ionization states of the molecule ³. An increase in these values indicates an increase in the lipophilic character of the tested compound. It is worthwhile to note that the A log P and LogD values for most compounds in acceptable range for oral and intestinal absorption (1.44–4.74) ⁴.

In addition, the molecular polar surface area (MPSA) is another key property linked to drug bioavailability; the passively absorbed molecules with MPSA >140 have low oral bioavailability ⁵. All examined compounds showed acceptable values of MPSA less than 140 except compounds **15d, 15, 17d** and **18**. Moreover, molecular volume (M.V) descriptor determines transport characteristics of molecules, such as intestinal absorption ⁶. The drug diffusivity is inversely proportional to the molecular volume. Molecules with lower MV have higher diffusivity ⁷. It was observed that the tested compounds exhibited low molecular volume values (from 315.21 to 353.63) when compared with sorafenib (MV = 323.1).

Finally, Lipinski rule of five was applied for the synthesized compounds. It was found that all the compounds have molecular weight less than 500, hydrogen bond acceptor groups less than 10 except compounds **17d** and **18**, and hydrogen bond donor group less than 5. this indicates that most of the synthesized compounds are likely to be orally bioavailable (**Table 3**).

Table 3: Physico-chemical properties of the synthesized compounds and sorafenib.

Comp.	ALog P a	Log D ^b	MPSA ^c	MSA ^d	MV ^e	HBA ^f	HBD ^g	M. WT ^h
15a	3.83	3.83	109.28	426.2	330.3	6	2	408.517
15b	4.74	4.74	109.28	444.39	339.56	6	2	462.951
15c	3.83	3.24	129.51	434.98	336.82	7	3	444.506
15d	3.73	3.48	175.33	472.83	353.28	10	3	489.503
16	3.09	3.05	158.61	471.6	362.2	9	4	487.53
17a	2.21	2.21	90.87	412.18	315.21	7	2	392.451
17b	3.12	3.12	90.87	430.37	328.25	7	2	446.886
17c	2.21	1.62	111.1	420.96	325.5	8	3	428.44
17d	2.11	1.86	156.91	458.8	342.99	11	3	473.438
18	1.47	1.44	140.19	457.57	353.63	10	4	471.465

Sorafenib	4.17	4.17	92.35	434.9	323.1	7	3	464.825

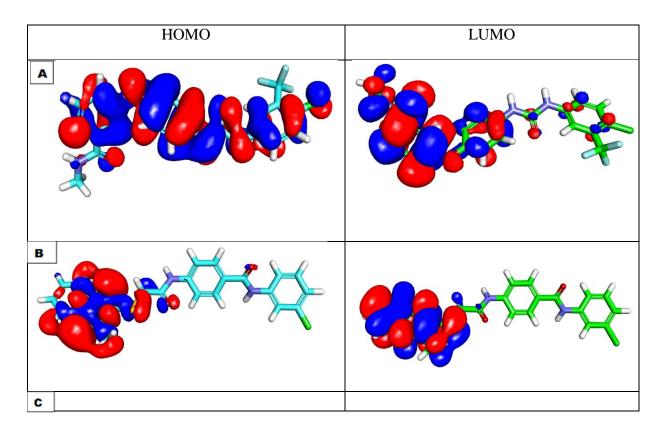
^a Log of the octanol-water partition coefficient

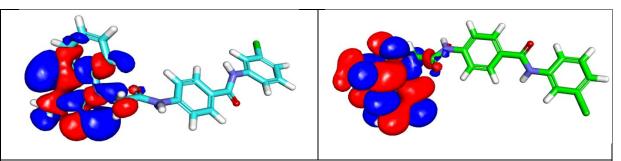
- ^c Molecular surface area: Calculates the total surface area for each molecule using a 2D approximation.
- ^d Molecular polar surface area: calculates the polar surface area for each molecule using a 2D approximation.
- ^e Molecular volume: calculates the 3D volume for each molecule using the current 3D coordinates.
- ^f Hydrogen bond donor atoms
- ^g Hydrogen bond acceptor atoms
- h Molecular weight

DFT studies

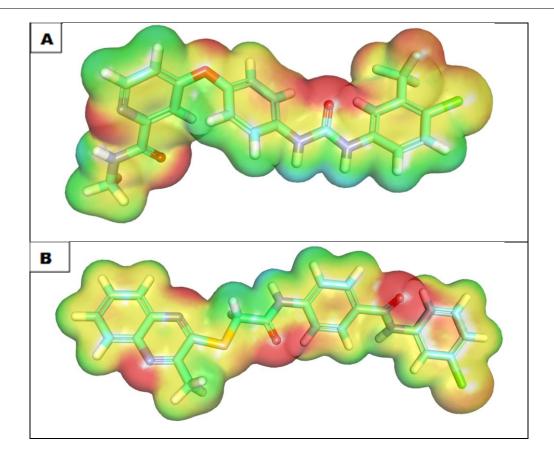
Discovery studio software was used to carry out density functional theory (DFT) calculations. Different molecular and atomic properties were calculated including i) total energy of the molecules, ii) binding energy which describes the interaction energy between all the atoms in the molecule, iii) the energy of the highest occupied molecular orbital (HOMO), iv) the energy of the lowest unoccupied molecular orbital (LUMO), gap energy which describes the energy difference between LUMO and HOMO, v) the magnitude of the dipole moment (μ).

The results (**Table 4**) revealed that the total energies of the tested compounds and sorafenib have negative values which are favorable for spontaneous binding and interaction. In addition, compounds **15b**, **15d**, **16**, **17b**, **17c**, **17d**, and **18** have dipole moment values very close to that of sorafenib. The improved dipole moment can enhance hydrogen bond and non-bonded interactions in drug receptor complexes which keep an important role to increase binding affinity. Elevated dipole moment indicated the increased binding affinity with target enzyme during VEGFR-2 inhibitory activities.


Molecular orbital analysis


According to the frontier molecular orbital theory, the energies of HOMO and LUMO play an important role in chemical reactivity ⁸. It was evident that compounds **15a**, **15b**, **17a**, **17b**, **17c**, and **18** have gap energy values very close to that of sorafenib. **Fig. 9** showed the spatial distribution of molecular orbitals for sorafenib and the most promising members (**15b** and **17b**).

^b The octanol-water partition coefficient calculated taking into account the ionization states of the molecule


Table 4. Thermodynamic parameters of the synthesized compounds and sorafenib.

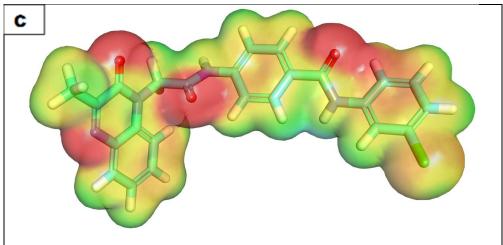

Name	Total Energy (kcal/mol)	Binding Energy (kcal/mol)	HOMO Energy (kcal/mol)	LUMO Energy (kcal/mol)	Gap Energy	μ
15a	-1608.474	-10.462	-0.200	-0.107	0.093	0.530
15b	-2139.791	-10.576	-0.200	-0.107	0.093	2.365
15c	-1756.361	-10.806	-0.183	-0.106	0.077	1.220
15d	-1959.422	-11.164	-0.205	-0.132	0.074	4.484
16	-1923.712	-11.558	-0.199	-0.122	0.077	2.095
17a	-1286.345	-10.666	-0.190	-0.094	0.097	1.734
17b	-1817.724	-10.717	-0.201	-0.103	0.098	3.061
17c	-1434.226	-11.008	-0.175	-0.093	0.082	2.298
17d	-1637.285	-11.367	-0.196	-0.124	0.072	4.801
18	-1601.579	-11.769	-0.192	-0.095	0.097	2.520
Sorafenib	-2000.377	-9.866	-0.200	-0.091	0.109	3.088

Fig. 9. Spatial distribution of of molecular orbitals for **A**) sorafenib, **B**) compound **15b**, and **C**) compound **17b**.

Fig. 10. Molecular electrostatic potential map of (A) sorafenib, (B) compound **15b**, and (C) compound **17b**.

Experimental section

1. Chemistry

All solvents and reagents were commercially available and used without further purification. Reactions progression were monitored by TLC sheets coated with UV fluorescent silica gel (Kieselgel 0.25mm, 60 F254, Merck Germany) and were visualized using UV lamp. The melting points were determined using a Gallen lamp melting point apparatus. Elemental analyses were accomplished using a CHN analyzer. The infrared spectra were recorded on FT/IR-6600typeA spectrophotometer. ¹H NMR spectra were recorded at 400 and 700 MHz, while ¹³C NMR spectra were run at 100 and 176 MHz, on a Bruker Avance NEO-600 equipped with a 1.7 mm TCI CryoProbe. Chemical shifts were expressed in δ (ppm) with reference to TMS and coupling constant (J) in Hertz using DMSO-d₆ and CDCl₃-d₆ as solvents. The mass spectra were recorded on an Agilent 6410 triple-quadrupole mass spectrometer equipped with an ESI source.

2. Biological testing

In vitro anti-proliferative activity

Anti-proliferative activity screening of the newly synthesized compounds was carried out against two human cancer cell lines namely, breast cancer (MCF-7) and Hepatocellular carcinoma (HepG-2). The cell lines were obtained from ATCC (American Type Culture Collection) via the Holding company for biological products and vaccines (VACSERA) (Cairo, Egypt). The anticancer activity was measured quantitatively using MTT assay protocol. Cell lines were cultured in

RPMI-1640 medium with 10% fetal bovine serum. Antibiotics added were 100 units/ml penicillin and100 μg/ml streptomycin at 37°C in a 5% CO₂ incubator. The cell lines were seeded in a 96-well plate at a density of 1.0 x 104 cells / well at 37 °C for 48 h under 5% CO₂. After incubation, the cells were treated with different concentration of synthesized compounds and incubated for 24 h. After 24 h of drug treatment, 20 μl of MTT solution at 5mg/ml was added and incubated for 4 h. Dimethyl sulfoxide (DMSO) in volume of 100 μl was added into each well to dissolve the purple formazan formed. The colorimetric assay was measured and recorded at absorbance of 570 nm using a plate reader (EXL 800, USA). The relative cell viability in percentage was calculated as (A570 of treated samples/A570 of untreated sample) X 100. Results for IC₅₀values of the active compounds were summarized in **Table 1**.

In vitro VEGFR-2 kinase assay

Inhibitory activity of the newly synthesized compounds against VEGFR-2 was evaluated using Human VEGFR-2 ELISA kit (Enzyme-Linked Immunosorbent Assay). A specific antibody for VEGFR-2 was seeded on a 96-well plate and 100 μ L of the standard solution or the tested compound was added, all were incubated at room temperature for 2.5 hours. Then washed, 100 μ L of the prepared biotin antibody was added, then incubated at room temperature for additional 1 hour. Washed, 100 μ L of streptavidin solution was added then incubated for 45 min. at room temperature. Washed again, 100 μ L of TMB Substrate reagent was added and incubated for 30 min. at room temperature. 50 μ L of the stop solution was added, then read at 450 nm immediately. The standard curve was drawn, concentrations on the X-axis and the absorbance on the Y-axis.

Cell cycle analysis

HepG-2 cells were seeded and incubated for 24 h in six-well plates each one contains 2 x 10⁵ cells per well. Fetal bovine serum (FBS, 10%) was added, after that cells were incubated at 37°C and 5% CO₂. The medium was replaced with (DMSO 1% v/v) containing the 2.5 μM of compound 17b, then incubated for 48 h, washed with cold phosphate buffered saline (PBS), fixed with 70% ethanol, rinsed with PBS then stained with the DNA fluorochrome PI, kept for 15 min at 37°C. Then samples were analyzed with a FACS Caliber flow cytometer.

Annexin V-FITC apoptosis assay

Annexin V-FITC/PI apoptosis detection kit was used for this investigation, **HepG-2** cells were stained with Annexin V fluorescein isothiocyanate (FITC) and counterstained with propidium iodide (PI). 2 x 10⁵ of HepG-2 cells were incubated with compound **17b** for 48 h, trypsinized,

washed with phosphate-buffered saline (PBS), stained for 15 min at 37°C in the dark. Then, analyzed with FACS Caliber flow cytometer.

Induction of apoptosis

In this test HepG-2 cells were treated with compound **17b** (2.3 µM) and analyzed for apoptosis using flowcytometry technique ⁹. The obtained results showed that compound **17b** induced early apoptosis (35.80%) by more than 4-fold over the control (8.22%) **Table 3** and **Fig. 4**.

Table 3: Effect of compound **17b** on stages of the cell death (HepG-2).

	Viable ^a	Apopt	Necrosis a		
Sample	(Left Bottom)	Early	Late	(Left Top)	
	(Left Bottom)	(Right Bottom)	(Right Top)		
HepG-2	91.44 ± 2.55	8.22 ± 0.61	0.26 ± 0.04	0.11 ± 0.03	
17b /HepG-2	63.45 ± 3.18	$35.80 \pm 3.18^{**}$	0.52 ± 0.09	0.20 ± 0.04	

^a Three independent experiments were applied for each value. **p < 0.01.

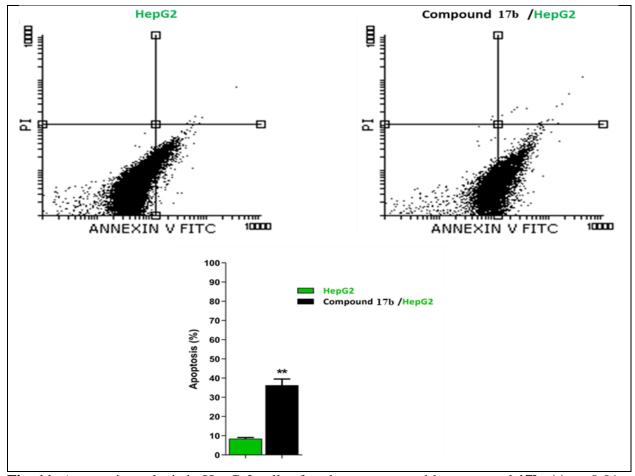


Fig. 11: Apoptosis analysis in HepG-2 cells after the treatment with compound 17b, **p < 0.01.

Caspase-3, and -9 determination

The percentage of caspase-3 activation was determined using the Caspase-Invitrogen Caspase-3 ELISA Kit (KHO1091) following the manufacturer's instructions.

Bax determination (real-time PCR).

The effect of compound **17b** on *BAX* expressions was determined at concentrations of 6.71, 8.68, 46.43, 4.55, and 3.43 μg/mL, respectively after 48 h of treatment on HepG-2 cells, using real-time PCR. The expression level of BAX was determined using a SYBR Green qRT-PCR kit (Bioneer, Daejeon, Korea) according to the manufacturer's protocol. PCR reactions were performed using specific primers for *BAX*. *BAX* forward primer: 5′-GCCCTTTTGCTTCAGGGTTT-3′; *BAX* Reverse primer: 5′ TCCAATGTCCAGCCCATGAT-3′. The reactions were carried out in triplicate using an Eco Real-Time PCR system (San Diego, CA, USA).

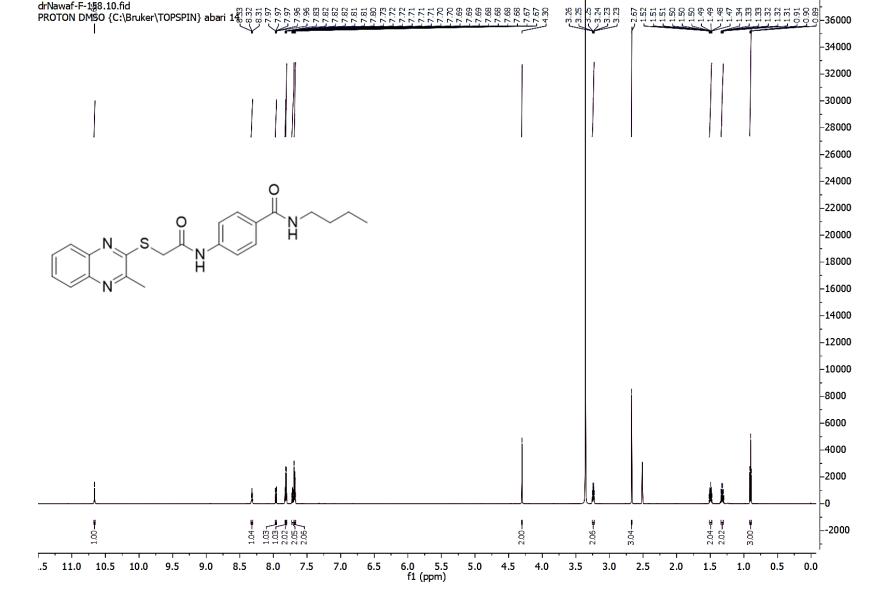
3. *In silico* studies

Molecular docking procedures

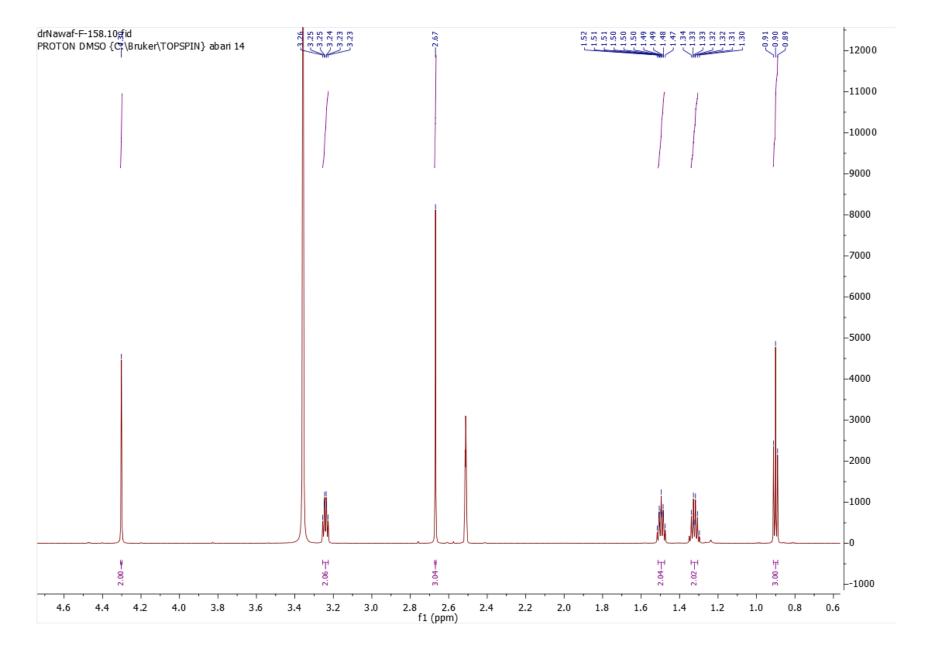
Molecular Operating Environment MOE, package version 2014.09 software was used for computational analysis. The crystal structure of VEGFR-2 was downloaded from the Protein Data Bank, http://www.rcsb.org/pdb (PDB ID: 2OH4, resolution: 2.05 Å). The crystal structures were imported into MOE, the structure preparation wizard of MOE was used to correct all the issues in protein structures. The water molecules were removed from downloaded protein then subjected to 3D protonation and energy minimization up to 0.01 gradient. Protein was subjected to energy minimization by applying MMFF94 force field, the binding site of the protein was defined and prepared for docking. The final optimized structures were saved in the working directory. Sorafenib and the designed compounds 2D structures were sketched using ChemBioDraw Ultra 14.0 and saved in MDL Molfile format. Next, the Molfile was opened, 3D structures were protonated, and energy minimized by applying MMFF94 force field then prepared for docking by optimizing the parameters, using ASE as score function. A maximum of 10 conformers was considered for each molecule in the docking analysis. After that, the docking scores (S) of the best -fitted conformation of each of the docked molecules with the amino acids at the VEGFR-2 binding pocket were recorded. The obtained compound-receptor complexes were then used to study the predicted ligand-receptor attachments at the target sites and their binding energies.

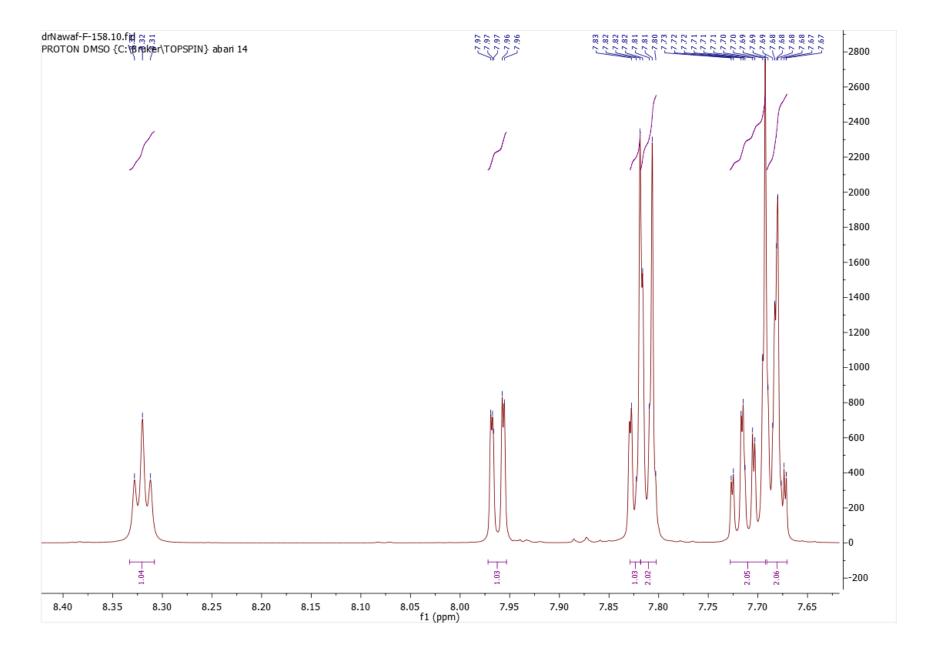
The same procedure was carried out for the docking studies of the most active compound 17b against cytochrome P450 (PDB ID: 4D7D).

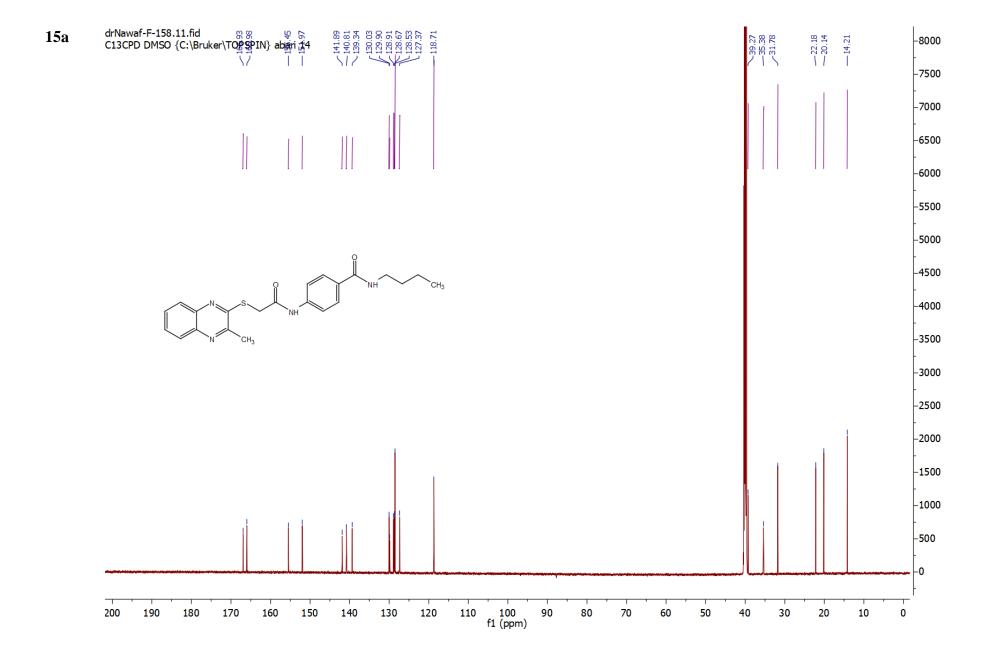
ADMET studies

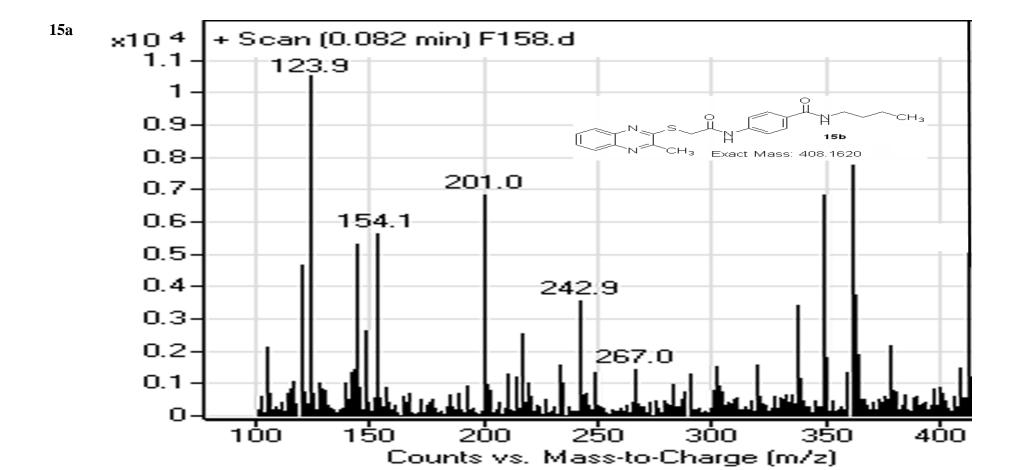

ADMET descriptors (absorption, distribution, metabolism, excretion and toxicity) of the compounds were determined using Discovery studio 4.0. At first, the CHARMM force field was applied then the tested compounds were prepared and minimized according to the preparation of small molecule protocol. Then ADMET descriptors protocol was applied to carry out these studies.

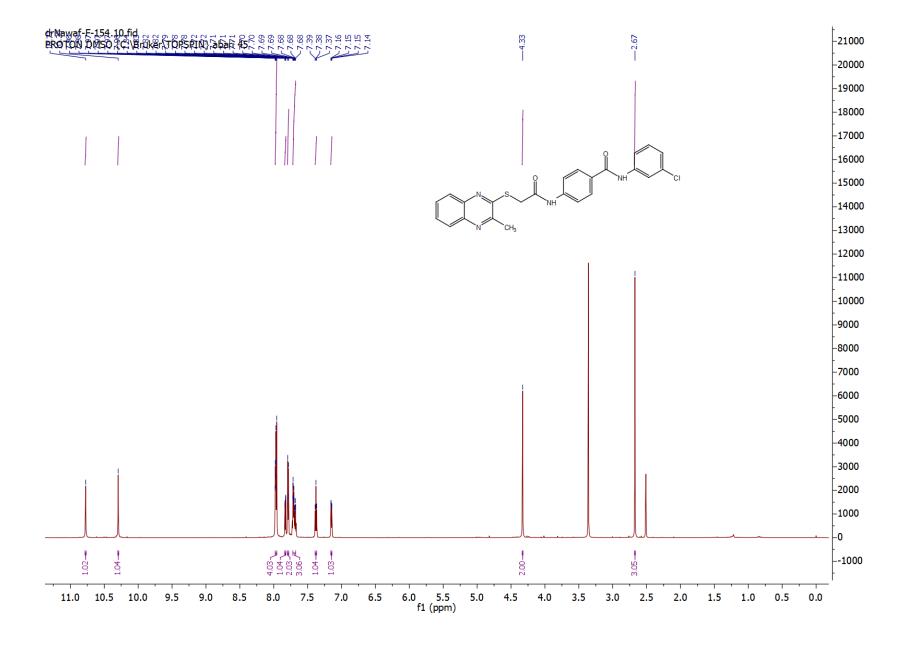
Toxicity studies

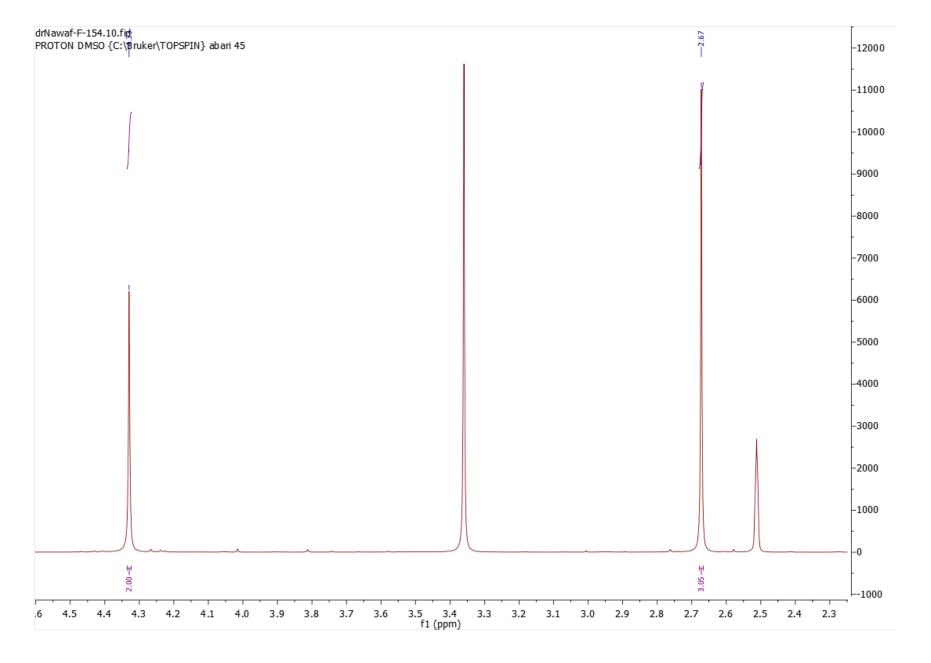

The toxicity parameters of the synthesized compounds were calculated using Discovery studio 4.0. Sorafenib was used as a reference drug. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol. Then different parameters were calculated from toxicity prediction (extensible) protocol.

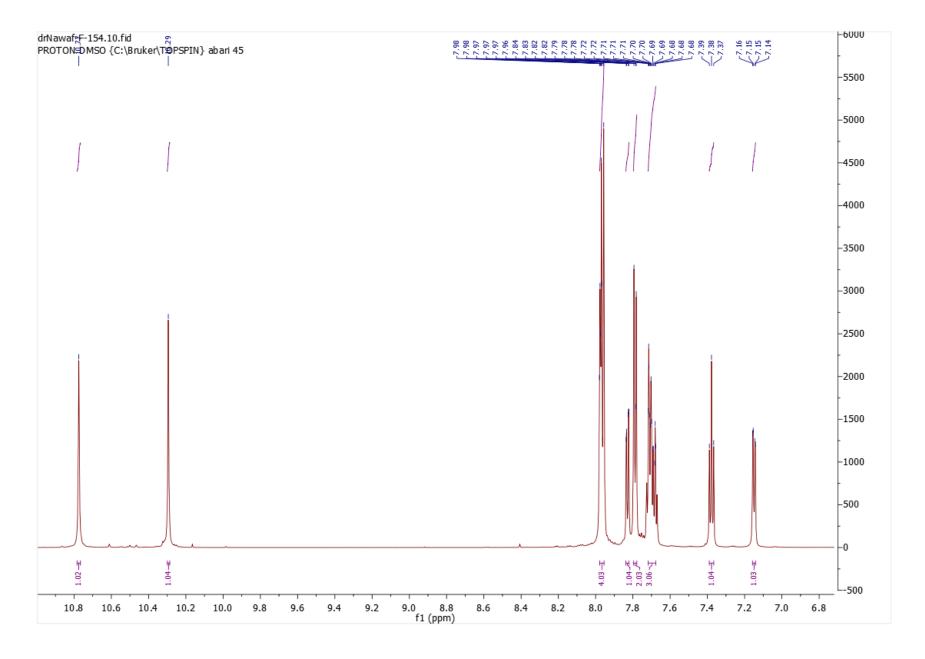

DFT studies:

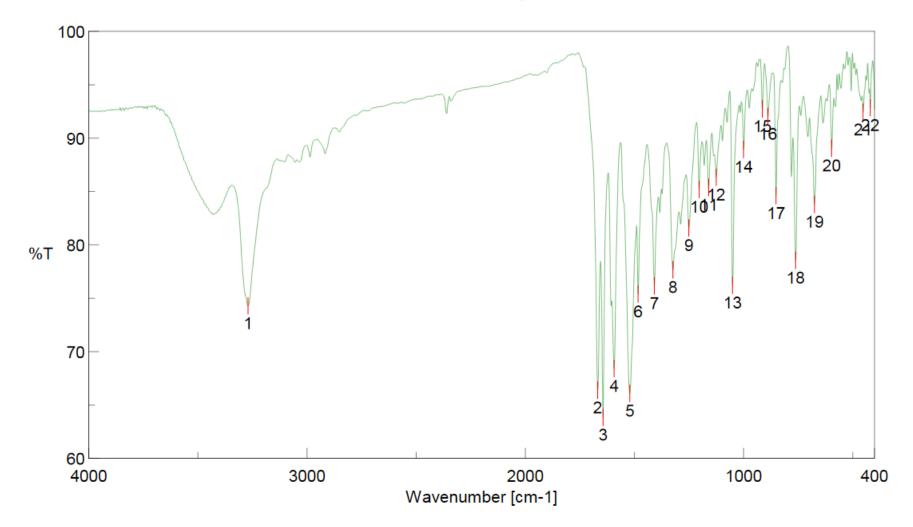

The DFT parameters (total energy, binding energy, HOMO, LUMO, gap energy, dipole moment, and electrostatic potential) were calculated using Discovery studio software. the tested compounds were prepared using prepare ligand protocol. Then, the prepared compounds were subjected to DFT calculation protocol using the default option.

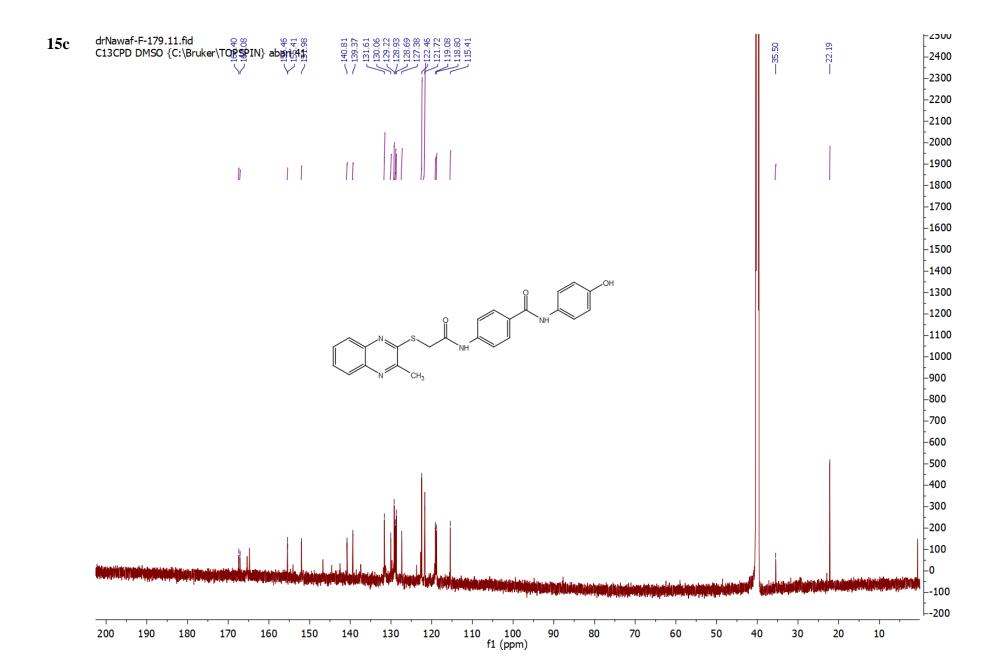


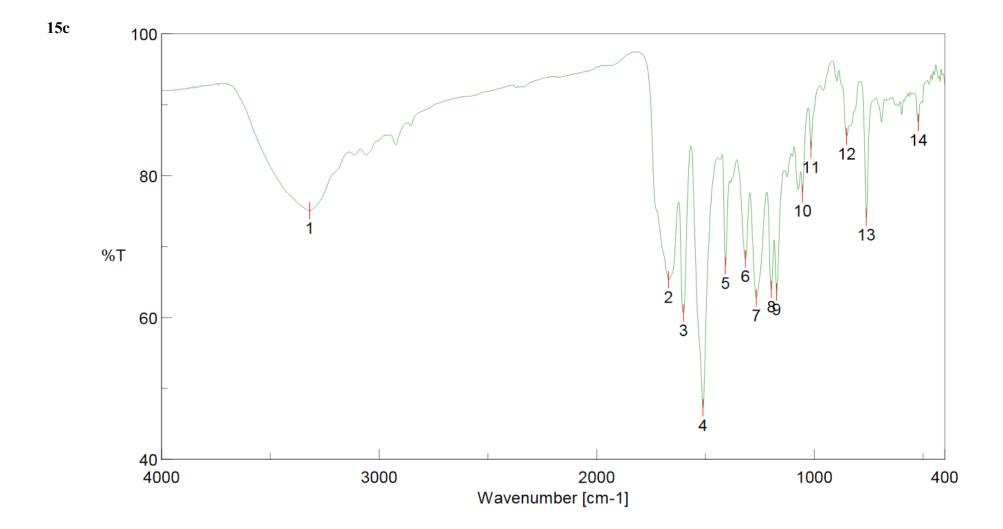


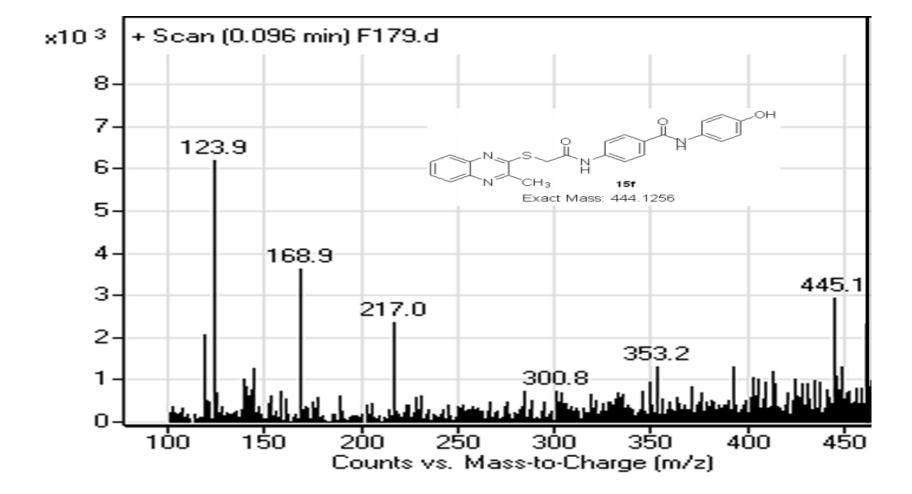


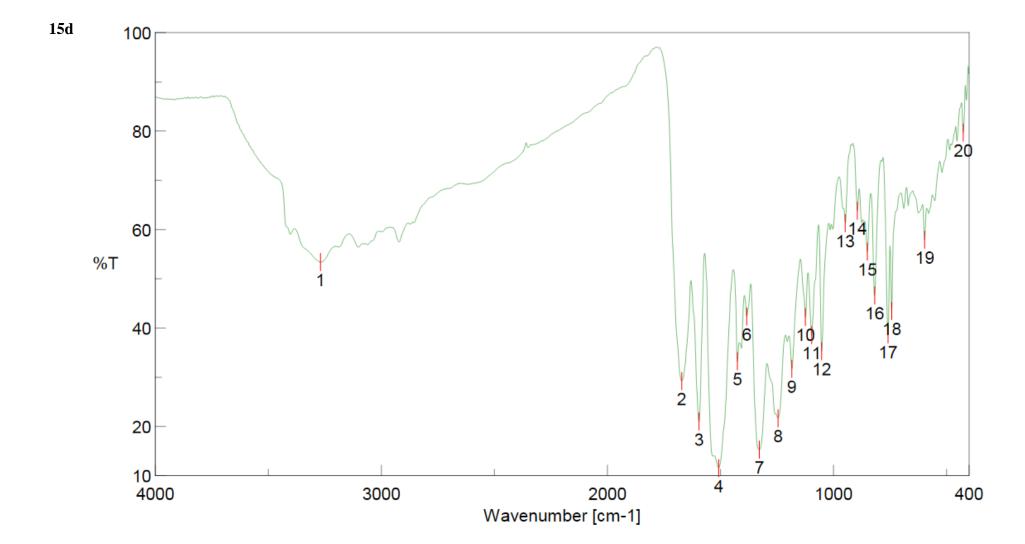


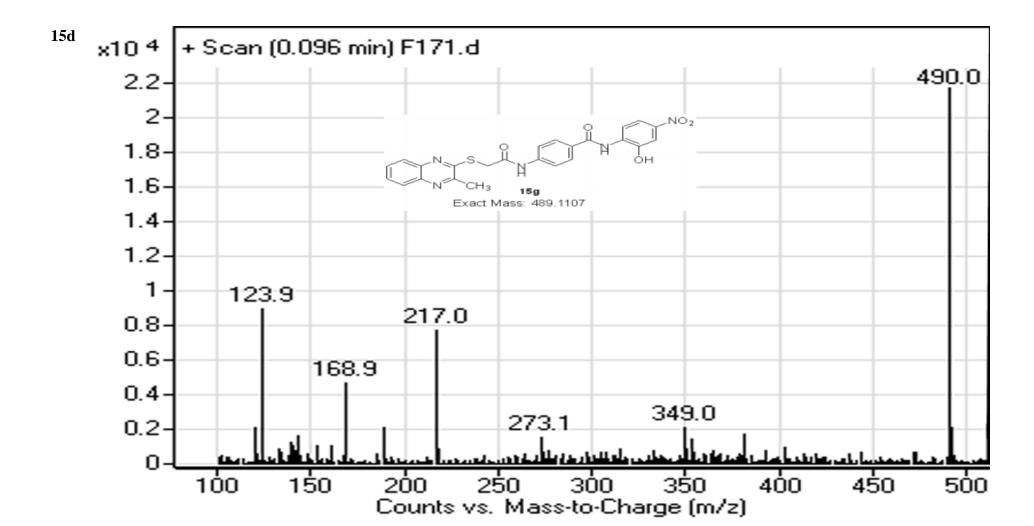


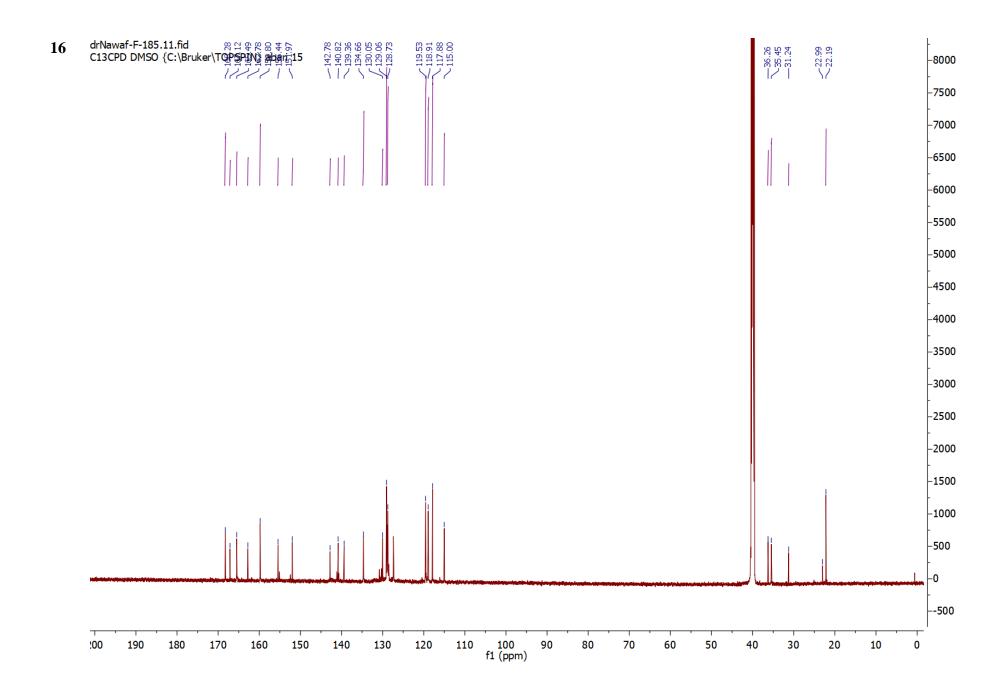


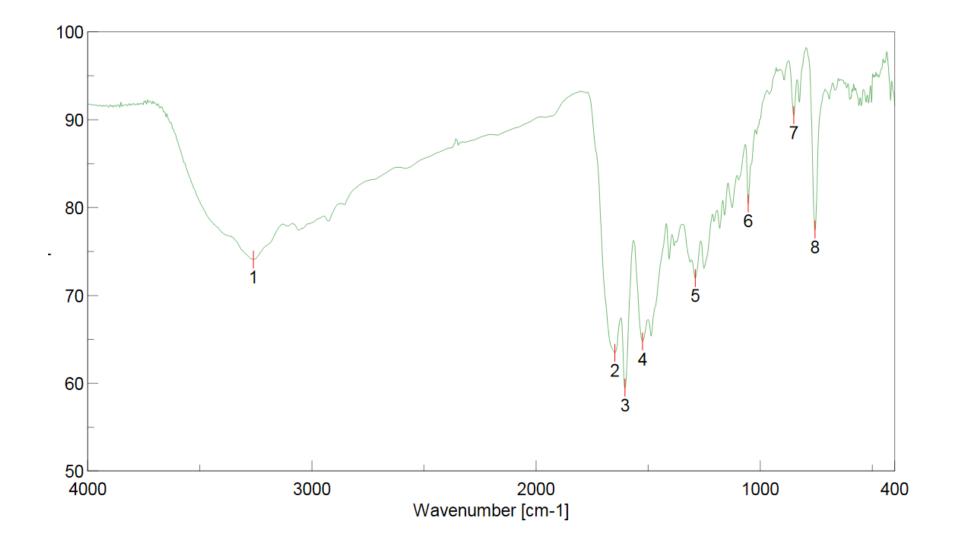

f1 (ppm)


Peak Find - Memory-147

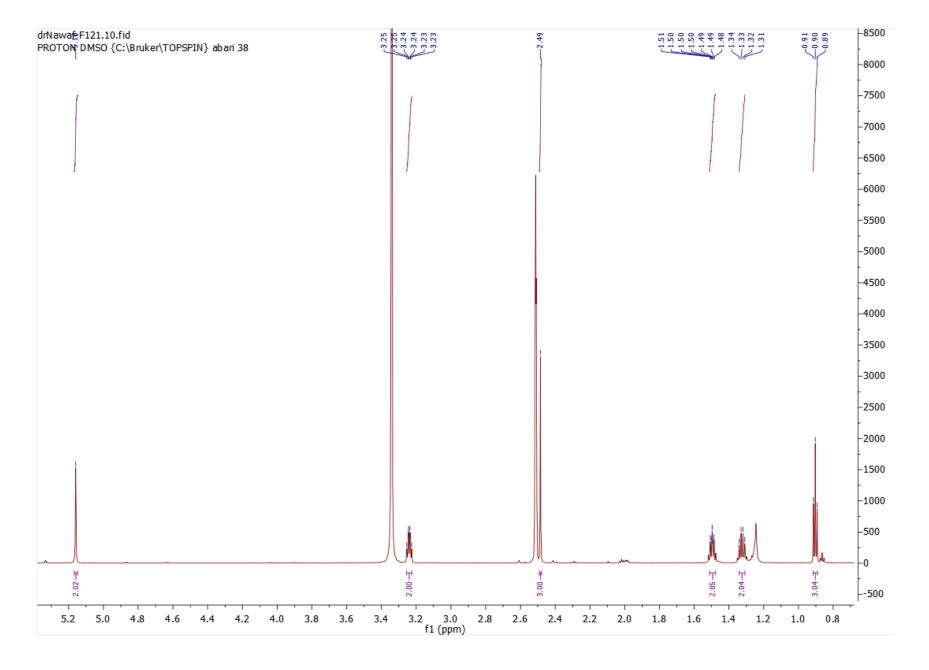


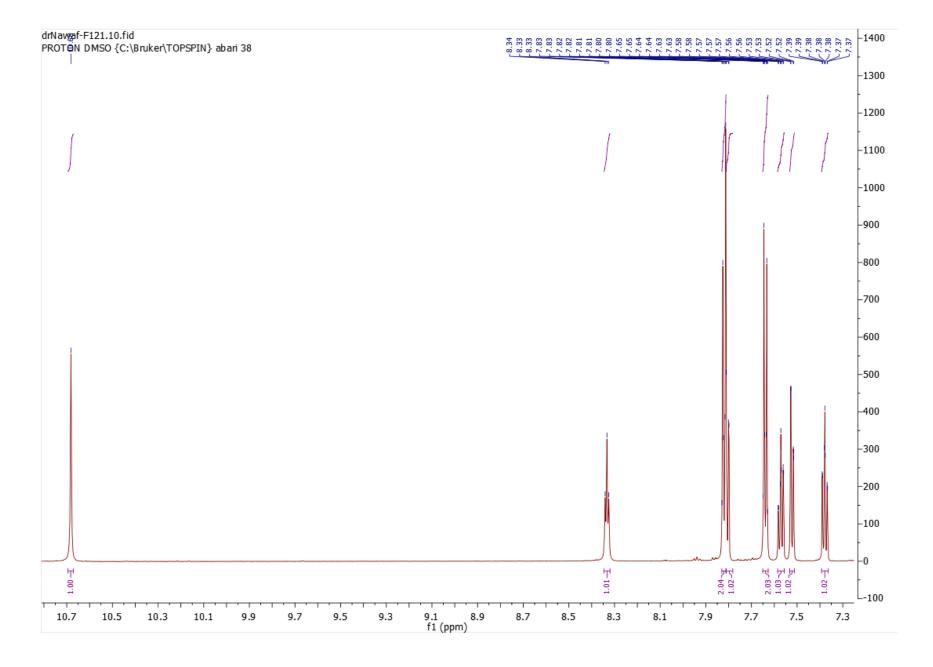


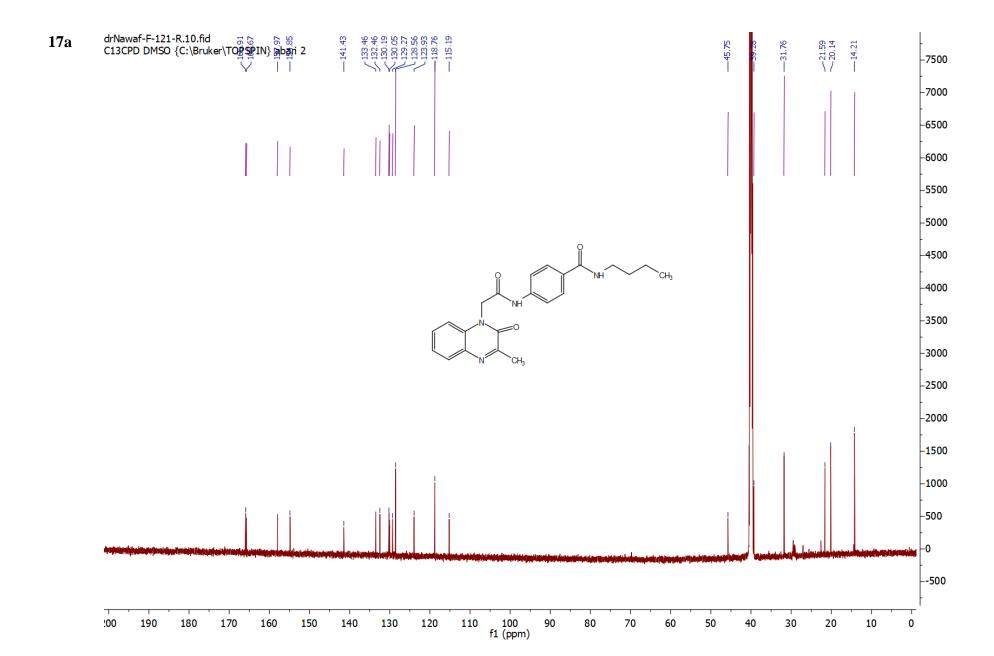


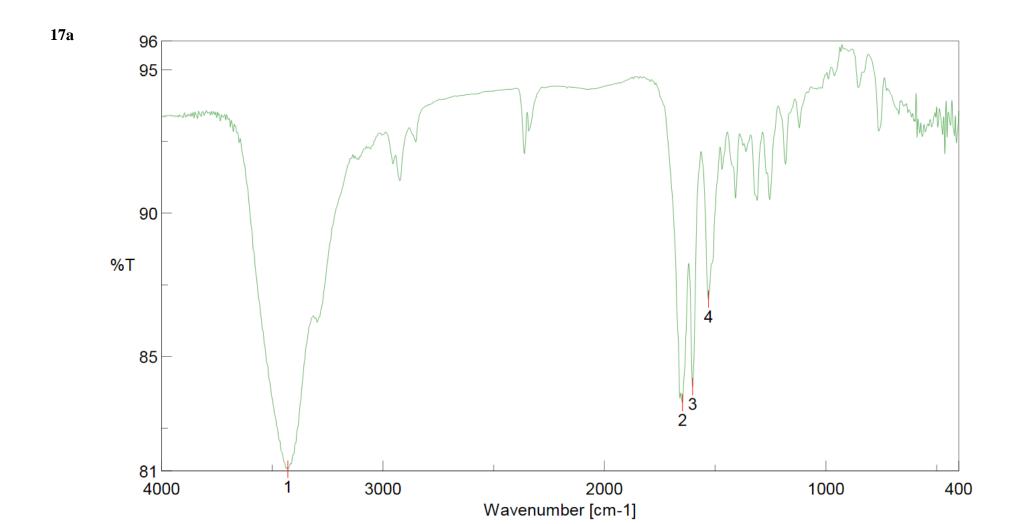


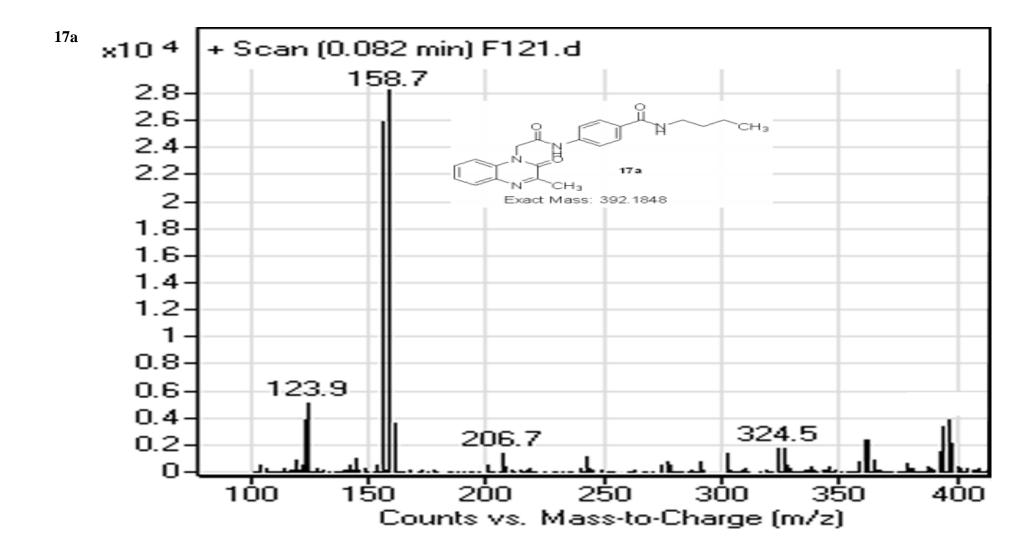
6.5 6.0 f1 (ppm)

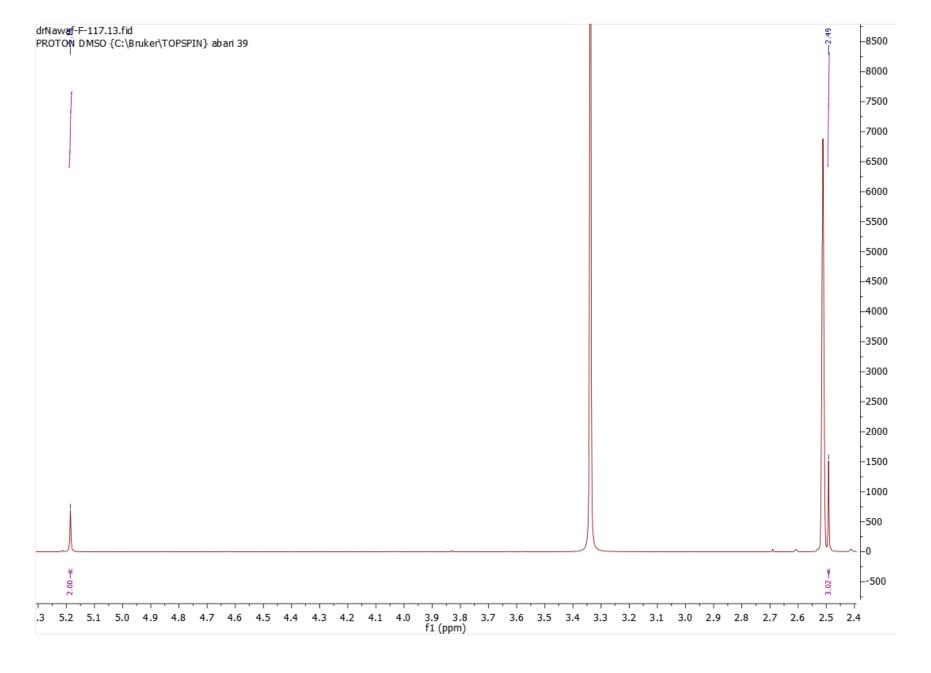

 1.5
 12.0
 11.5
 11.0
 10.5
 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0

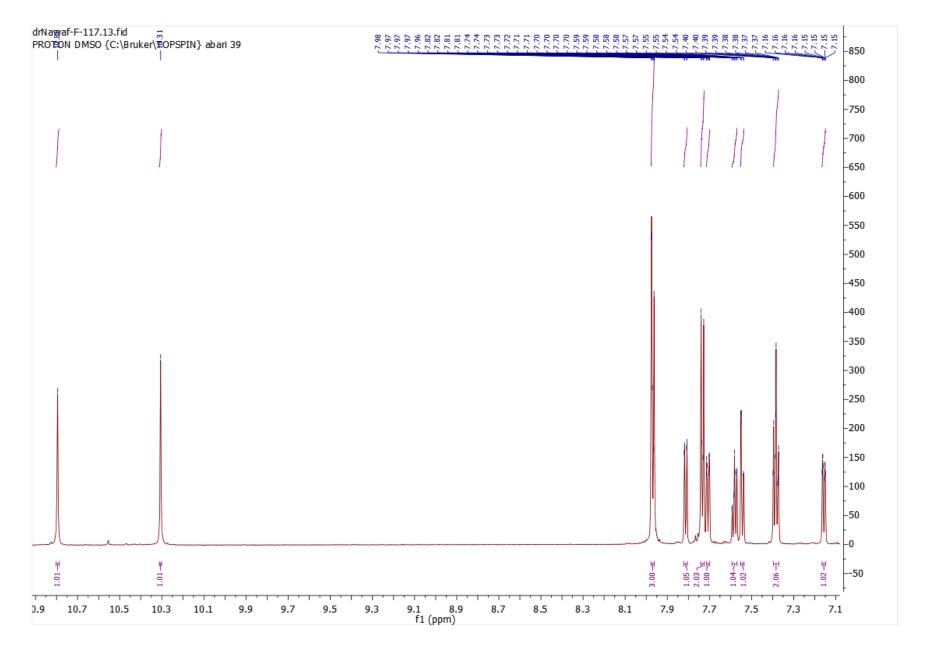

5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

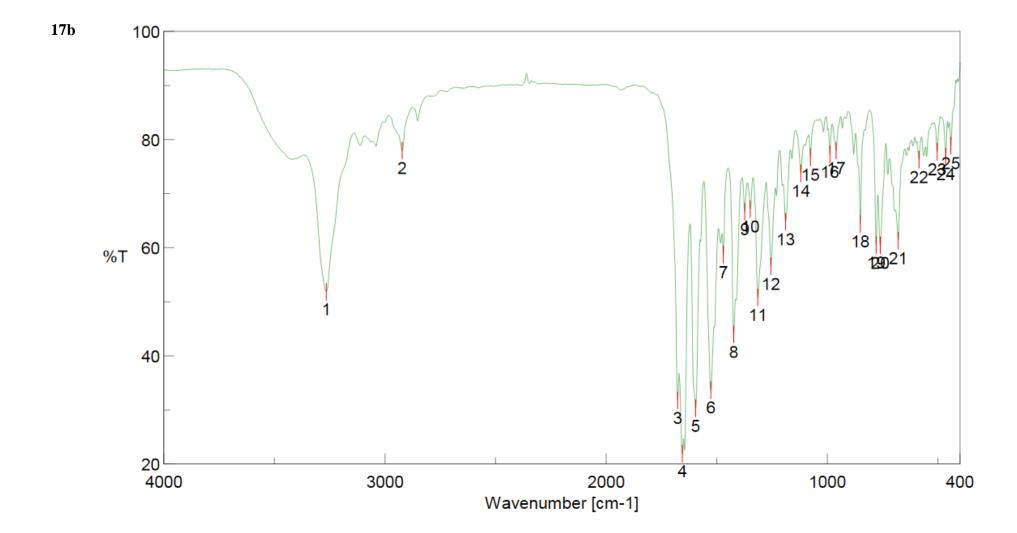


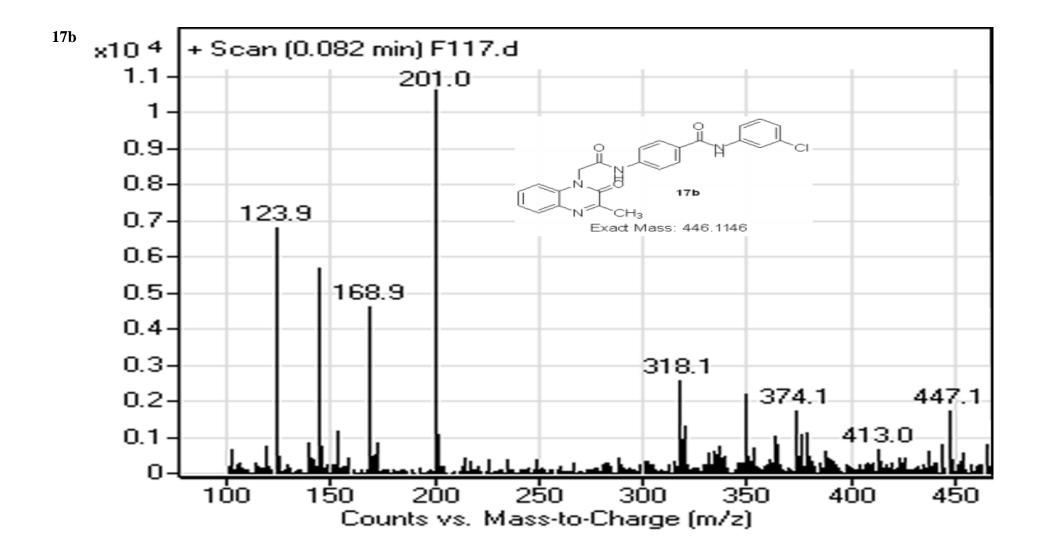


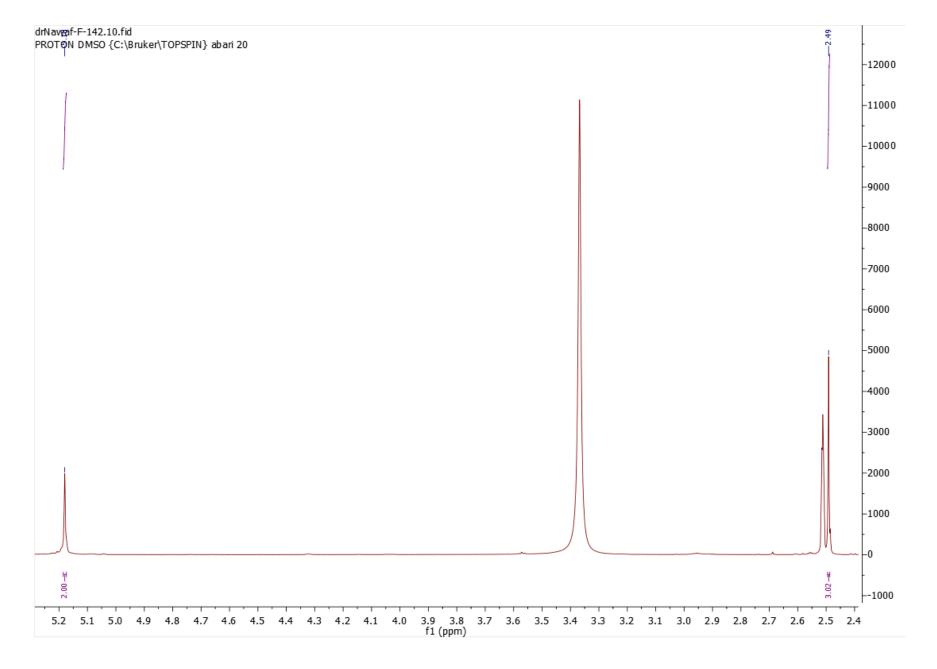


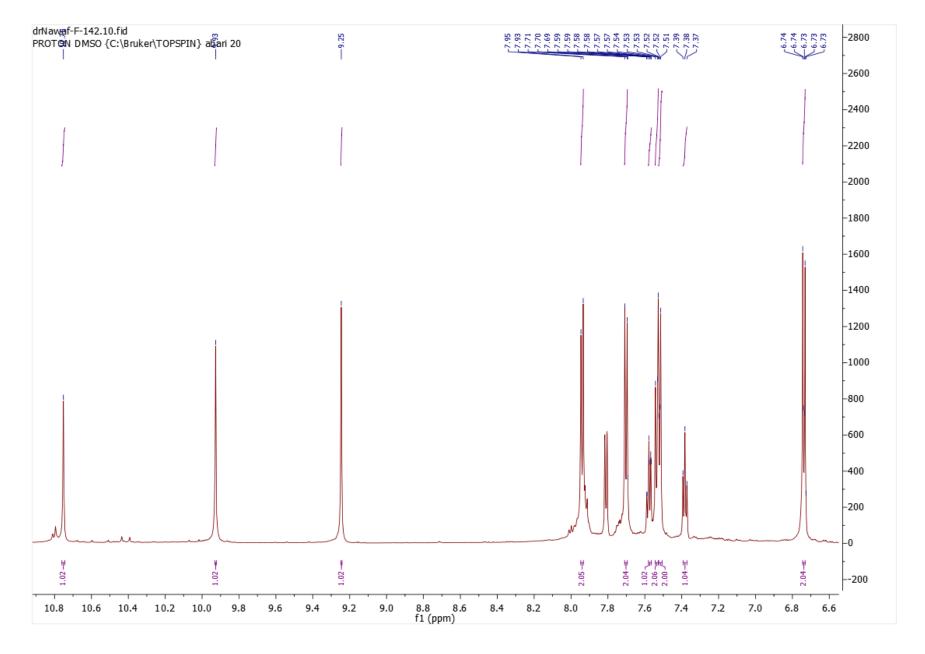


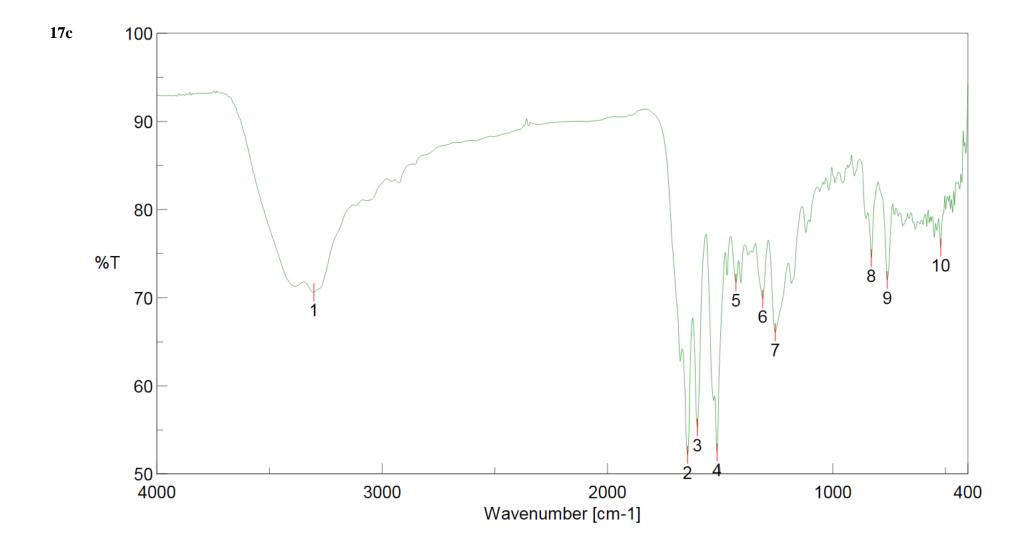


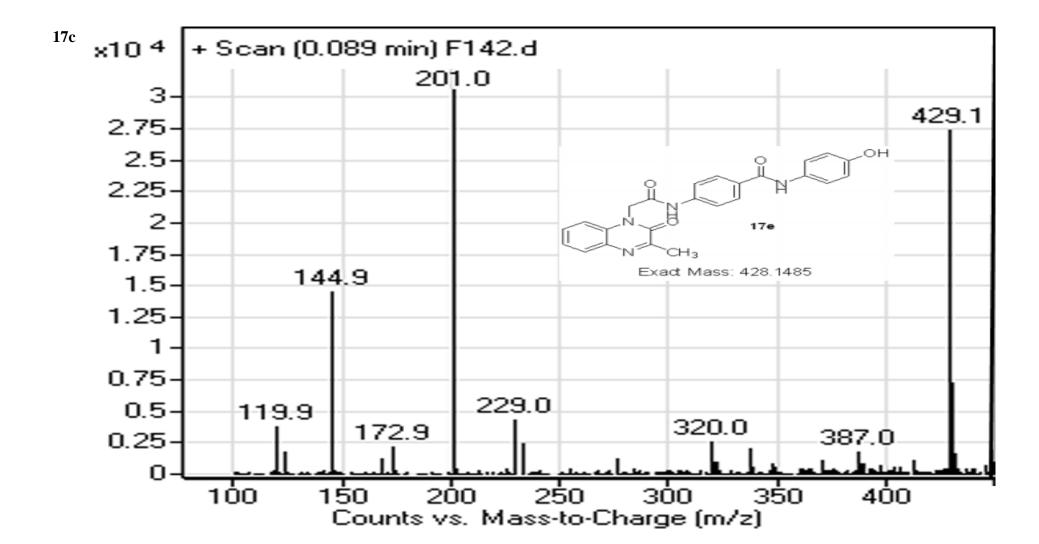


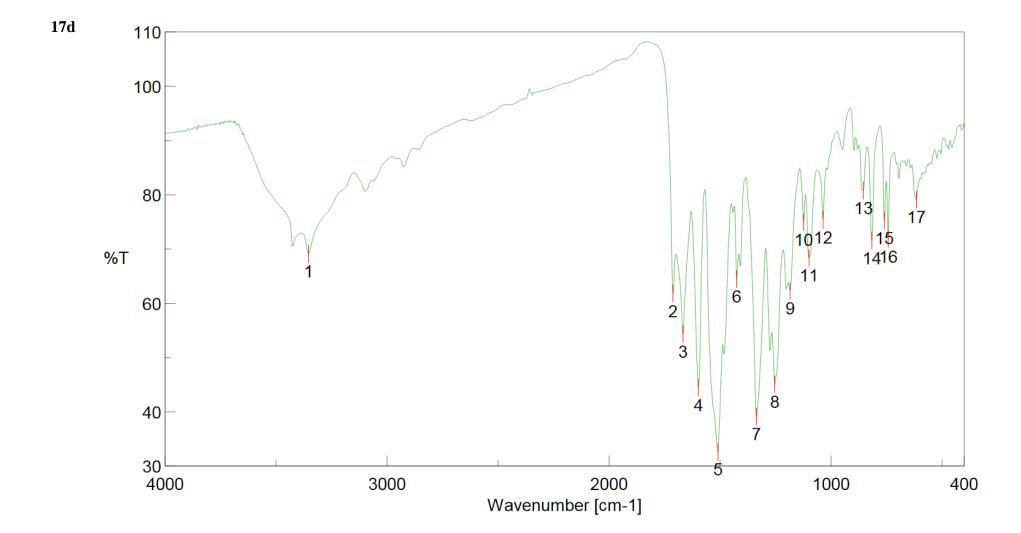


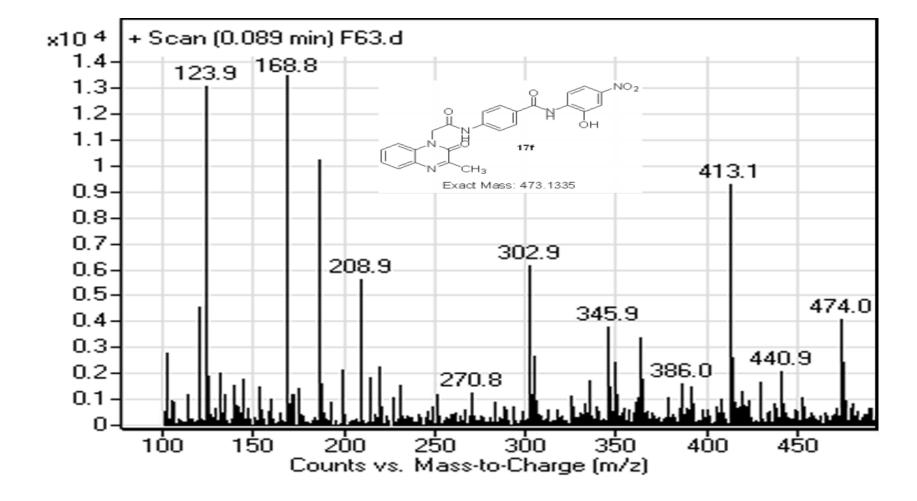


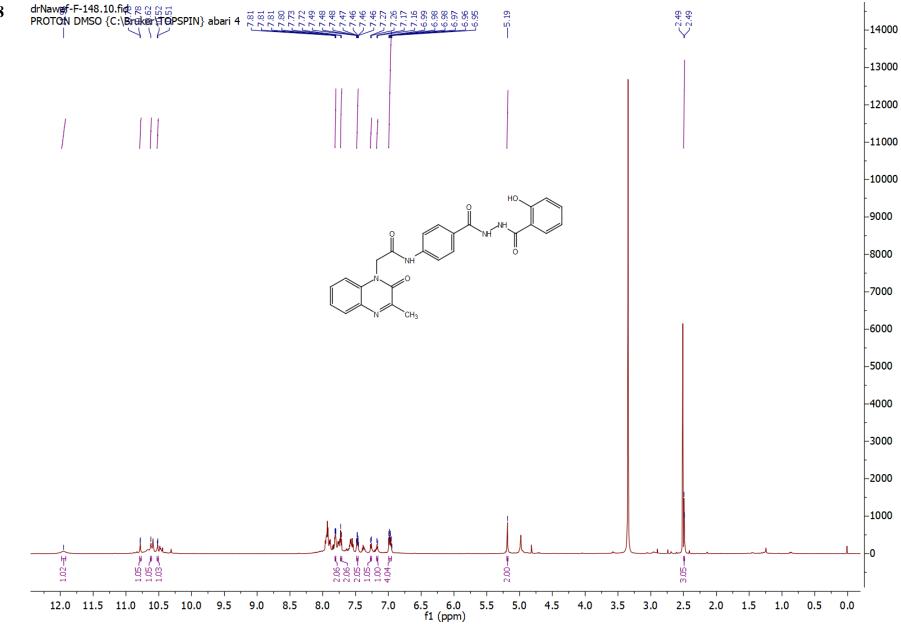


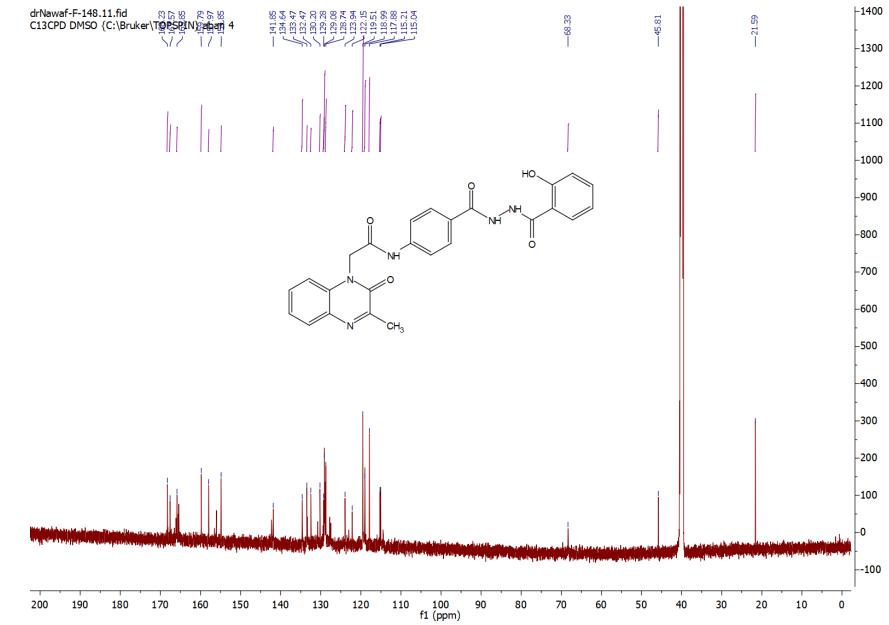


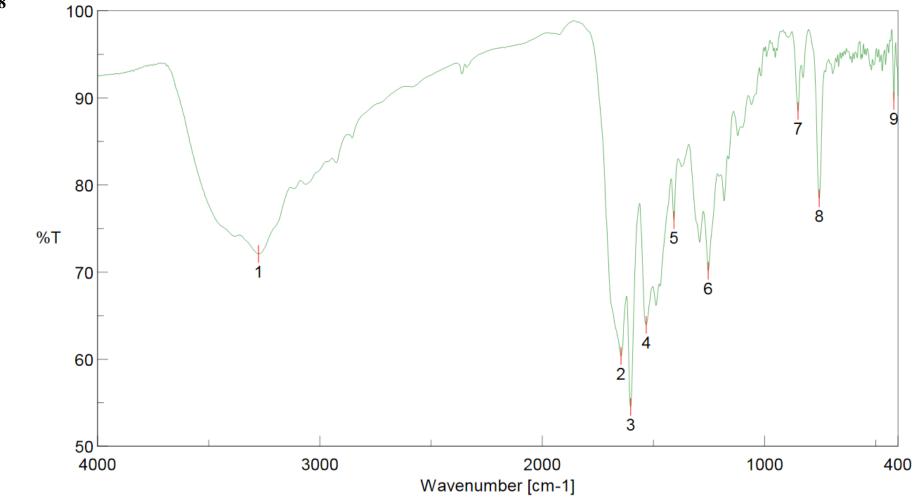












250

Counts vs. Mass-to-Charge (m/z)

2Ó0

300

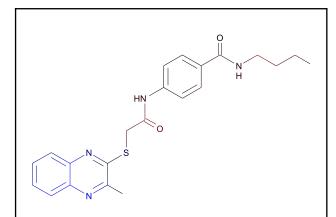
350

0.1

100

150

440.9


4Ó0

450

NMR spectra

& Chemistry 18(9), 1763-

1768, 1999.

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Degradable

Probability: 0.318 Enrichment: 0.729 Bayesian Score: -3.803

Mahalanobis Distance: 15.266

Mahalanobis Distance p-value: 7.74e-013

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Benzenesulfonamide,_3- nitro-N-phenyl-4- (phenylamino)-	9,10-Anthracenedione,_1- amino-2-(4- bromophenoxy)-4- hydroxy-	Bicyclo_2.2.1_hept-5-ene- 2,3- dicarboxylic_acid,_1,4,5,6, 7,7-hexachloro-		
Structure	NH N	Br Oth OH	CI CI OH OH		
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable		
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable		
Distance	0.606	0.667	0.728		
Reference	Environmental Toxicology	Environmental Toxicology	Environmental Toxicology		

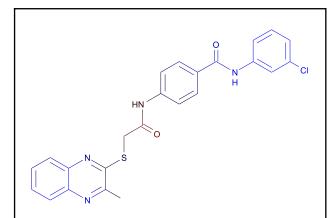
Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

& Chemistry 18(9), 1763-

1768, 1999.

1. OPS PC18 out of range. Value: 4.61. Training min, max, SD, explained variance: -3.5239, 4.5287, 1.221, 0.0171.


& Chemistry 18(9), 1763-

1768, 1999.

Feature (Contri	bution

Top features for positive contribution						
Fingerprint Bit/Smiles Feature Structure Score Degradable in training set						
SCFP_12	-1577600103	[*]CCCC	0.631	113 out of 147		

SCFP_12	1256995004	[*]CC(=O)N[*]	0.540	23 out of 32
SCFP_12	-1272798659	[*]CCC[*]	0.518	160 out of 234
	Top Fea	tures for negative	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	112554633	[*]:[cH]:[c](:n:[*]): [c](:[*]):[*]	-1.077	1 out of 12
SCFP_12	-1381862798	[*]:n:[c]1:[cH]:[cH]: [cH]:[*]:[c]:1:[*]	-1.077	1 out of 12
SCFP_12	1655199790	[*]:n:[c]1:[cH]:[cH]: [cH]:[cH]:[c]:1:[*]	-1.005	1 out of 11

 $C_{24}H_{19}CIN_4O_2S$

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Degradable

Probability: 0.029 Enrichment: 0.067

Bayesian Score: -18.792 Mahalanobis Distance: 15.602

Mahalanobis Distance p-value: 5.79e-014

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

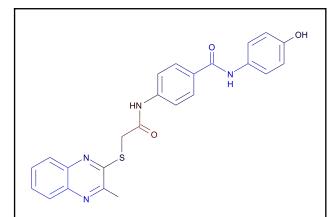
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	me 9,10-Anthracenedione,_1- amino-2-(4- bromophenoxy)-4- hydroxy- Benzenesulfonamide,_3- nitro-N-phenyl-4- (phenylamino)-		Mitin_FF		
Structure	Br OH O	THE	OH OH		
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable		
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable		
Distance	0.641	0.681	0.733		
Reference	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set	
SCFP_12	1256995004	[*]CC(=O)N[*]	0.540	23 out of 32	

SCFP_12	1311071855	[*]C(=O)[*]	0.461	173 out of 268
SCFP_12	2097618059	["]CC(=0)N[c](c[cH];["]);[cH];["]	0.446	5 out of 7
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	-1378360678	CI[c]1:[cH]:[cH]: [cH]:[cH]:1	-1.878	3 out of 62
SCFP_12	-52074512	[*]:[c](:[*])CI	-1.865	5 out of 93
SCFP_12	-601571304	[*]:[cH]:[c](CI):[cH] :[*]	-1.844	5 out of 91

 $|C_{24}H_{20}N_4O_3S|$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6
Donors: 3

Model Prediction

Prediction: Non-Degradable

Probability: 0.093 Enrichment: 0.213

Bayesian Score: -12.054

Mahalanobis Distance: 15.808

Mahalanobis Distance p-value: 1.13e-014

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

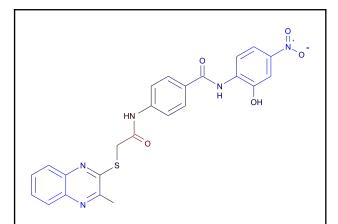
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	9,10- Anthracenedione,_1,8- dihydroxy-4-nitro-5- (phenylamino)-	oxy-4-nitro-5-		
Structure	OH O	OH OH	HO WIN Ca	
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Distance	0.689	0.707	0.723	
Reference	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC23 out of range. Value: 3.602. Training min, max, SD, explained variance: -3.0926, 3.437, 1.042, 0.0125.

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Degradable in training set SCFP_12 1256995004 0.540 23 out of 32

SCFP_12	1311071855	[*]C(=O)[*]	0.461	173 out of 268
SCFP_12	2097618059	[*]CC(=0)N[c](:[cH]:[*]):[cH]:[*]	0.446	5 out of 7
	Top Fea	tures for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	-1381862798	[*]:n:[c]1:[cH]: [cH]:[*]:	-1.077	1 out of 12
SCFP_12	112554633	[*]:[cH]:[c](:n:[*]): [c](:[*]):[*]		1 out of 12
SCFP_12	1655199790	[*]:n:[c]1:[cH]:[cH]: [cH]:[cH]:[c]:1:[*]	-1.005	1 out of 11

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8
Donors: 3

Model Prediction

Prediction: Non-Degradable

Probability: 0.022 Enrichment: 0.051

Bayesian Score: -20.302 Mahalanobis Distance: 21.366

Mahalanobis Distance p-value: 3.58e-038

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

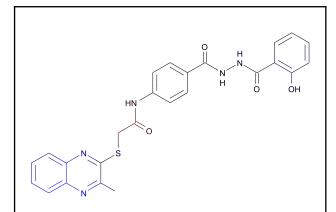
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Brilliant_Blue_6B	9,10- Anthracenedione,_1,8- dihydroxy-4-nitro-5- (phenylamino)-	Methylpyridine		
Structure	HO WIND Ca	OH OH NH	HO fth OH		
Actual Endpoint	Non-Degradable	Non-Degradable	Degradable		
Predicted Endpoint	Non-Degradable	Non-Degradable	Degradable		
Distance	0.621	0.722	0.838		
Reference	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.		

Model Applicability

Feature Contribution


Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC18 out of range. Value: 4.9115. Training min, max, SD, explained variance: -3.5239, 4.5287, 1.221, 0.0171.

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Degradable in training set SCFP_12 1256995004 0.540 23 out of 32

[*]CC(=O)N[*]

SCFP_12	1311071855	0.461	173 out of 268
SCFP_12	2097618059	[*]C(=O)[*] 0.446 (*)C(=O)N[c](:[cH]:[*]):[cH]:[*]	5 out of 7
	Top Fea	tures for negative contribu	ution
Fingerprint	Bit/Smiles	Feature Structure Score	Degradable in training set
SCFP_12	1311339974	-1.780 -1.780 -1.780 -1.780	3 out of 56
SCFP_12	1334669481	-1.631	10 out of 136
SCFP_12	10	-1.607 -1.607 -1.607 -1.607	11 out of 145

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: Non-Degradable

Probability: 0.172 Enrichment: 0.394 Bayesian Score: -8.173

Mahalanobis Distance: 15.835

Mahalanobis Distance p-value: 9.05e-015

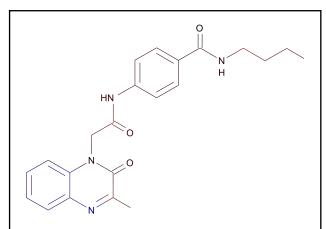
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a sutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	Brilliant_Blue_6B	9,10- Anthracenedione,_1,8- dihydroxy-4-nitro-5- (phenylamino)-	Benzenesulfonic_acid,_4, 4'-oxybis-,_dihydrazide	
Structure	HO WAN Ca	OH O	H ₂ N NH NH ₂	
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Distance	0.782	0.807	0.880	
Reference	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	1256995004	[*]CC(=O)N[*]	0.540	23 out of 32

SCFP_12	1311071855	[*]C(=O)[*]	0.461	173 out of 268
SCFP_12	2097618059	[*]CC(=O)N[c](:[cH]:[**]):[cH]:[*]	0.446	5 out of 7
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	112554633	[*]:[cH]:[c](:n:[*]): [c](:[*]):[*]	-1.077	1 out of 12
SCFP_12	-1381862798	[*]:n:[c]1:[cH]: [cH]:[*]:[c]:1:[*]	-1.077	1 out of 12
SCFP_12	1655199790	[*]:n:[c]1:[cH]:[cH]: [cH]:[cH]:[c]:1:[*]	-1.005	1 out of 11

 $C_{22}H_{24}N_4O_3$

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7 Acceptors: 4

Donors: 2

Model Prediction

Prediction: Degradable

Probability: 0.613 Enrichment: 1.406 Bayesian Score: 2.598

Mahalanobis Distance: 13.176

Mahalanobis Distance p-value: 8.54e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Bicyclo_2.2.1_hept-5-ene- 2,3- dicarboxylic_acid,_1,4,5,6 ,7,7-hexachloro-	Benzenesulfonamide,_3- nitro-N-phenyl-4- (phenylamino)-	9,10-Anthracenedione,_1- amino-2-(4- bromophenoxy)-4- hydroxy-		
Structure	CI OH OH	ZH-OWN HE HE	Br Oth OH O		
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable		
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable		
Distance	0.647	0.689	0.723		
Reference	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
	Top fe	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	136627117	NH N	0.662	56 out of 70
		[*]C(=[*])C		

SCFP_12	-1577600103	NN NH	0.631	113 out of 147
SCFP_12	1256995004	[*]CCCC [*]CC(=0)N[*]	0.540	23 out of 32
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	6	[*]N=[*]	-1.018	2 out of 18
SCFP_12	-1377141613	[*][c]1:[*]:[cH]:[cH] :[cH]:[c]:1N=[*]	-0.964	0 out of 4
SCFP_12	1851000357	[*][c](:[*])):[c](:[cH]:[*])N=[*]	-0.964	0 out of 4

1768, 1999.

O N H CI

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4 Donors: 2

Model Prediction

Prediction: Non-Degradable

Probability: 0.082 Enrichment: 0.187

Bayesian Score: -12.860 Mahalanobis Distance: 12.676

Mahalanobis Distance p-value: 1.27e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Bicyclo_2.2.1_hept-5-ene- 2,3- dicarboxylic_acid,_1,4,5,6 ,7,7-hexachloro-	2,3- dicarboxylic_acid,_1,4,5,6 bromophenoxy)-4-		
Structure	CI OH OH	Br Oth OH O	NH N	
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Distance	0.633	0.669	0.711	
Reference	Environmental Toxicology & Chemistry 18(9), 1763-	Environmental Toxicology & Chemistry 18(9), 1763-	Environmental Toxicology & Chemistry 18(9), 1763-	

1768, 1999.

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. All properties and OPS components are within expected ranges.

1768, 1999.

Feature Co	ntribution			
	Top fe	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	136627117	NH OCI	0.662	56 out of 70
		[*]C(=[*])C		

SCFP_12	1256995004	[*]CC(=O)N[*]	0.540	23 out of 32
SCFP_12	-587539325	[*]N([*])CC(=[*])[*]	0.504	2 out of 2
	-	ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	-1378360678	Cl[c]1:[cH]:[*]:[cH]: [cH]:1	-1.878	3 out of 62
SCFP_12	-52074512	[*]:[c](:[*])CI	-1.865	5 out of 93
SCFP_12	-601571304	[*]:[cH]:[c](Cl):[cH] :[*]	-1.844	5 out of 91

OH N H O

C₂₄H₂₀N₄O₄ Molecular Weight: 428.44

ALogP: 2.218

Rotatable Bonds: 5

Acceptors: 5
Donors: 3

Model Prediction

Prediction: Non-Degradable

Probability: 0.219 Enrichment: 0.503 Bayesian Score: -6.527

Mahalanobis Distance: 13.089

Mahalanobis Distance p-value: 1.39e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzamide,_N3bis(2- hydroxyethyl)amino_phen yl	9,10-Anthracenedione,_1- amino-2-(4- bromophenoxy)-4- hydroxy-	Benzenesulfonamide,_3- nitro-N-phenyl-4- (phenylamino)-	
Structure	HO NN NH NH O	Br Oth OH	NH N	
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Distance	0.682	0.756	0.770	
Reference	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC19 out of range. Value: 3.3958. Training min, max, SD, explained variance: -3.6394, 3.3101, 1.187, 0.0162.

Feature Contribution				
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	136627117	[*]C(=[*])C	0.662	56 out of 70

SCFP_12	1256995004	[*]CC(=O)N[*]	0.540	23 out of 32
SCFP_12	-587539325	[*]N([*])CC(=[*])[*]	0.504	2 out of 2
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	6	[*]N=[*]	-1.018	2 out of 18
SCFP_12	-1377141613	[*][c]1:[*]:[cH]:[cH] :[cH]:[c]:1N=[*]		0 out of 4
SCFP_12	1851000357	[*][c](:[c])N=[*]	-0.964	0 out of 4

 $C_{24}H_{19}N_5O_6$

Molecular Weight: 473.43756

ALogP: 2.113 Rotatable Bonds: 6

Acceptors: 7
Donors: 3

Model Prediction

Prediction: Non-Degradable

Probability: 0.058 Enrichment: 0.132

Bayesian Score: -14.947
Mahalanobis Distance: 19.514

Mahalanobis Distance p-value: 1.48e-029

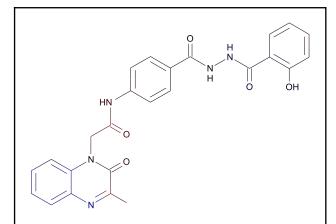
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Name	Brilliant_Blue_6B	Brilliant_Blue_6B 9,10- Anthracenedione,_1,8- dihydroxy-4-nitro-5- (phenylamino)-	
Structure	HO THE Ca	OH O OH	OH NH H
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable
Distance	0.679	0.689	0.853
Reference	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

ntribution			
Top fe	atures for positive of	ontribution	
Bit/Smiles	Feature Structure	Score	Degradable in training set
136627117	[*]C(=[*])C	0.662	56 out of 70
	Top fe Bit/Smiles	Bit/Smiles Feature Structure	Bit/Smiles Feature Structure Score 136627117 0.662

SCFP_12	1256995004	[*]CC(=O)N[*]	0.540	23 out of 32
SCFP_12	-587539325	[*]N([*])CC(=[*])[*]	0.504	2 out of 2
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	1311339974	[*][N+](=O)[*]	-1.780	3 out of 56
SCFP_12	1334669481	[*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]	-1.631	10 out of 136
SCFP_12	10	[*][N+](=[*])[*]	-1.607	11 out of 145

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: Non-Degradable

Probability: 0.382 Enrichment: 0.875 Bayesian Score: -2.323

Mahalanobis Distance: 13.528

Mahalanobis Distance p-value: 1.09e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	9,10- Anthracenedione,_1,8- dihydroxy-4-nitro-5- (phenylamino)-	Anthracenedione,_1,8- dihydroxy-4-nitro-5-		
Structure	OH OH OH	H ₂ N NH NH ₂	HO WHO WAS CA	
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Distance	0.842	0.858	0.866	
Reference	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763- 1768, 1999.	Environmental Toxicology & Chemistry 18(9), 1763-1768, 1999.	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
	Top fe	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	136627117		0.662	56 out of 70
		[*]C(=[*])C		

SCFP_12	1256995004	[*]CC(=O)N[*]	0.540	23 out of 32
SCFP_12	-587539325	[*]N([*])CC(=[*])[*]	0.504	2 out of 2
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	6	[*]N=[*]	-1.018	2 out of 18
SCFP_12	1851000357	[*][c](:[*])N=[*]	-0.964	0 out of 4
SCFP_12	-1377141613	[*][c]1:[*]:[cH]:[cH] :[cH]:[c]:1N=[*]	-0.964	0 out of 4

1768, 1999.

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Non-Degradable

Probability: 0.013 Enrichment: 0.030

Bayesian Score: -23.288
Mahalanobis Distance: 15.358

Mahalanobis Distance p-value: 3.82e-013

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

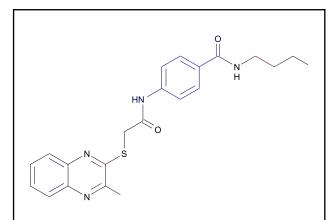
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Mitin_FF	9,10-Anthracenedione,_1- amino-2-(4- bromophenoxy)-4- hydroxy-	Benzamide,_N3bis(2- hydroxyethyl)amino_phen yl	
Structure	CI MAN H H NAME OF THE PART OF	Br Oth OH O	HO NAME OF THE NITH	
Actual Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Predicted Endpoint	Non-Degradable	Non-Degradable	Non-Degradable	
Distance	0.634	0.783	0.789	
Reference	Environmental Toxicology & Chemistry 18(9), 1763-	Environmental Toxicology & Chemistry 18(9), 1763-	Environmental Toxicology & Chemistry 18(9), 1763-	

1768, 1999.

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. All properties and OPS components are within expected ranges.

1768, 1999.

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	1311071855	[*]C(=O)[*]	0.461	173 out of 268

SCFP_12	1	[*]C(=[*])[*]	0.359	194 out of 333
SCFP_12	12	FF	0.264	245 out of 463
		tures for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Degradable in training set
SCFP_12	-1378360678	CI[c]1:[cH]:[*]:[cH]:	-1.878	3 out of 62
SCFP_12	-52074512	[*]:[c](:[*])CI	-1.865	5 out of 93
SCFP_12	-601571304	[*]:[cH]:[c](CI):[cH] :[*]	-1.844	5 out of 91

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Mild
Probability: 0.781
Enrichment: 1.133
Bayesian Score: -1.662
Mahalanobis Distance: 9.107

Mahalanobis Distance p-value: 0.454

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	
Structure	O ₁ , NH ₂ O OH O	NH ₂	CI CI OH OH	
Actual Endpoint	Mild	Mild	Moderate_Severe	
Predicted Endpoint	Mild	Mild	Moderate_Severe	
Distance	0.693	0.697	0.728	
Reference	28ZPAK 239;72	28ZPAK-;124;72	28ZPAK-;92;72	

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

Feature Contribution						
Top fe	atures for positive o	ontribution				
Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set			
159404153	[*]CCCNC(=[*])[*]	0.324	15 out of 16			
	Top fe	Bit/Smiles Feature Structure 159404153	Bit/Smiles Feature Structure Score 159404153 0.324			

FCFP_10	-1106976657	CL NAS ON NH	0.317	4 out of 4
FCFP_10	-1272709286	[*]C(=[*])NCCCC	0.285	234 out of 266
		[*]CCN[*]		
Fingerprint	Top Featu Bit/Smiles	ures for negative of Feature Structure	Score	Moderate Severe
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	-1.293	in training set
FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1
FCFP_10	-1549103449	[*]NC(=O)[c](:[*]):[*	-0.504	2 out of 6

C₂₄H₁₉CIN₄O₂S

Molecular Weight: 462.95126

ALogP: 4.743
Rotatable Bonds: 6

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Mild
Probability: 0.263
Enrichment: 0.382
Bayesian Score: -8.589
Mahalanobis Distance: 7.465

Mahalanobis Distance p-value: 0.987

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	ANTHRAQUINONE; 1;1'- IMINODI-	ANTHRAQUINONE; 1;4- BIS(p-TOLYLAMINO)-		
Structure	O WH	H H H H H H H H H H H H H H H H H H H	The state of the s		
Actual Endpoint	Mild	Mild	Moderate_Severe		
Predicted Endpoint	Mild	Mild	Mild		
Distance	0.721	0.730	0.745		
Reference	28ZPAK-;90;72	28ZPAK-;125;72	28ZPAK -;124;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-745491832	[*][c]1:[*]:[cH]:[cH] :[c](CI):[cH]:1	0.304	29 out of 32	

FCFP_10	-1513589583	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[c](CI):[c H]:1	0.256	2 out of 2
FCFP_10	-1410049896	[*]S[c](:n:[*]):[c]([*]):[*]	0.256	2 out of 2
	Top Featur	es for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1175232969	[']:[eH]:[e](NC(=O)[e	-1.293	0 out of 4
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*	-1.293	0 out of 4
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:1	-1.293	0 out of 4

OH N N S

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6
Donors: 3

Model Prediction

Prediction: Mild
Probability: 0.415
Enrichment: 0.602
Bayesian Score: -7.039
Mahalanobis Distance: 7.499

Mahalanobis Distance p-value: 0.985

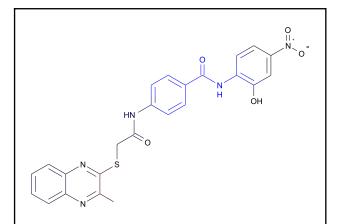
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE				
Structure	NH 2 NH NH NH	Oth OH O	NH ONH NH ONH		
Actual Endpoint	Mild	Mild	Mild		
Predicted Endpoint	Mild	Mild	Mild		
Distance	0.609	0.793	0.798		
Reference	28ZPAK-;125;72	28ZPAK 239;72	28ZPAK 245;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	Feature Contribution					
	Top fea	tures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set		
FCFP_10	-1066794953	[*][c]1:[cH]:[cH]:[c] (O):[cH]:[cH]:1	0.378	13 out of 13		

FCFP_10	-158888774	O[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1	0.356	24 out of 25
FCFP_10	-1849978862	[*]N[c]1:[cH]:[cH]:1	0.256	2 out of 2
	Top Featur	es for negative c	ontribution	
Fingerprint			Score	Moderate_Severe in training set
FCFP_10	1175232969	[']:[cH]:[c](NC(=0)[c](:[']):[']):[cH]:[-1.293	0 out of 4
FCFP_10	241406177	[*]:[cH]:[cH]:[*]:[cH]:[*]		0 out of 4
FCFP_10	384221478	[*][c]1:[cH]:[c] (:[cH]:[cH]:[*]) [c](:[*]):[*]	-1.293	0 out of 4

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8
Donors: 3

Model	Prediction

Prediction: Mild
Probability: 0.251
Enrichment: 0.364
Bayesian Score: -8.719
Mahalanobis Distance: 7.566

Mahalanobis Distance p-value: 0.981

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

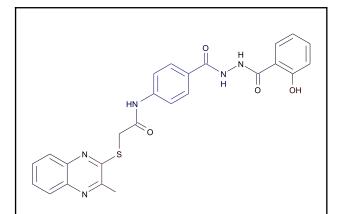
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	2;7-NAPHTHALENE DISULFONIC ACID;4- AMINO-5-HYDROXY-;P- TOLUENE SULFONATE (ESTER)	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-		
Structure	H ₂ N ⁴	NH 2 OH OH	OH OH NH 2		
Actual Endpoint	Mild	Moderate_Severe	Mild		
Predicted Endpoint	Mild	Moderate_Severe	Mild		
Distance	0.654	0.772	0.835		
Reference	28ZPAK-;125;72	28ZPAK-;194;72	28ZPAK 245;72		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Co	Feature Contribution					
	Top fea	tures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set		
FCFP_10	-1410049896	[*]S[c](:n:[*]):[c]([*]):[*]	0.256	2 out of 2		

FCFP_10	-1539132615	[*][c](:[*]):[c](C):n :[*]	0.224	11 out of 13
FCFP_10	7	[*]O	0.219	117 out of 142
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1925475824	[*]:[cH]:[e](:[cH]:[*])C(=O)N[c](:[*]):[*	-1.293	0 out of 4
FCFP_10	1175232969	[']:[cH]:[c](NC(=0)]c [(4']):[']:[cH]:[']		0 out of 4
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	-1.293	0 out of 4

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: Mild Probability: 0.725

Enrichment: 1.053

Bayesian Score: -3.038

Mahalanobis Distance: 8.306

Mahalanobis Distance p-value: 0.84

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

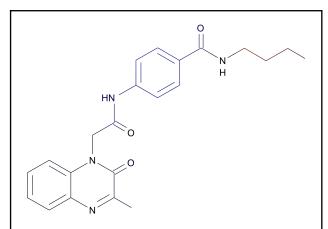
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	2-Naphthalenesulfonic acid; 5;6'-iminobis(1-hydroxy-
Structure	OH OH 2 NH 2 OH OH	H ₂ N ⁴ V	HO OPO
Actual Endpoint	Mild	Mild	Mild
Predicted Endpoint	Mild	Mild	Mild
Distance	0.710	0.741	0.809
Reference	28ZPAK 245;72	28ZPAK-;125;72	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 1065;86


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]

Top featu	res for positive c	ontribution	
t/Smiles	Feature Structure	Score	Moderate_Severe in training set
410049896	[*]S[c](:n:[*]):[c]([*]):[*]	0.256	2 out of 2
	t/Smiles	### Feature Structure ###################################	410049896 0.256 [*]S[c](:n:[*]):[c]([

FCFP_10	-1539132615	[*][c](:[*]):[c](C):n :[*]	0.224	11 out of 13
FCFP_10	7	(*)O	0.219	117 out of 142
	Top Feat	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-581879738	[']NC(=0)[c]1:[cH];[c H]:[']:[cH]:[cH]:1	-1.293	0 out of 4
FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1
FCFP_10	-1549103449	[*]NC(=O)[c](:[*]):[*	-0.504	2 out of 6

 $C_{22}H_{24}N_4O_3$

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7 Acceptors: 4

Donors: 2

Model Prediction

Prediction: Mild Probability: 0.747 Enrichment: 1.085

Bayesian Score: -2.561

Mahalanobis Distance: 12.173

Mahalanobis Distance p-value: 2.7e-005

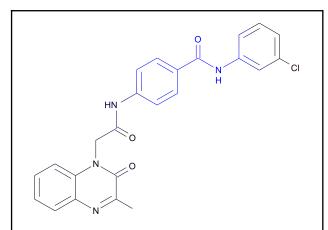
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	CI CI OH OH	NH ₂	OH OH	
Actual Endpoint	Moderate_Severe	Mild	Mild	
Predicted Endpoint	Moderate_Severe	Mild	Mild	
Distance	0.640	0.641	0.706	
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK 239;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution				
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	159404153	[*]CCCNC(=[*])[*]	0.324	15 out of 16

FCFP_10	-1106976657		0.317	4 out of 4
FCFP_10	-1272709286	[*]C(=[*])NCCCC	0.285	234 out of 266
	Top Fea	tures for negative	contribution	,
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:1	-1.293	0 out of 4
FCFP_10	-70433048	[*]C(=[*]);CN1C(=O)C(= [*]][c](:[*]);[o]1:[c H]:[*][T]	-0.507	0 out of 1
FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4 Donors: 2

Model Prediction

Prediction: Mild Probability: 0.188 Enrichment: 0.273

Bayesian Score: -9.460

Mahalanobis Distance: 11.685

Mahalanobis Distance p-value: 0.000287

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	
Structure	CI CI OH OH	NH ₂	CI WH	
Actual Endpoint	Moderate_Severe	Mild	Mild	
Predicted Endpoint	Moderate_Severe	Mild	Mild	
Distance	0.640	0.650	0.693	
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK-;90;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-745491832	[*][c]1:[*]:[cH]:[cH] :[c](CI):[cH]:1	0.304	29 out of 32

FCFP_10	-1513589583	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[c](CI):[c H]:1	0.256	2 out of 2
FCFP_10	580453787	[*]C(=N[c](:[*]):[*]) [*]	0.256	2 out of 2
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	384221478	[*][c]1:[cH]:[cH]:[c] (:[cH]:[cH]:1)C(=O)N [c](:[*]):[*]	-1.293	0 out of 4
FCFP_10	1175232969	[']:[cH]:[c](NC(=O)[c [']:[']):[cH]:['	-1.293	0 out of 4
FCFP_10	241406177	[*]:[cH]:[c](NC(=0)[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1):[cH]:[*]	-1.293	0 out of 4

OH N N O

Molecular Weight: 428.44

ALogP: 2.218
Rotatable Bonds: 5

Acceptors: 5
Donors: 3

Model Prediction

Prediction: Mild Probability: 0.327 Enrichment: 0.474 Bayesian Score: -7.924

Mahalanobis Distance: 11.804

Mahalanobis Distance p-value: 0.000165

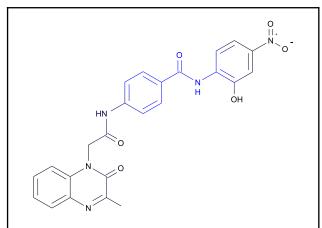
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	ANTHRAQUINONE; 1-((2- HYDROXYETHYL)AMINO) -4-(METHYLAMINO)-		1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	
Structure	NH NH NH	H ₂ N ⁴	NH ₂	
Actual Endpoint	Mild	Mild	Mild	
Predicted Endpoint	Mild	Mild	Mild	
Distance	0.684	0.734	0.736	
Reference	28ZPAK 245;72	28ZPAK-;125;72	28ZPAK-;124;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	Feature Contribution				
	Top fea	tures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-1066794953	[*][c]1:[cH]:[cH]:[c] (O):[cH]:[cH]:1	0.378	13 out of 13	

FCFP_10	-158888774	O[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1	0.356	24 out of 25
FCFP_10	580453787	[*]C(=N[c](:[*]):[*]) [*]	0.256	2 out of 2
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	384221478	[*][c]1:[cH]:[cH]:[c] (:[cH]:[cH]:1)C(=O)N [c](:[*]):[*]	-1.293	0 out of 4
FCFP_10	241406177	[*]:[cH]:[c](NC(=O)[c]1:[cH]:[cH]:[*]:[cH]:[cH]:[*]:[*]		0 out of 4
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[']:[cH]:[cH]:1	-1.293	0 out of 4

 $C_{24}H_{19}N_5O_6$

Molecular Weight: 473.43756

ALogP: 2.113
Rotatable Bonds: 6

Acceptors: 7
Donors: 3

Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	2;7-NAPHTHALENE DISULFONIC ACID;4- AMINO-5-HYDROXY-;P- TOLUENE SULFONATE (ESTER)	
Structure	H ₂ N ^t	OH OH OH	NH 2	
Actual Endpoint	Mild	Mild	Moderate_Severe	
Predicted Endpoint	Mild	Mild	Moderate_Severe	
Distance	0.674	0.767	0.826	
Reference	28ZPAK-;125;72	28ZPAK 245;72	28ZPAK-;194;72	

Model Prediction

Prediction: Mild Probability: 0.178 Enrichment: 0.258

Bayesian Score: -9.595

Mahalanobis Distance: 11.681

Mahalanobis Distance p-value: 0.000291

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

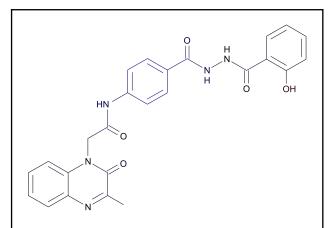
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Model Applicability


Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Moderate_Severe in training set FCFP_10 580453787 0.256 2 out of 2

			1	
FCFP_10	7	NH OH	0.219	117 out of 142
		[*]O		
FCFP_10	-2007573814	NH OH	0.186	1 out of 1
		["]CN1C(=["])["]=N[c] 2:[cH]:["]:[cH]:[cH] :[c]1:2		
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-581879738	MINOCI-ONGIA IGUILIG	-1.293	0 out of 4
		[*]NC(=O)[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1		
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*	-1.293	0 out of 4
FCFP_10	1175232969	[*]:[eH]:[e[NC(=O)[c]](:[*]):[eH]:[*]	-1.293	0 out of 4

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: Mild

Probability: 0.694 Enrichment: 1.008

Bayesian Score: -3.623

Mahalanobis Distance: 12.635

Mahalanobis Distance p-value: 2.21e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	ANTHRAQUINONE; 1-((2- HYDROXYETHYL)AMINO)- 4-(METHYLAMINO)-	
Structure	OH OH OH	H ₂ N ⁴	NH NH NH	
Actual Endpoint	Mild	Mild	Mild	
Predicted Endpoint	Mild	Mild	Mild	
Distance	0.704	0.818	0.850	
Reference	28ZPAK 245;72	28ZPAK-;125;72	28ZPAK 245;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	580453787	[*]C(=N[c](:[*]):[*]) [*]	0.256	2 out of 2	

FCFP_10	7		0.219	117 out of 142
FCFP_10	1396546223	[*]NC(=0)[c]1:[cH]:[c H]:[cH]:[cH]:[c]:10	0.186	1 out of 1
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-581879738	[*]NC(=0)[c]1:[cH]:[c H]:[*]:[cH]:1	-1.293	0 out of 4
FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1
FCFP_10	-70433048	['](c :[']);(c)1:[c H]:['])[']	-0.507	0 out of 1

Sorafenib

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

F CI H N H N O O O O O O O O O O O O O O O O
N HN

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Mild Probability: 0.776

Enrichment: 1.127 Bayesian Score: -1.801

Mahalanobis Distance: 8.954

Mahalanobis Distance p-value: 0.537

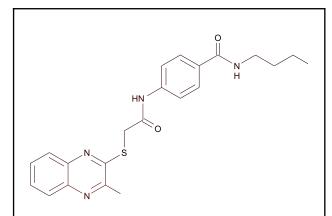
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	METHANE;TRIS(4- AMINOPHENYL)-		
Structure	H ₂ N ⁴	CI OH OH	NH ₂		
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe		
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe		
Distance	0.799	0.816	0.827		
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;73;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	Feature Contribution						
	Top fea	tures for positive o	ontribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set			
FCFP_10	-1695756380	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	0.285	10 out of 11			

FCFP_10	-124655670	[*]:[cH]:[cH]:n:[*]	0.259	14 out of 16
FCFP_10	-885550502	[*]CNC(=[*])[*]	0.239	54 out of 64
	Top Fea	tures for negative	contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	2104062943	[*]C([*])([*])[c]1:[c H]:[*]:[cH]:[cH]:[c]	-0.745	7 out of 24
FCFP_10	-174293376	[*]N[c]1:[cH]:[cH]:[c] (Cl):[c](:[cH]:1)C([*])([*])[*]	-0.507	0 out of 1
FCFP_10	-1549103449	[*]NC(=O)[c](:[*]):[*	-0.504	2 out of 6

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 3.672

Mahalanobis Distance: 8.675

Mahalanobis Distance p-value: 0.684

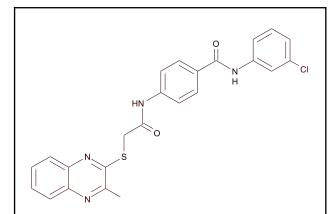
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	BENZANILIDE;2';2"'- DITHIOBIS-	
Structure	OH OH	NH ₂	H H H H H H H H H H H H H H H H H H H	
Actual Endpoint	Irritant	Irritant	Non-Irritant	
Predicted Endpoint	Irritant	Irritant	Non-Irritant	
Distance	0.679	0.681	0.686	
Reference	28ZPAK 239;72	28ZPAK-;124;72	28ZPAK-;173;72	

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

Feature Co	Feature Contribution						
	Top fea	atures for positive o	ontribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set			
FCFP_12	1747237384	[*][c](:[*]):n:[c](:[*]):[*]	0.208	44 out of 44			

FCFP_12	178336375	[*]:[cH]:[c](:n:[*]): [c](:[*]):[*]	0.202	19 out of 19
FCFP_12	713358128	[*]:n:[c]1:[cH]:[cH]: [cH]:[*]:[c]:1:[*]	0.200	17 out of 17
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1577600103	[*]CCCC	-0.090	217 out of 294
FCFP_12	-1272798659	[*]CCC[*]	0.000	517 out of 643
FCFP_12	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.000	319 out of 382

C₂₄H₁₉CIN₄O₂S

Molecular Weight: 462.95126

ALogP: 4.743
Rotatable Bonds: 6

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 4.245

Mahalanobis Distance: 6.333 Mahalanobis Distance p-value: 1

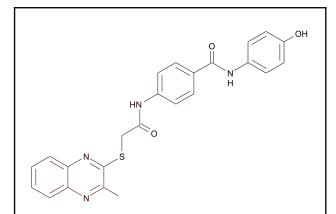
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	BENZANILIDE;2';2'"- DITHIOBIS-	1-BENZOYLAMINO-4- METHOXY-5- CHLORANTHRAQUINONE	ANTHRAQUINONE; 1;4- BIS(p-TOLYLAMINO)-		
Structure	T Z T T T T T T T T T T T T T T T T T T	O N N N N N N N N N N N N N N N N N N N	NH NH		
Actual Endpoint	Non-Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant		
Distance	0.587	0.721	0.727		
Reference	28ZPAK-;173;72	28ZPAK-;90;72	28ZPAK -;124;72		

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1747237384	[*][c](:[*]):n:[c](:[*]):[*]	0.208	44 out of 44

FCFP_12	178336375	[*]:[cH]:[c](:n:[*]): [c](:[*]):[*]	0.202	19 out of 19
FCFP_12	713358128	[*]:n:[c]1:[cH]: [cH]:[*]:[c]:1:[*]	0.200	17 out of 17
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.000	319 out of 382
FCFP_12	1872154524	[*]C(=O)[*]		563 out of 690
FCFP_12	-1272768868	[*]SCC(=[*])[*]	0.000	396 out of 514

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6
Donors: 3

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176

Bayesian Score: 3.311

Mahalanobis Distance: 6.595 Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

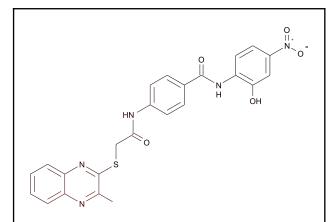
negative rate

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	Disperse Black 9	ANTHRAQUINONE; 1-((2- HYDROXYETHYL)AMINO)- 4-(METHYLAMINO)-		
Structure	H ₂ Ntr O	HO NAME OF THE PARTY OF THE PAR	NH ON NH ON NH		
Actual Endpoint	Irritant	Non-Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Irritant		
Distance	0.603	0.737	0.776		
Reference	28ZPAK-;125;72	J. Am. Coll. Toxicol. 5(3):205;1986	28ZPAK 245;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	[*][c](:[*]):n:[c](:[*]):[*]	0.208	44 out of 44	

FCFP_12	178336375	[*]:[cH]:[c](:n:[*]): [c](:[*]):[*]	0.202	19 out of 19
FCFP_12	713358128	[*]:n:[c]1:[cH]:[cH]: [cH]:[*]:[c]:1:[*]	0.200	17 out of 17
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1849978862	[*]N[c]1:[cH]:[cH]:1	-0.132	2 out of 3
FCFP_12	-1066794953	[*][c]1:[cH]:[cH]:[c] (O):[cH]:[cH]:1		13 out of 17
FCFP_12	-1272768868	(O):[cH]:[cH]:1	0.000	396 out of 514

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8
Donors: 3

Model Pred	iction
------------	--------

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 3.642

Mahalanobis Distance: 6.798

Mahalanobis Distance p-value: 0.999

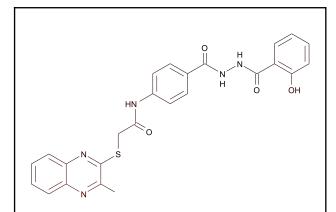
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	2;7-NAPHTHALENE DISULFONIC ACID;4- AMINO-5-HYDROXY-;P- TOLUENE SULFONATE (ESTER)	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	
Structure	NH 2 O	NH 2 OH	OH OH 2 NH 2 OH	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.646	0.763	0.821	
Reference	28ZPAK-;125;72	28ZPAK-;194;72	28ZPAK 245;72	

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Co	Feature Contribution					
	Top fea	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
FCFP_12	1747237384	[*][c](:[*]):n:[c](:[*]):[*]	0.208	44 out of 44		

FCFP_12	178336375	[*]:[cH]:[c](:n:[*]): [c](:[*]):[*]	0.202	19 out of 19
FCFP_12	713358128	[*]:n:[c]1:[cH]:[cH]: [cH]:[*]:[c]:1:[*]	0.200	17 out of 17
	Top Fea	atures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	8	[*][N+](=[*])[*]	-0.056	3 out of 4
FCFP_12	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.000	319 out of 382
FCFP_12	-773983804	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0.000	102 out of 121

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 3.768

Mahalanobis Distance: 7.692

Mahalanobis Distance p-value: 0.97

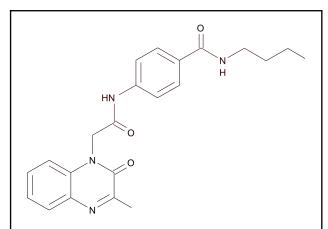
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	2-Naphthalenesulfonic acid; 5;6'-iminobis(1- hydroxy-		
Structure	OH OH 2 NH 2 OH	NH 2 NH 2 NH NH NH	HO O O O O O O O O O O O O O O O O O O		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Irritant	Irritant		
Distance	0.697	0.736	0.808		
Reference	28ZPAK 245;72	28ZPAK-;125;72	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 1065;86		

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	[*][c](:[*]):n:[c](:[*]):[*]	0.208	44 out of 44	

FCFP_12	178336375	[*]:[cH]:[c](:n:[*]):	0.202	19 out of 19
		[c](:[*]):[*]		
FCFP_12	713358128		0.200	17 out of 17
		[*]:n:[c]1:[cH]:[cH]:		
		[cH]:[*]:[c]:1:[*]		
	Top Fea	tures for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[cH]:[*]	-0.096	107 out of 146
FCFP_12	1	[*]=O	0.000	872 out of 1051
FCFP_12	1872154524	[*]C(=O)[*]	0.000	563 out of 690

 $C_{22}H_{24}N_4O_3$

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7 Acceptors: 4

Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 2.098

Mahalanobis Distance: 10.517

Mahalanobis Distance p-value: 0.0231

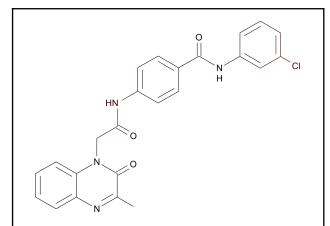
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-		
Structure	CI CI OH CI OH	NH ₂	NH ₂ O		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Irritant	Irritant		
Distance	0.627	0.631	0.692		
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK 239;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1175665944	[*]CC(=O)N[c](;[cH];[*]	0.198	14 out of 14	

FCFP_12	-885550502	[*]CNC(=[*])[*]	0.180	64 out of 66
FCFP_12	-1106976657	[*]C(=[*])NCCCC	0.167	4 out of 4
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	580453787	[*]C(=N[c](:[*]):[*]) [*]	-0.132	2 out of 3
FCFP_12	-1577600103	[*]CCCC	-0.090	217 out of 294
FCFP_12	565998553	[*]N([*])C(=0)C(=[*])) [*]	-0.066	198 out of 262

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4
Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 2.492

Mahalanobis Distance: 8.833

Mahalanobis Distance p-value: 0.602

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

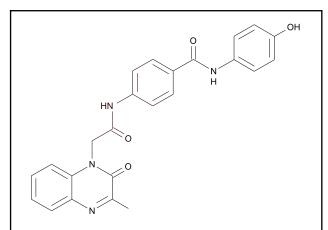
negative rate

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	DICARBOXYLIC ACID; BENZOYLAMINO- 1;4;5;6;7;7- ANTHRAQUINONE			
Structure	CI OH OH	NH ₂	O NH		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Irritant	Irritant		
Distance	0.630	0.645	0.692		
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK-;90;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1175665944	[*]CC(=0)N[c](:[cH]:[*]	0.198	14 out of 14	

			1	
FCFP_12	-770645118	[*]N[c]1:[cH]:[*]:[cH	0.184	7 out of 7
FCFP_12	-745491832	[*][c]1:[*]:[cH]:[cH] :[c](CI):[cH]:1	0.177	32 out of 33
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	580453787	[*]C(=N[c](:[*]):[*]) [*]	-0.132	2 out of 3
FCFP_12	565998553	[']N(['])C(=O)C(=[']) [']	-0.066	198 out of 262
FCFP_12	-792685140	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[c]([*]):[cH]:1	0.000	5 out of 6

 $C_{24}H_{20}N_4O_4$

Molecular Weight: 428.44

ALogP: 2.218 Rotatable Bonds: 5

Acceptors: 5
Donors: 3

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 1.646

Mahalanobis Distance: 9.030

Mahalanobis Distance p-value: 0.495

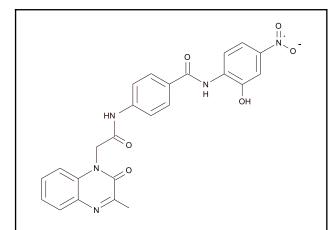
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name			4;4'-DIAMINO-1;1'- DIANTHRIMIDE	
Structure	NH NH NH	HO NH 2	H ₂ N ₁ N ₁ H ₂ O	
Actual Endpoint	Irritant	Non-Irritant	Irritant	
Predicted Endpoint	Irritant	Non-Irritant	Irritant	
Distance	0.675	0.699	0.719	
Reference	28ZPAK 245;72	J. Am. Coll. Toxicol. 5(3):205;1986	28ZPAK-;125;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1175665944	[*]CC(=0)N[o](:[oH]:[*]);[oH]:[*]	0.198	14 out of 14	

		1	l	lan
FCFP_12	566058135	NH OOH	0.163	23 out of 24
		[*]CC(=O)N[*]		
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]:	0.147	17 out of 18
		[cH]:[*]:[cH]:[cH]:1		
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	580453787	[*]C(=N[c](:[*]):[*])	-0.132	2 out of 3
FCFP_12	-1849978862	[*]N[c]1:[cH]:[cH]:[c](O):[cH]:[cH]:1		2 out of 3
FCFP_12	565998553	[*]N([*])C(=0)C(=[*]) [*]	-0.066	198 out of 262

C₂₄H₁₉N₅O₆

Molecular Weight: 473.43756

ALogP: 2.113 Rotatable Bonds: 6

Acceptors: 7
Donors: 3

Model	Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 2.016

Mahalanobis Distance: 8.881

Mahalanobis Distance p-value: 0.576

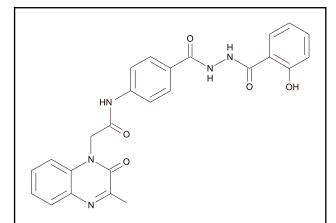
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	Disperse Black 9	
Structure	H ₂ Ntv	OH OH OH OH	HO NAME OF THE PARTY OF THE PAR	
Actual Endpoint	Irritant	Irritant	Non-Irritant	
Predicted Endpoint	Irritant	Irritant	Non-Irritant	
Distance	0.654	0.762	0.773	
Reference	28ZPAK-;125;72	28ZPAK 245;72	J. Am. Coll. Toxicol. 5(3):205;1986	

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
FCFP_12	1175665944	[*]CC(=0)N[c](:[cH]:[*]):[cH]:[*]	0.198	14 out of 14		

FCFP_12	566058135	[*]CC(=O)N[*]	0.163	23 out of 24
FCFP_12	-1924607822	[*]N[c]1:[cH]:[c]:10	0.156	3 out of 3
	Top Fea	tures for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	580453787	[*]C(=N[c](:[*]):[*])	-0.132	2 out of 3
FCFP_12	565998553	[']N(['])C(=O)C(=[']) [']	-0.066	198 out of 262
FCFP_12	8	NHOH NHOH	-0.056	3 out of 4
		[*][N+](=[*])[*]		

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6	
Donors: 4	

Model Prediction

Prediction: Irritant
Probability: 1.000
Enrichment: 1.176
Bayesian Score: 2.145

Mahalanobis Distance: 10.269

Mahalanobis Distance p-value: 0.0474

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	Disperse Black 9		
Structure	OH OH 2 NH 2 OH	H ₂ N ⁴	HO NH 2		
Actual Endpoint	Irritant	Irritant	Non-Irritant		
Predicted Endpoint	Irritant	Irritant	Non-Irritant		
Distance	0.694	0.798	0.838		
Reference	28ZPAK 245;72	28ZPAK-;125;72	J. Am. Coll. Toxicol. 5(3):205;1986		

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]

tribution			
Top fea	atures for positive o	ontribution	
Bit/Smiles	Feature Structure	Score	Irritant in training set
1175665944	[*]CC(=0)N[c](:[cH]:[]):[cH]:[*]	0.198	14 out of 14
	Top fea	Top features for positive of Bit/Smiles Feature Structure 1175665944	Top features for positive contribution Bit/Smiles Feature Structure Score 1175665944 0.198

				
FCFP_12	566058135		0.163	23 out of 24
		[*]CC(=O)N[*]		
FCFP_12	-1838187238	NH OH	0.147	17 out of 18
		[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1		
Fin mountint		ures for negative of Feature Structure	Score	luritant in training
Fingerprint	Bit/Smiles	reature Structure	Score	Irritant in training set
FCFP_12	580453787	[*]C(=N[c](:[*]):[*])	-0.132	2 out of 3
FCFP_12	-1698724694	[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	-0.096	107 out of 146
FCFP_12	565998553	[*]N([*])C(=0)C(=[*])	-0.066	198 out of 262

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Irritant Probability: 1.000 Enrichment: 1.176 Bayesian Score: 3.039

Mahalanobis Distance: 6.281 Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	BENZANILIDE;2';2"'- DITHIOBIS-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	
Structure	H N to N H	H ₂ N ⁴ r O	CI OH OH	
Actual Endpoint	Non-Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Irritant	
Distance	0.743	0.791	0.801	
Reference	28ZPAK-;173;72	28ZPAK-;125;72	28ZPAK-;92;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1747237384	[*][c](:[*]):n:[c](:[*]):[*]	0.208	44 out of 44

FCFP_12	-124655670	[*]:[cH]:[cH]:n:[*]	0.200	16 out of 16
FCFP_12	-1539132615	[*][c](:[*]):[c](C):n :[*]	0.197	13 out of 13
		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-747629521	[*]N[c]1:[cH]:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	-0.268	1 out of 2
FCFP_12	702861189	[*]N[c]1:[cH]:[cH]:[c	-0.268	1 out of 2
FCFP_12	-215363676	[*][c]1:[*]:[cH]:[cH]	0.000	4 out of 5

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.352 Enrichment: 0.382 Bayesian Score: -4.947

Mahalanobis Distance: 9.995

Mahalanobis Distance p-value: 0.0635

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'-biphenylylenedivinylene)d i-, disod ium salt	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	
Structure	OH CONTRACTOR OF THE CONTRACTO	HO to the to the total of the t	NH ₂	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant	
Distance	0.801	0.815	0.849	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co		eatures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
	L	1		1

Eingernrint	Dit/Smiles	Eastura Structura	C	Irritant in training
	Top Feat	tures for negative	contribution	1
TOTT_TZ	- 1349 103449	[*]NC(=O)[c](:[*]):[*	0.073	J out of 3
FCFP_12	-1410049896 -1549103449	[*]S[c](:n:[*]):[c]([*]):[*]	0.073	5 out of 5
FGFP_12	-1539132615	[*][c](:[*]):[c](C):n :[*]	0.079	9 out of 9
FCFP_12	1520122615		0.079	9 out of 9

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]CC(=O)N[c](:[cH]:["]):[cH]:[*]	-1.020	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	-451043714	O NH	-0.650	0 out of 1
		NH		
		[*]CC(=0)N[c]1:[cH]:[cH]:[c]([*]):[cH]:[c		
		H]:1		

 $C_{24}H_{19}CIN_4O_2S$

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.051
Enrichment: 0.055
Bayesian Score: -6.256
Mahalanobis Distance: 7.401

Mahalanobis Distance p-value: 0.981

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Anthraquinone, 1,1'- iminodi-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	
Structure	D. C.	HN AM	NH ₂	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Non-Irritant	Non-Irritant	
Distance	0.683	0.786	0.855	
Reference	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

ntribution			
Top fe	atures for positive o	ontribution	
Bit/Smiles	Feature Structure	Score	Irritant in training set
		•	•
	Top fe	Top features for positive of	Top features for positive contribution

FCFP_12	-1539132615		0.079	9 out of 9
		QNS NHOCI		
		[*][c](:[*]):[c](C):n		
		:[*]		
FCFP_12	-1549103449	C'NS NHOCI	0.073	5 out of 5
		C _N t ^s		
		[*]NC(=O)[c](:[*]):[*]		
FCFP_12	-1410049896	NH CI	0.073	5 out of 5
		NHO CI		
		[*]S[c](:n:[*]):[c]([
]):[]		
		ures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	NHO CI	-1.020	2 out of 8
		C N S		
		[*]CC(=O)N[c](:[cH]:[*]):[cH]:[*]		
FCFP_12	-1838187238		-0.692	5 out of 12

[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1

FCFP_12	-451043714	NHO _{CI}	-0.650	0 out of 1
		C'T'S		
		[*]CC(=O)N[c]1:[cH]:[cH]:[c]([*]):[cH]:[c H]:1		

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6
Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.128
Enrichment: 0.139
Bayesian Score: -5.715
Mahalanobis Distance: 8.326

Mahalanobis Distance p-value: 0.768

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Urea, 1,3-bis(2- benzothiazolylthiomethyl)-		
Structure	HN NH ₂	OH- OH- OH- OH- OH- OH- OH- OH- OH- OH-	T H Z H		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant		
Distance	0.777	0.799	0.845		
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

eatures for positive of		
catalos for positivo o	contribution	
Feature Structure	Score	Irritant in training set
•	•	•
	Feature Structure	Feature Structure Score

ECED 12	1520122645		h 070	Dout of O
FCFP_12	-1539132615	[*][c](:[*]):[c](C):n	0.079	9 out of 9
		-(1		
FCFP_12	-1549103449	CNNS NHOOH	0.073	5 out of 5
		[*]NC(=O)[c](:[*]):[*]		
ECED 40	4.4400.40000		0.073	F out of F
FCFP_12	-1410049896	NO NHO OH	0.073	5 out of 5
		[*]S[c](:n:[*]):[c]([*]):[*]		
	Top Feat	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	CINIS NHOOH	-1.020	2 out of 8
		Q N S		
		[*]CC(=O)N[o](:[cH]:[*]):[cH]:[*]		
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]:	-0.692	5 out of 12
		[*]C(=[*])N[c]1:[cH]:		
		[cH]:[*]:[cH]:[cH]:1		
				l

FCFP_12	-451043714	NHO OH	-0.650	0 out of 1
		[*]CC(=0)N[e]1:[eH]:[cH]:[e]([*]):[eH]:e H]:1		

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8
Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.098 Enrichment: 0.106 Bayesian Score: -5.883

Mahalanobis Distance: 9.348

Mahalanobis Distance p-value: 0.251

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	2,2'-Stilbenedisulfonic acid, 4,4'-dinitro-				
Structure	HO SI	HN NH 2 O	N H		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Irritant		
Distance	0.806	0.864	0.868		
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1062,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
	<u> </u>	<u> </u>	•	•		

FCFP_12	5	•••	0.085	27 out of 27
		NHO-1		
		N _S S		
		[**I[O]]		
EOED 40		[][0]	0.004	20
FCFP_12	8		0.084	20 out of 20
		NH OH		
		CNS NHOH		
		[*][N+](=[*])[*]		
FCFP_12	-828984032		0.079	9 out of 9
		NH OH		
		CANTS ON HOH		
		[*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]		
	Ton Fox		- and ribution	
Fingerprint	Bit/Smiles	tures for negative of Feature Structure	Score	Irritant in training
				set
FCFP_12	1175665944	NHOH NOT	-1.020	2 out of 8
		[*]CC(=O)N[c](:[cH]:[*]):[cH]:[*]		
FCFP_12	-1838187238		-0.692	5 out of 12
		[*]C(=[*])N[c]1:[cH]:		
		a s		
		[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1		
1	•	• 161 H.1 (.161 H.161 H.1	-	•

FCFP_12	-1883332927	a .	-0.650	0 out of 1
		NHOH		
		N S		
		N. N		
		[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[c]:1O		

 $C_{25}H_{21}N_{5}O_{4}S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: Non-Irritant

Probability: 0.204
Enrichment: 0.222
Bayesian Score: -5.394
Mahalanobis Distance: 9.072

Mahalanobis Distance p-value: 0.383

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	Structural Similar Compounds					
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Anthraquinone, 2-bromo- 1,8-diamino-4,5- dihydroxy-	Urea, 1,3-bis(2- benzothiazolylthiomethyl)-			
Structure	HN NH ₂	OH O OH Br				
Actual Endpoint	Irritant	Irritant	Irritant			
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant			
Distance	0.941	0.965	0.980			
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	28ZPAK "Sbornik Vysledku Toxixologickeho Vysetreni Latek A Pripravku," Marhol d, J.V., Institut Pro Vychovu Vedoucicn Pracovniku Chemickeho Prumyclu Praha, Cz echoslovakia, 1972 Volume(issue)/page/year: -,244,1	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

		ontribution	atures for positive c		Feature Co
raining	Irritant in tra	Score	Feature Structure	Bit/Smiles	Fingerprint
		-1	<u>. </u>	L	

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
		tures for negative of		
		[*]NC(=O)[c](:[*]):[*]		
		\ \sigma_{\sigma}		
		NA SON NATIONAL ON		
FCFP_12	-1549103449		0.073	5 out of 5
		[*][c](:[*]):[c](C):n :[*]		
		a'z °°		
		NAME OF THE STATE		
FCFP_12	-1539132615		0.079	9 out of 9
		[*]C(=[*])[c]1:[cH]:[cH]:[cH]:[cH]:[c]:1O		
		a) s		
FCFP_12	-309153329		0.082	13 out of 13

	тор геа	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]CC(=O)N[c](:[cH]:[*]):[cH]:[*]	-1.020	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	-451043714	NA HOOH	-0.650	0 out of 1
		\(\text{N} \) \(\text{S} \) \(\text{C} \) \(\		

 $C_{22}H_{24}N_4O_3$

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7 Acceptors: 4

Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.057 Enrichment: 0.061 Bayesian Score: -6.199

Mahalanobis Distance: 12.635

Mahalanobis Distance p-value: 7.95e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	1-Piperazineacetic acid, 4- (2-hydroxyethyl)-alpha- phenyl-, 2,6-xyly I ester, monohydrochloride	p-Acetophenetidide, 3'- (bis(2- hydroxyethyl)amino)-
Structure	CI CI OH OH	OH	O N N O O O O O O O O O O O O O O O O O
Actual Endpoint	Irritant	Irritant	Non-Irritant
Predicted Endpoint	Irritant	Irritant	Non-Irritant
Distance	0.730	0.792	0.796
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	BCFAAI Bollettino Chimico Farmaceutico. (Societa Editoriale Farmaceutica, Vi a Ausonio 12, 20123 Milan, Italy) V.33- 1894- Volume(issue)/page/year: 107,3 10,1968	28ZPAK -,100,72

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
	•	•	-	

FCFP_12	580453787	[*]C(=N[c](:[*]):[*])	0.079	9 out of 9
FCFP_12	565968762	[*]N=C(iC)/C(=[*])[*]	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]):[*	0.073	5 out of 5
	Top Featur	es for negative c	ontribution	

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]CC(=O)N[c](:[cH]:["]):[cH]:[']	-1.020	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	-2007573814	Ü	-0.650	0 out of 1
		NH		
		0 N. 0		
		U,I		
		[*]CN1C(=[*])[*]=N[c] 2:[cH]:[*]:[cH]:[cH]		
		:[c]1:2		

O N H

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5 Acceptors: 4

Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.004 Enrichment: 0.004 Bayesian Score: -7.507

Mahalanobis Distance: 10.918

Mahalanobis Distance p-value: 0.00339

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simi	lar Compounds		
Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Anthraquinone, 1,1'- iminodi-	1-Piperazineacetic acid, 4- (2-hydroxyethyl)-alpha- phenyl-, 2,6-xyly I ester, monohydrochloride
Structure	CI OH OH	T N N N N N N N N N N N N N N N N N N N	OH OH
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Irritant
Distance	0.698	0.797	0.815
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,735,1986	BCFAAI Bollettino Chimico Farmaceutico. (Societa Editoriale Farmaceutica, Vi a Ausonio 12, 20123 Milan, Italy) V.33- 1894- Volume(issue)/page/year: 107,3 10,1968

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set

FCFP_12	580453787	[*]C(=N[c](:[*]):[*])	0.079	9 out of 9
FCFP_12	565968762	[L]IN=C(IC)\C(=[L])[L	0.075	78 out of 79
FCFP_12	-1549103449	[*]NC(=0)[c](:[*]):[*		5 out of 5
	Top Featur	es for negative c	ontribution	

	Bit/Smiles	atures for negative Feature Structure	Score	
Fingerprint	Bit/Smiles	reature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]CC(=0)N[o](:[cH]:[*]):[cH]:[*]	-1.020	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	-2007573814	~° _{NH} O _{CI}	-0.650	0 out of 1
		Q',°		
		[*]CN1C(=[*])[*]=N[c] 2:[cH]:[*]:[cH]:[cH] :[c]1:2		

 $C_{24}H_{20}N_4O_4$

Molecular Weight: 428.44

ALogP: 2.218 Rotatable Bonds: 5

Acceptors: 5
Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.021 Enrichment: 0.023 Bayesian Score: -6.700

Mahalanobis Distance: 11.932

Mahalanobis Distance p-value: 3.78e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	2-Anthracenesulfonic acid, 1-amino-9,10-dihydro-9,10-dioxo-4-(2,4,6 -trimethylanilino)-, monosodium salt	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	p-Acetophenetidide, 3'- (bis(2- hydroxyethyl)amino)-	
Structure	HN NT SO NH 2 O	CI CI OH OH	O N N N O O O O O O O O O O O O O O O O	
Actual Endpoint	Irritant	Irritant	Non-Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant	
Distance	0.808	0.820	0.834	
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	28ZPAK -,100,72	

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
	•	'	-1	•

FCFP_12	-1549103449	O.C	073 5 out of 5
		[*]N=C(\C)C(=[*])[*]	
		NH O.C	
FCFP_12	565968762		78 out of 79
		[*]C(=N[c](:[*]):[*]) [*]	
		O.C	
	580453787		9 out of 9

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]CC(=O)N[c](:[cH]:["]):[cH]:[*]	-1.020	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	-451043714	○ C O ^{OH}	-0.650	0 out of 1
		NH		
		Q'Z°		
		[*]CC(=O)N[c]1:[cH]:[cH]:[c]([*]):[cH]:[c H]:1		

Molecular Weight: 473.43756

ALogP: 2.113 Rotatable Bonds: 6

Acceptors: 7
Donors: 3

C₂₄H₁₉N₅O₆

Model Prediction

Prediction: Non-Irritant

Probability: 0.012 Enrichment: 0.013 Bayesian Score: -6.975

Mahalanobis Distance: 12.655

Mahalanobis Distance p-value: 7.07e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

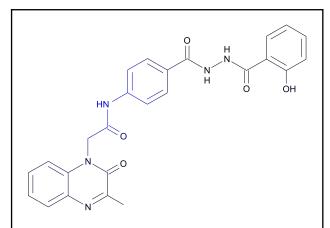
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	2,2'-Stilbenedisulfonic acid, 4,4'-dinitro-	Urea, 1,3-bis(2- benzothiazolylthiomethyl)-	
Structure	HN NT WEST ON THE SECOND STATE OF THE SECOND S	HO OF STORY	The state of the s	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Irritant	
Distance	0.743	0.858	0.912	
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1062,1986	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
	•	•		•

FCFP_12	5	0.085	27 out of 27
		NH OH	
FCFP_12	8	[*][O-] 0.084	20 out of 20
		N OH	
		[*][N+](=[*])[*]	
FCFP_12	580453787	0.079	9 out of 9
	Top Fe	atures for negative contributi	on

Fi	lop Fea	Fingerprint Bit/Smiles Feature Structure Score Irritant in training					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set			
FCFP_12	1175665944	[*]CC(=O)N[c](:[cH]:["]):[cH]:[*]	-1.020	2 out of 8			
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12			

FCFP_12	-1883332927	• -	-0.650	0 out of 1
		NH OH		
		NO O		
		Q'i"		
		[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[c]:10		
		[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[c]:10		

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: Non-Irritant

Probability: 0.029 Enrichment: 0.032 Bayesian Score: -6.546

Mahalanobis Distance: 12.616

Mahalanobis Distance p-value: 8.89e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Anthraquinone, 2-bromo- 1,8-diamino-4,5- dihydroxy-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Glutamic acid, N-(p- (methylamino)benzoyl)-, sodium salt		
Structure	OH OH OH Br	HN H S O O O O O O O O O O O O O O O O O O	OH NH		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Non-Irritant	Non-Irritant		
Distance	0.876	0.916	0.972		
Reference	28ZPAK "Sbornik Vysledku Toxixologickeho Vysetreni Latek A Pripravku," Marhol d, J.V., Institut Pro Vychovu Vedoucicn Pracovniku Chemickeho Prumyclu Praha, Cz echoslovakia, 1972 Volume(issue)/page/year: -,244,1	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	FCTOD7 Food and Chemical Toxicology. (Pergamon Press Inc., Maxwell House, Fa irview Park, Elmsford, NY 10523 V.20- 1982- Volume(issue)/page/year: 20,563,1982		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
			•	

FCFP_12	-309153329	0.082 [*]C(=[*])[c]1:[cH]:[cH]:[cH]:[cH]:[c]:10	13 out of 13
FCFP_12	580453787	0.079	9 out of 9
FCFP_12	565968762	COUNTY ON NOTE OF THE PROPERTY	78 out of 79

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]CC(=0)N[c](:[cH]:["]):[cH]:[*]	-1.020	2 out of 8
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	-451043714	NH O OH	-0.650	0 out of 1
		[*]CC(=O)N[c]1:[cH]:[cH]:[c]([*]):[cH]:[c H]:1		

F H N H N O

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6
Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.264
Enrichment: 0.287
Bayesian Score: -5.229
Mahalanobis Distance: 8.271

Mahalanobis Distance p-value: 0.791

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

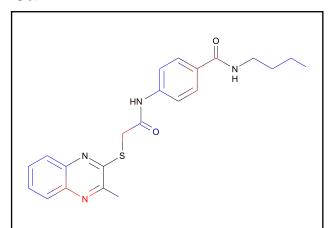
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Sulfide, bis(4-t-butyl-m- cresyl)-		
Structure	CI OH OH	OH OH	OH OH		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Irritant		
Distance	0.844	0.871	0.884		
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Co	ntribution			
	Top fe	atures for positive c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
			•	•

FCFP_12	-124655670	0.082	13 out of 13
FCFP_12	-1539132615	[*][c](:[*]):[c](C):n	9 out of 9
FCFP_12	-1695756380	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	7 out of 7

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-789307649	[*]O[c]1:[cH]:[cH]: [cH]:1	-1.539	0 out of 4
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	1294255210	l <u> </u>	-0.486	12 out of 22
		P NH NH		
		ا تُ أَنَّ أَنَّ أَنَّ الْمُ		
		N H		
		[*]C(=[*])N[c](:[*]):		
		["]		

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5 Donors: 2

Model Prediction

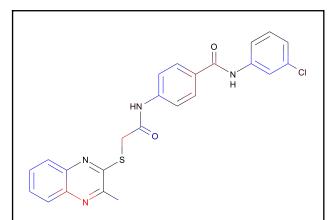
Prediction: 40.565

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.772

Mahalanobis Distance p-value: 4.23e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide	455	Compound LY171883	
Structure	CI NH NH NH	HN S	T N N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	3.91517	3.87681	3.45372	
Predicted Endpoint (-log C)	3.92186	3.77582	2.84749	
Distance	0.664	0.694	0.694	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Cont	ribution			
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	655739385	[*]:n:[*]	0.229	

ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	834876373	[*][c](:[*]):n:[c](:[*]):[*]	0.163
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392	[*]:[cH]:[*]	-0.232

C₂₄H₁₉CIN₄O₂S

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5 Donors: 2

Model Prediction

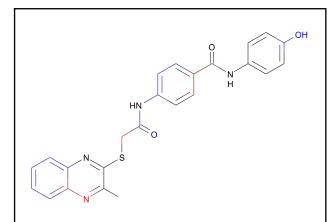
Prediction: 9.366

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.386

Mahalanobis Distance p-value: 2.76e-011

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	646	Phenolphthalein	Ochratoxin A		
Structure	O N N N N N N N N N N N N N N N N N N N	НО	OH OHOO		
Actual Endpoint (-log C)	0.937339	2.43468	4.79932		
Predicted Endpoint (-log C)	3.26294	3.66084	3.6353		
Distance	0.799	0.822	0.835		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contr	ibution			
	Top features	for positive contribution	1	
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	655739385	(*]:n:[*]	0.229	

ECFP_6	1559650422	(*)C[*]	0.203
ECFP_6	834876373	[*][c](:[*]):n:[c](:[0.163
		egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392	**:[cH]:[*]	-0.232

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6 Donors: 3

Model Prediction

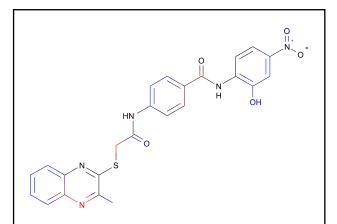
Prediction: 17.665

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.273

Mahalanobis Distance p-value: 2.6e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide	
Structure	H H NM	AND Enantiomer OH OH CI	NH NH NH	
Actual Endpoint (-log C)	4.79932	4.79932	3.91517	
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186	
Distance	0.793	0.793	0.829	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Cont	ribution			
	Top features	for positive contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	655739385	[*]:n:[*]	0.229	

ECFP_6		(*]C[*]	0.203
ECFP_6	834876373	[*][c](:[*]):n:[c](:[*]):[*]	0.163
	Top Features for ne		
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2019062761	(*]:[c](:[*])O	-0.258
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091]:[*] OH NS [*][c](:[*]):[*]	-0.247

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8 Donors: 3

Model Prediction

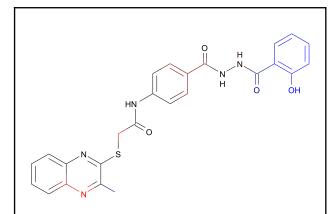
Prediction: 31.468

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.067

Mahalanobis Distance p-value: 2.14e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	Salicylazosulfapyridine	420	Ochratoxin A	
Structure	HN N H	O A NA NA NA NA	OH OHOO	
Actual Endpoint (-log C)	2.5034	2.78302	4.79932	
Predicted Endpoint (-log C)	3.54214	3.31546	3.6353	
Distance	0.848	0.901	0.913	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution				
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	655739385	[*]:n:[*]	0.229	

ECFP_6	1559650422	NH OH	0.203
		NHOH NHOH	
		[*]C[*]	
ECFP_6	834876373	[*][c](:[*]):n:[c](:[*]):[*]	0.163
	Ton Features for ne	egative contribution	
Fingerprint			Score
ECFP_6	2019062761	NHOH [*]:[c](:[*])O	-0.258
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

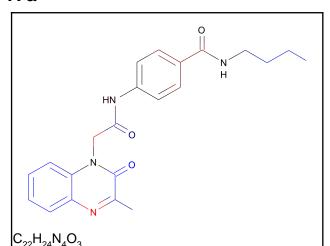
Prediction: 16.061

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.288

Mahalanobis Distance p-value: 2.39e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	Salicylazosulfapyridine	Ochratoxin A	542	
Structure	HN N N N N N N N N N N N N N N N N N N	OH OHOO	AND Enantiomer OH OH OH CI	
Actual Endpoint (-log C)	2.5034	4.79932	4.79932	
Predicted Endpoint (-log C)	3.54214	3.6353	3.6353	
Distance	0.841	0.870	0.870	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution				
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
ECFP_6	655739385	(*]:n:[*]	0.229	

ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	834876373	[*][c](:[*]):n:[c](:[*]):[*]	0.163
	Top Features f	or negative contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2019062761	[*]:[c](:[*])O	-0.258
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7

Acceptors: 4
Donors: 2

Model Prediction

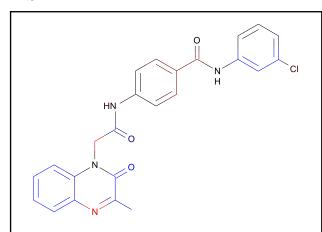
Prediction: 142.906

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.732

Mahalanobis Distance p-value: 5.24e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Name	455	832	Compound LY171883
Structure	HN S	OH NH	T N N N N N N N N N N N N N N N N N N N
Actual Endpoint (-log C)	3.87681	3.45372	3.45372
Predicted Endpoint (-log C)	3.77582	2.80429	2.84749
Distance	0.635	0.676	0.682
Reference	CPDB	CPDB	CPDB

Model Applicability

- OPS PC20 out of range. Value: 3.8775. Training min, max, SD, explained variance: -4.3384, 3.4394, 1.14, 0.0162.
- 2. Unknown ECFP_2 feature: -597295171: [*][c](:[*]):[c](N=[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[c]([*]):[*]):c:[*]
- 4. Unknown ECFP_2 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Feature Contribution Top features for positive contribution					
ECFP_6	655739385	[*]:n:[*]	0.229		

ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
		egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4
Donors: 2

Model Prediction

Prediction: 33.153

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.301

Mahalanobis Distance p-value: 4.8e-011

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Phenolphthalein	Ochratoxin A	542
Structure	НО	PHO HO HO	AND Enantomer OH OH H CI
Actual Endpoint (-log C)	2.43468	4.79932	4.79932
Predicted Endpoint (-log C)	3.66084	3.6353	3.6353
Distance	0.700	0.746	0.746
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. OPS PC20 out of range. Value: 4.0307. Training min, max, SD, explained variance: -4.3384, 3.4394, 1.14, 0.0162.
- 2. Unknown ECFP_2 feature: -597295171: [*][c](:[*]):[c](N=[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[c]([*]):[*]):c:[*]
- 4. Unknown ECFP_2 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score ECFP_6 655739385 0.229

ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	-817402818	[*]CI	0.129
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

O N H

Molecular Weight: 428.44

ALogP: 2.218 Rotatable Bonds: 5

Acceptors: 5
Donors: 3

Model Prediction

Prediction: 62.436

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.204

Mahalanobis Distance p-value: 3.87e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	Ochratoxin A	542	Phenolphthalein			
Structure	Photo Hoto Hoto Hoto Hoto Hoto Hoto Hoto	AND Enantiomer OH OH CI	НО			
Actual Endpoint (-log C)	4.79932	4.79932	2.43468			
Predicted Endpoint (-log C)	3.6353	3.6353	3.66084			
Distance	0.668	0.668	0.755			
Reference	CPDB	CPDB	CPDB			

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -597295171: [*][c](:[*]):[c](N=[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[c]([*]):[*]):c:[*]
- 4. Unknown ECFP_2 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

	for positive contribution	
	· · · · · · · · · · · · · · · · · · ·	
Bit/Smiles	Feature Structure	Score
655739385	[*]:n:[*]	0.229
		655739385

ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
		egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	2019062761	[*]:[c](:[*])O	-0.258
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251

Molecular Weight: 473.43756

ALogP: 2.113 Rotatable Bonds: 6

Acceptors: 7
Donors: 3

C₂₄H₁₉N₅O₆

Model Prediction

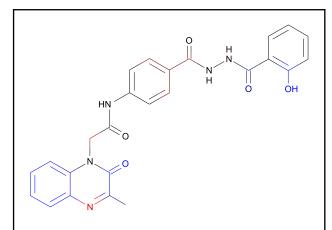
Prediction: 111.609

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.728

Mahalanobis Distance p-value: 2.85e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Name	Salicylazosulfapyridine	Ochratoxin A	542
Structure	HN N N N N N N N N N N N N N N N N N N	O OH OHOO	AND Erantomer OH OH CI
Actual Endpoint (-log C)	2.5034	4.79932	4.79932
Predicted Endpoint (-log C)	3.54214	3.6353	3.6353
Distance	0.678	0.743	0.743
Reference	СРОВ	CPDB	CPDB

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -597295171: [*][c](:[*]):[c](N=[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[c]([*]):[*]):c:[*]
- 4. Unknown ECFP_2 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Top features		
	for positive contribution	1
Bit/Smiles	Feature Structure	Score
655739385	[*]:n:[*]	0.229
		655739385

ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
	Top Features for ne		
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	2019062761	[*]:[c](:[*])O	-0.258
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251

C₂₅H₂₁N₅O₅ Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: 56.955

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.274

Mahalanobis Distance p-value: 2.59e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Salicylazosulfapyridine	Ochratoxin A	542
Structure	HN N N N N N N N N N N N N N N N N N N	OH HOOO	AND Erandomer OH H OH CI
Actual Endpoint (-log C)	2.5034	4.79932	4.79932
Predicted Endpoint (-log C)	3.54214	3.6353	3.6353
Distance	0.732	0.736	0.736
Reference	CPDB	CPDB	CPDB

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -597295171: [*][c](:[*]):[c](N=[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[c]([*]):[*]):c:[*]
- 4. Unknown ECFP_2 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Feature Contribution Top features for positive contribution					
ECFP_6	655739385	(*]:n:[*]	0.229		
	-				

ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
		egative contribution	
Fingerprint		Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	2019062761	[*]:[c](:[*])O	-0.258
ECFP_6	1996767644	МНИН ОН [*][c](:[*]):[cH]:[cH	-0.251

F H N H N O HN O HN

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

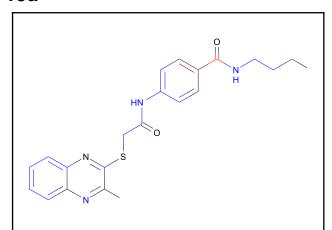
Prediction: 19.236

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.401

Mahalanobis Distance p-value: 2.94e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide		
Structure	Ph. H.	AND Enantiomer OH OH CI	S N NH		
Actual Endpoint (-log C)	4.79932	4.79932	3.91517		
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186		
Distance	0.718	0.718	0.738		
Reference	CPDB	CPDB	CPDB		

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1413420509: [*]C(=[*])[c](:n:[*]):c:[*]
- 3. Unknown ECFP_2 feature: 1338334141: [*]C(=[*])NC

			Feature Contribution					
Top features for positive contribution								
Bit/Smiles	Feature Structure	Score						
655739385	[*]:n:[*]	0.229						
	Bit/Smiles	Bit/Smiles Feature Structure 655739385	Bit/Smiles Feature Structure Score 655739385 Fig. NH, NH, O, NH					

ECFP_6	-817402818	I*]CI	0.129
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.082
E'm manuaint		for negative contributio	
Fingerprint	Bit/Smiles 1996767644	Feature Structure	Score -0.251
ECFP_6	1990/0/044	[*][c](:[*]):[cH]:[cH	-0.231
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392	[*]:[cH]:[*]	-0.232

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5 Donors: 2

Model Prediction

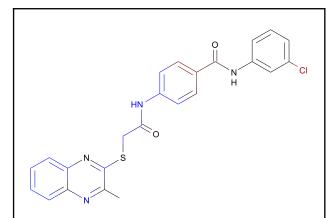
Prediction: 187.702

Unit: mg/kg_body_weight/day Mahalanobis Distance: 17.700

Mahalanobis Distance p-value: 3.71e-020

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	Fluvastatin	913	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide		
Structure	OH OH	OH OH	NN NH NH		
Actual Endpoint (-log C)	3.51742	3.51742	4.75226		
Predicted Endpoint (-log C)	5.41573	5.41573	3.29421		
Distance	0.593	0.593	0.633		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

-	ositive contribution Feature Structure	Score
Smiles	Feature Structure	Score
	[*]=O	0.234
_		[*]=O

FCFP_6	-885550502	[*]CNC(=[*])[*]	0.229
FCFP_6	203677720	[*]C(=[*))[c](:[cH]:[*]):[cH]:[*]	0.137
		negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1272709286	[*]CCN[*]	-0.526
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.422
FCFP_6	16	[*][c](:[*]):[*]	-0.354

 $C_{24}H_{19}CIN_4O_2S$

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 25.425

Unit: mg/kg_body_weight/day Mahalanobis Distance: 16.964

Mahalanobis Distance p-value: 1.58e-017

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Fluvastatin	913	Indomethacin		
Structure	O OH	OH OH	OH OH		
Actual Endpoint (-log C)	3.51742	3.51742	5.49293		
Predicted Endpoint (-log C)	5.41573	5.41573	4.9569		
Distance	0.672	0.672	0.711		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC16 out of range. Value: -3.695. Training min, max, SD, explained variance: -3.6111, 5.345, 1.406, 0.0190.

Feature Contribution					
	Top features for po	ositive contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	1		0.234		

FCFP_6	32	[*]CI	0.154
FCFP_6	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.137
		egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.422
FCFP_6	16	[*][c](:[*]):[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323

┖

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6 Donors: 3

Model Prediction

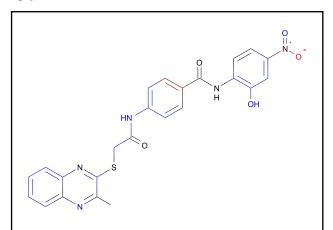
Prediction: 210.252

Unit: mg/kg_body_weight/day Mahalanobis Distance: 16.933

Mahalanobis Distance p-value: 2.03e-017

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	913	Fluvastatin	4-Bis(2- hydroxyethyl)amino-2-(5- nitro-2-thienyl)quinazoline		
Structure	OH OH	OH OH	HO OH		
Actual Endpoint (-log C)	3.51742	3.51742	5.05984		
Predicted Endpoint (-log C)	5.41573	5.41573	4.23808		
Distance	0.709	0.709	0.716		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Cont	ribution			
	Top features	for positive contribution	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	1	[*]=O	0.234	

FCFP_6	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.137
FCFP_6	-1272768868	[*]SCC(=[*])[*]	0.127
Tin managint	Top Features fo	r negative contribution Feature Structure	
Fingerprint FCFP_6	991735244	reature Structure	Score -0.422
. 6. 1 _5	551755244	[*]:[cH]:[cH]:1	0.422
FCFP_6	7	[*]O	-0.372
FCFP_6	16	[*][o](:[*]):[*]	-0.354

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8 Donors: 3

Model Prediction

Prediction: 76.496

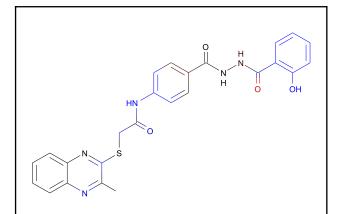
Unit: mg/kg_body_weight/day Mahalanobis Distance: 20.119

Mahalanobis Distance p-value: 1.51e-029

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	623	4-Bis(2- hydroxyethyl)amino-2-(5- nitro-2-thienyl)quinazoline			
Structure	NH OF THE PARTY OF	HO OH	HO O		
Actual Endpoint (-log C)	2.39985	5.05984	2.39891		
Predicted Endpoint (-log C)	3.4177	4.23808	3.17598		
Distance	0.673	0.749	0.786		
Reference	CPDB	CPDB	CPDB		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	5	[*][O-]	0.431		

	8	NHOH [*][N+](=[*])[*]	0.336
FCFP_6		[*]=O	0.234
Fingerprint	Top Features for ne Bit/Smiles		Score
	991735244	reature Structure	-0.422
	001700211	[*]:[cH]:[cH]:1	O. 122
FCFP_6		[*]O	-0.372
FCFP_6	16	[*]O	-0.354

F

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093
Rotatable Bonds: 7
Acceptors: 7

Donors: 4

Model Prediction

Prediction: 249.201

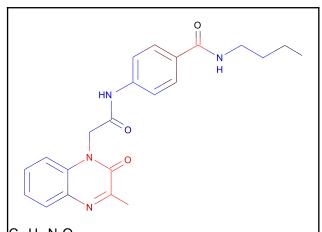
Unit: mg/kg_body_weight/day Mahalanobis Distance: 17.086

Mahalanobis Distance p-value: 5.91e-018

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Salicylazosulfapyridine	4-Bis(2- hydroxyethyl)amino-2-(5- nitro-2-thienyl)quinazoline	Ochratoxin A	
Structure	HN N N N N N N N N N N N N N N N N N N	HO OH	H H NATA	
Actual Endpoint (-log C)	2.39891	5.05984	6.47264	
Predicted Endpoint (-log C)	3.17598	4.23808	5.06501	
Distance	0.779	0.798	0.814	
Reference	CPDB	CPDB	CPDB	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top features	for positive contribution	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	1	[*]=O	0.234		

FCFP_6	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.137
FCFP_6	-1272768868	[*]SCC(=[*])[*]	0.127
		or negative contributior	1
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*]:[c]1:[*]:[cH]:[cH]:1	-0.422
FCFP_6	7	(*)O	-0.372
FCFP_6	16	[*][c](:[*]):[*]	-0.354

┖

 $C_{22}H_{24}N_4O_3$

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7

Acceptors: 4 Donors: 2

Model Prediction

Prediction: 51.930

Unit: mg/kg_body_weight/day Mahalanobis Distance: 17.563

Mahalanobis Distance p-value: 1.17e-019

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	Loxtidine	4,4´- Sulfonylbisacetanilide	542	
Structure	N N N N N N N N N N N N N N N N N N N	HN NH NH	AND Enantiomer OH OH OH OH OH OH OH OH OH O	
Actual Endpoint (-log C)	2.87532	3.77655	6.59334	
Predicted Endpoint (-log C)	3.63996	3.55337	5.06501	
Distance	0.593	0.599	0.663	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	[']N(['])C(=0)C(=[']) [']	0.357		

FCFP_6	565968762	[*] N=C(\C)\C(=[*])[*	0.266
FCFP_6	-2090462286	[*]N([*])[c]1:[cH]:[c H]:[cH]:[cH]:[c]:1[*	0.245
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1272709286	[*]CCN[*]	-0.526
FCFP_6	991735244	[*]:[c]1:[*]:[cH]:[cH]:1	-0.422
FCFP_6	16	[*][c](:][*]):[*]	-0.354
		[*][c](:[*]):[*]	

┖

C₂₄H₁₉CIN₄O₃ Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4 Donors: 2

Model Prediction

Prediction: 6.023

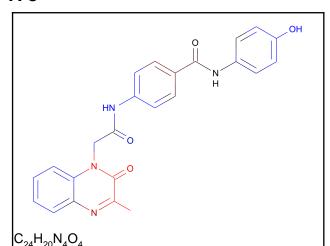
Unit: mg/kg_body_weight/day Mahalanobis Distance: 16.376

Mahalanobis Distance p-value: 1.61e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	3-(Cyclopentyloxy)-N-(3,5- di-chloro-4-pyridyl)-4- methoxy-benzamide	Indomethacin	Fluvastatin	
Structure	N CI N H	OH OH	OH OH	
Actual Endpoint (-log C)	5.39369	5.49293	3.51742	
Predicted Endpoint (-log C)	4.27874	4.9569	5.41573	
Distance	0.682	0.683	0.687	
Reference	CPDB	CPDB	CPDB	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC20 out of range. Value: 6.7989. Training min, max, SD, explained variance: -3.9266, 5.5565, 1.236, 0.0147.

Feature Contribution				
Top features	for positive contribution	า		
Bit/Smiles	Feature Structure	Score		
565998553	[*]N([*])C(=0)C(=[*]) [*]	0.357		
	Top features Bit/Smiles	Top features for positive contribution Bit/Smiles Feature Structure 565998553	Top features for positive contribution Bit/Smiles Feature Structure Score 565998553 0.357	

FCFP_6	565968762	[*]/N=C(/C)/C(=[*])[*	0.266
FCFP_6	-2090462286	[*]N([*])[c]1:[cH]:[c H]:[cH]:[cH]:[c]:1[*	0.245
	Top Features for ne	egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.422
FCFP_6	16	[*][c](:[*]):[*]	-0.354
FCFP_6	590925877	NH CI NH CI NH CI (*]N[c](:[cH]:[*]):[c H]:[*]	-0.323

Molecular Weight: 428.44

ALogP: 2.218 Rotatable Bonds: 5

Acceptors: 5 Donors: 3

Model Prediction

Prediction: 49.731

Unit: mg/kg_body_weight/day Mahalanobis Distance: 16.423

Mahalanobis Distance p-value: 1.13e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	Salicylazosulfapyridine		
Structure	THE HOLD OF THE HO	AND Enantiomer OH OH CI	HN N H		
Actual Endpoint (-log C)	6.47264	6.59334	2.39891		
Predicted Endpoint (-log C)	5.06501	5.06501	3.17598		
Distance	0.639	0.639	0.712		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC20 out of range. Value: 6.2813. Training min, max, SD, explained variance: -3.9266, 5.5565, 1.236, 0.0147.

Feature Contribution							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score				
FCFP_6	565998553	[']N(['])C(=0)C(=[']) [']	0.357				

	I		
FCFP_6	565968762	[*]\N=C(\C)\/C(=[*])[*	0.266
FCFP_6	-2090462286	[*]N([*])[c]1:[cH]:[c H]:[cH]:[cH]:[c]:1[*	0.245
	Top Features for ne	gative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.422
FCFP_6	7		-0.372
FCFP_6	16	[*]O	-0.354

 $C_{24}H_{19}N_5O_6$

Molecular Weight: 473.43756

ALogP: 2.113 Rotatable Bonds: 6

Acceptors: 7
Donors: 3

Model Prediction

Prediction: 18.156

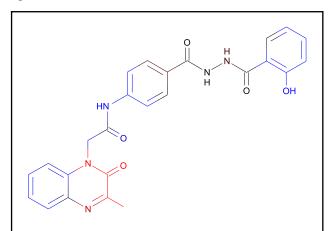
Unit: mg/kg_body_weight/day Mahalanobis Distance: 19.562

Mahalanobis Distance p-value: 2.68e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	623	Salicylazosulfapyridine	4-Bis(2- hydroxyethyl)amino-2-(5- nitro-2-thienyl)quinazoline		
Structure	NH OF	HN N H	HO OH		
Actual Endpoint (-log C)	2.39985	2.39891	5.05984		
Predicted Endpoint (-log C)	3.4177	3.17598	4.23808		
Distance	0.641	0.678	0.733		
Reference	CPDB	CPDB	CPDB		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC20 out of range. Value: 6.0917. Training min, max, SD, explained variance: -3.9266, 5.5565, 1.236, 0.0147.

Feature Contribution					
	Top features	for positive contribution	1		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	5	[*][O-]	0.431		

FCFP_6	565998553	[']N(['])C(=O)C(=[']) [']	0.357
FCFP_6	8	[*][N+](=[*])[*]	0.336
		egative contribution	
Fingerprint		Feature Structure	Score
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.422
FCFP_6	7	[*]O	-0.372
FCFP_6	16	[*]O	-0.354

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: 59.139

Unit: mg/kg_body_weight/day Mahalanobis Distance: 16.869

Mahalanobis Distance p-value: 3.38e-017

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	Salicylazosulfapyridine	Ochratoxin A	542			
Structure	HN N H	Photo Hoto Hoto Hoto Hoto Hoto Hoto Hoto	AND Enginomer OH OH OH CI			
Actual Endpoint (-log C)	2.39891	6.47264	6.59334			
Predicted Endpoint (-log C)	3.17598	5.06501	5.06501			
Distance	0.706	0.737	0.737			
Reference	CPDB	CPDB	CPDB			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC20 out of range. Value: 5.8079. Training min, max, SD, explained variance: -3.9266, 5.5565, 1.236, 0.0147.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	565998553	[*]N([*])C(=O)C(=[*]) [*]	0.357			

FCFP_6	565968762	[*]NP=C(\C)\C(=[*])[*	0.266
FCFP_6	-2090462286	[*]N([*])[c]1:[cH]:[c H]:[cH]:[cH]:[o]:1[*	0.245
		egative contribution	
Fingerprint		Feature Structure	Score
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.422
FCFP_6	7	о м.	-0.372
FCFP_6	16	[*]O	-0.354

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

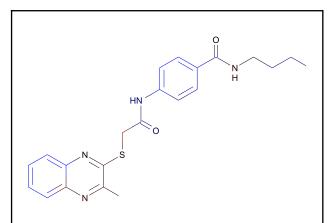
Prediction: 14.244

Unit: mg/kg_body_weight/day Mahalanobis Distance: 20.410

Mahalanobis Distance p-value: 9.56e-031

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	Fluvastatin	913	Ochratoxin A		
Structure	OH OH	OHOH	The state of the s		
Actual Endpoint (-log C)	3.51742	3.51742	6.47264		
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501		
Distance	0.597	0.597	0.666		
Reference	CPDB	CPDB	CPDB		

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F

Feature Cont	Feature Contribution					
	Top features	for positive contribution	n			
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	1	[*]=O	0.234			

FCFP_6	-885550502	[*]CNC(=[*])[*]	0.229
FCFP_6	32	[*]CI	0.154
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	16	[*][c](:[*]):[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323
FCFP_6	1674451008	[*][c]1:[*]:[cH]:[cH] :[cH]:[c]:1N=[*]	-0.233

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.583

Unit: g/kg_body_weight

Mahalanobis Distance: 33.972

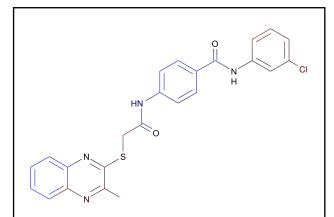
Mahalanobis Distance p-value: 8.09e-032

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	GLYBURIDE	GLIPIZIDE	ISOXABEN		
Structure	HN NO		N N N N N N N N N N N N N N N N N N N		
Actual Endpoint (-log C)	4.21661	3.94991	3.81665		
Predicted Endpoint (-log C)	4.21035	3.95594	4.42315		
Distance	0.657	0.693	0.700		
Reference	UPJ-26452	NDA-17583	EPA COVER SHEET 0339;881201;(1)		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -830332112: [*]S[*]
- 3. Unknown ECFP_6 feature: -955816473: [*]SCC(=[*])[*]
- 4. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 5. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 497523368: [*]CNC(=[*])[*]
- 9. Unknown ECFP 6 feature: -1791034651: [*]CCN[*]
- 10. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 11. Unknown ECFP_6 feature: 1410041175: [*]:[cH]:[c](:n:[*]):[c](:[*]):[*]
- 12. Unknown ECFP_6 feature: 1652635785: [*][c](:[*]):[c](C):n:[*]
- 13. Unknown ECFP_6 feature: 1050567921: [*]S[c](:n:[*]):[c]([*]):[*]
- 14. Unknown ECFP_6 feature: 1427820655: [*]CS[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: -1793471910: [*]CCC

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	1559650422	(*)C[*]	0.129
FCFP_6	3	(*)N[*]	0.092
ECFP_6	2099970318	[*]C(=O)[*]	0.077
	Top Features	for negative contributior	1
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.134
ECFP_6	1564392544	[*]:[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	-0.133

FCFP_6	1	-0.102	
		NH ONE	
		N S	
		(C,I)	
		[*]=O	

 $C_{24}H_{19}CIN_4O_2S$

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.114

Unit: g/kg_body_weight

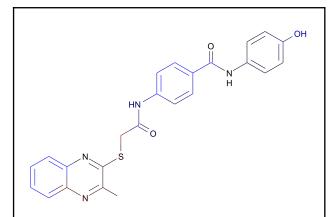
Mahalanobis Distance: 36.682

Mahalanobis Distance p-value: 1.47e-036

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	D & C RED 9	ASSURE	GLYBURIDE		
Structure	HO O HO THE PART OF THE PART O		HAN O		
Actual Endpoint (-log C)	3.87715	5.00328	4.21661		
Predicted Endpoint (-log C)	3.6546	4.27671	4.21035		
Distance	0.707	0.770	0.776		
Reference	NTP REPORT # 225	EPA COVER SHEET 0335;891001;(1)	UPJ-26452		


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -830332112: [*]S[*]
- 3. Unknown ECFP_6 feature: -955816473: [*]SCC(=[*])[*]
- 4. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 5. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 9. Unknown ECFP_6 feature: 1410041175: [*]:[cH]:[c](:n:[*]):[c](:[*]):[*]
- 10. Unknown ECFP_6 feature: 1652635785: [*][c](:[*]):[c](C):n:[*]
- 11. Unknown ECFP_6 feature: 1050567921: [*]S[c](:n:[*]):[c]([*]):[*]
- 12. Unknown ECFP_6 feature: 1427820655: [*]CS[c](:[*]):[*]
- 13. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 14. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

Feature Contribution					
Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					
	•	•			

ECFP_6	1559650422	NAS NHOCI	129
FCFP_6	32	[*]C[*] 0.	101
FCFP_6	3		.092
	Top Features	or negative contribution	
Fingerprint	Bit/Smiles		core
FCFP_6	991735244	-0 NH CI NH	0.134
ECFP_6	1564392544	-0 NH CI NH CI (*):[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	0.133

FCFP_6	1	NH CI	-0.102
		NHOCI NNS	
		[*]=O	

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6
Donors: 3

Model Prediction

Prediction: 0.181

Unit: g/kg_body_weight

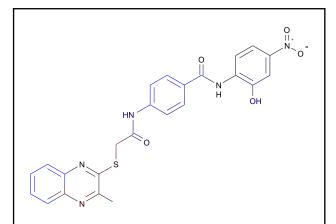
Mahalanobis Distance: 36.988

Mahalanobis Distance p-value: 4.39e-037

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	C.I. ACID RED 14	C.I.PIGMENT RED 23	D & C RED 9
Structure	HO OH	HO WHI	HO SOLUTION NO.
Actual Endpoint (-log C)	2.8654	2.28997	3.87715
Predicted Endpoint (-log C)	3.29295	3.52921	3.6546
Distance	0.724	0.739	0.742
Reference	NTP REPORT # 220	NTP 411 146	NTP REPORT # 225


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -830332112: [*]S[*]
- 3. Unknown ECFP_6 feature: -955816473: [*]SCC(=[*])[*]
- 4. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 5. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 7. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 8. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[t]
- 9. Unknown ECFP_6 feature: 1410041175: [*]:[cH]:[c](:n:[*]):[c](:[*]):[*]
- 10. Unknown ECFP_6 feature: 1652635785: [*][c](:[*]):[c](C):n:[*]
- 11. Unknown ECFP_6 feature: 1050567921: [*]S[c](:n:[*]):[c]([*]):[*]
- 12. Unknown ECFP_6 feature: 1427820655: [*]CS[c](:[*]):[*]
- 13. Unknown ECFP_6 feature: -177786161: [*]:[cH]:[c](O):[cH]:[*]
- 14. Unknown ECFP 6 feature: 2019062761: [*]:[c](:[*])O

	Top features	for positive contribution	1		
Fingerprint Bit/Smiles Feature Structure Score					

ECFP_6	1559650422	ON NHO OH	0.129
		[*]C[*]	
FCFP_6	3	NAS NHO OH	0.092
ECFP_6	2099970318	[*]N[*]	0.077
		[*]C(=O)[*]	
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	CINS NH COH	-0.134
		[*]:[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	
ECFP_6	1564392544	I*I:[c]1:[*]:[cH]:[cH	-0.133
		[*]:[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	

FCFP_6	1	-0.102	
		NH N	
		[*]=O	

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8
Donors: 3

Model Prediction

Prediction: 0.091

Unit: g/kg_body_weight

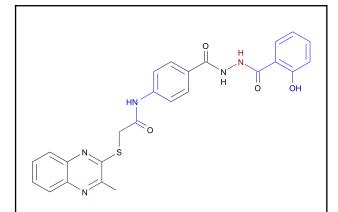
Mahalanobis Distance: 42.015

Mahalanobis Distance p-value: 1.87e-045

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I.PIGMENT RED 23	C.I. ACID RED 14	C.I. ACID ORANGE 3	
Structure	HO : NAME OF THE PARTY OF THE P	HO OH OH	O D D D D D D D D D D D D D D D D D D D	
Actual Endpoint (-log C)	2.28997	2.8654	3.20573	
Predicted Endpoint (-log C)	3.52921	3.29295	3.55956	
Distance	0.551	0.589	0.618	
Reference	NTP 411 146	NTP REPORT # 220	NTP REPORT # 335	


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 5: [*][O-]
- 3. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 4. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 5. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 6. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]
- 7. Unknown ECFP_6 feature: -830332112: [*]S[*]
- 8. Unknown ECFP_6 feature: 1043790491: [*][N+](=[*])[*]
- 9. Unknown ECFP_6 feature: 781519895: [*][O-]
- 10. Unknown ECFP_6 feature: -955816473: [*]SCC(=[*])[*]
- 11. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 12. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 13. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 14. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: 1335108269: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 16. Unknown ECFP 6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 17. Unknown ECFP_6 feature: 1410041175: [*]:[cH]:[c](:n:[*]):[c](:[*]):[*]
- 18. Unknown ECFP_6 feature: 1652635785: [*][c](:[*]):[c](C):n:[*]
- 19. Unknown ECFP_6 feature: 1050567921: [*]S[c](:n:[*]):[c]([*]):[*]
- 20. Unknown ECFP_6 feature: 1427820655: [*]CS[c](:[*]):[*]
- 21. Unknown ECFP_6 feature: -179073144: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]

- 22. Unknown ECFP_6 feature: 2019062761: [*]:[c](:[*])O
- 23. Unknown ECFP_6 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 24. Unknown ECFP_6 feature: 2104376220: [*][N+](=0)[*]
- 25. Unknown ECFP_6 feature: -659271057: [*][N+](=[*])[O-]

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score			
ECFP_6	1559650422	[*]C[*]	0.129			
FCFP_6	3	[*]N[*]	0.092			
ECFP_6	2099970318	[*]C(=O)[*]	0.077			
		for negative contributio				
Fingerprint	Bit/Smiles	Feature Structure	Score			

FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.134
ECFP_6	1564392544	[*]:[cH]:[cH]:1	-0.133
FCFP_6	1	[*]=O	-0.102

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: 0.382

Unit: g/kg_body_weight

Mahalanobis Distance: 39.016

Mahalanobis Distance p-value: 1.58e-040

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I. ACID RED 14	C.I.PIGMENT RED 23	C.I. ACID ORANGE 3	
Structure	HO OH OH	HO NAME OF THE PARTY OF THE PAR	O I I NH	
Actual Endpoint (-log C)	2.8654	2.28997	3.20573	
Predicted Endpoint (-log C)	3.29295	3.52921	3.55956	
Distance	0.681	0.716	0.727	
Reference	NTP REPORT # 220	NTP 411 146	NTP REPORT # 335	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -830332112: [*]S[*]
- 3. Unknown ECFP_6 feature: 1635339976: [*]NNC(=[*])[*]
- 4. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 5. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 6. Unknown ECFP_6 feature: 2019062761: [*]:[c](:[*])O
- 7. Unknown ECFP_6 feature: -955816473: [*]SCC(=[*])[*]
- 8. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 9. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 10. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 11. Unknown ECFP_6 feature: 1410041175: [*]:[cH]:[c](:n:[*]):[c](:[*]):[*]
- 12. Unknown ECFP_6 feature: 1652635785: [*][c](:[*]):[c](C):n:[*]
- 13. Unknown ECFP_6 feature: 1050567921: [*]S[c](:n:[*]):[c]([*]):[*]
- 14. Unknown ECFP 6 feature: 1427820655: [*]CS[c](:[*]):[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	1559650422	NA SON NA	0.129
		[*]C[*]	
FCFP_6	3	NAME OH	0.092
		[*]N[*]	
ECFP_6	2099970318	NA NAME OH	0.077
		[*]C(=O)[*]	
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1337040050	C N S OH	-0.158
		[*]C(=[*])[c](:[cH]:[*]):[c]([*]):[*]	
FCFP_6	991735244	[*]:[c]1:[*]:[cH]:[cH	-0.134
]:[cH]:[cH]:1	

ECFP_6	1564392544	-0.133	
		NNH OH	
		[*]:[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	

O N H

ALogP: 2.212 Rotatable Bonds: 7

Molecular Weight: 392.45096

Acceptors: 4 Donors: 2

 $C_{22}H_{24}N_4O_3$

Model Prediction

Prediction: 0.334

Unit: g/kg_body_weight

Mahalanobis Distance: 31.967

Mahalanobis Distance p-value: 3.12e-028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ISOXABEN	ACEBUTOLOL	DILTIAZEM	
Structure	NH NH	HN HO IT THE TANK HOW TO THE T	ms wo	
Actual Endpoint (-log C)	3.81665	3.04978	4.21961	
Predicted Endpoint (-log C)	4.42315	3.08045	4.005	
Distance	0.623	0.641	0.654	
Reference	EPA COVER SHEET 0339;881201;(1)	NDA-18917	NDA-18602	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 3. Unknown ECFP_6 feature: -597295171: [*][c](:[*]):[c](:[cH]:[*])N=[*]
- 4. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 5. Unknown ECFP_6 feature: 2085698692: [*]C(=N[c](:[*]):[*])[*]
- 6. Unknown ECFP_6 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 7. Unknown ECFP_6 feature: 1945129186: [*]N([*])C(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 9. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 10. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 11. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 12. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 13. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: 497523368: [*]CNC(=[*])[*]
- 15. Unknown ECFP 6 feature: -1791034651: [*]CCN[*]
- 16. Unknown ECFP_6 feature: -1793471910: [*]CCC

Feature Contribution

Top features for positive contribution

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422	[*]C[*]	0.129
FCFP_6	3	[*]N[*]	0.092
ECFP_6	2099970318	[*]C(=O)[*]	0.077
	Ton Features	for negative contributio	n

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	991735244	[*]:[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	-0.134	

ECFP_6	1564392544	[*]:[cH]:[cH]:1	-0.133
ECFP_6	2106656448	[*]C(=O)[*]	-0.110

O N H

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4
Donors: 2

Model Prediction

Prediction: 0.072

Unit: g/kg_body_weight

Mahalanobis Distance: 31.457

Mahalanobis Distance p-value: 2.59e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	GLYBURIDE	D & C RED 9	DILTIAZEM	
Structure	HN TO HN TO	HO THE PART OF THE	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	4.21661	3.87715	4.21961	
Predicted Endpoint (-log C)	4.21035	3.6546	4.005	
Distance	0.720	0.722	0.723	
Reference	UPJ-26452	NTP REPORT # 225	NDA-18602	

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 3. Unknown ECFP_6 feature: -597295171: [*][c](:[*]):[c](:[cH]:[*])N=[*]
- 4. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 5. Unknown ECFP_6 feature: 2085698692: [*]C(=N[c](:[*]):[*])[*]
- 6. Unknown ECFP_6 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 7. Unknown ECFP_6 feature: 1945129186: [*]N([*])C(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 9. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 10. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 11. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 12. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 13. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 15. Unknown ECFP 6 feature: 99947387: [*]:[c](:[*])Cl

Feature Contribution					
Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					
	•	-	<u>.</u>		

ECFP_6	1559650422	[*]C[*]	0.129
FCFP_6	32	[*]CI	0.101
FCFP_6	3	(*]N[*]	0.092
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*]:[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	-0.134
ECFP_6	1564392544	[*]:[cH]:[cH]:1	-0.133

ECFP_6	2106656448	NO NH CI	-0.110
		[*]C(=O)[*]	

$$C_{24}H_{20}N_4O_4$$

Molecular Weight: 428.44 ALogP: 2.218

Rotatable Bonds: 5

Acceptors: 5
Donors: 3

Model Prediction

Prediction: 0.132

Unit: g/kg_body_weight

Mahalanobis Distance: 31.083

Mahalanobis Distance p-value: 1.24e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	GLIPIZIDE	GLYBURIDE	CHLORSULFURON	
Structure		HIN TO THE TOTAL PROPERTY OF THE TOTAL PROPE	HN N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	3.94991	4.21661	4.15566	
Predicted Endpoint (-log C)	3.95594	4.21035	3.79771	
Distance	0.653	0.701	0.742	
Reference	NDA-17583	UPJ-26452	EPA COVER SHEET 0027;880301;(1)	


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 3. Unknown ECFP_6 feature: -597295171: [*][c](:[*]):[c](:[cH]:[*])N=[*]
- 4. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 5. Unknown ECFP_6 feature: 2085698692: [*]C(=N[c](:[*]):[*])[*]
- 6. Unknown ECFP_6 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 7. Unknown ECFP_6 feature: 1945129186: [*]N([*])C(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 9. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 10. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 11. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 12. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 13. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: -177786161: [*]:[cH]:[c](O):[cH]:[*]
- 15. Unknown ECFP_6 feature: 2019062761: [*]:[c](:[*])O

Feature Contribution				
Top features for positive contribution				
Fingerprint Bit/Smiles Feature Structure Score				

ECFP_6	1559650422	(*)C[*]	0.129
FCFP_6	3	(*]N[*]	0.092
ECFP_6	2099970318	[*]C(=O)[*]	0.077
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.134
ECFP_6	1564392544	[*]:[c]1:[*]:[cH]:[cH]:1	-0.133

ECFP_6	2106656448	NH OH	-0.110
		[*]C(=O)[*]	

Molecular Weight: 473.43756

ALogP: 2.113
Rotatable Bonds: 6

Acceptors: 7
Donors: 3

Model Prediction

Prediction: 0.103

Unit: g/kg_body_weight

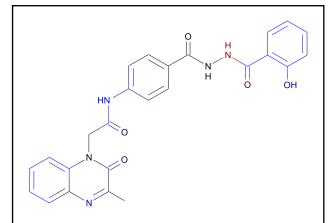
Mahalanobis Distance: 37.944

Mahalanobis Distance p-value: 1.02e-038

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	GLIPIZIDE	C.I. ACID ORANGE 3	C.I. ACID ORANGE 10	
Structure		O I I I I I I I I I I I I I I I I I I I	HO MONO OF THE PART OF THE PAR	
Actual Endpoint (-log C)	3.94991	3.20573	3.435	
Predicted Endpoint (-log C)	3.95594	3.55956	3.28295	
Distance	0.630	0.677	0.685	
Reference	NDA-17583	NTP REPORT # 335	NTP REPORT # 211	


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 5: [*][O-]
- 3. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 4. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 5. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 6. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]
- 7. Unknown ECFP_6 feature: 1043790491: [*][N+](=[*])[*]
- 8. Unknown ECFP_6 feature: 781519895: [*][O-]
- 9. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 10. Unknown ECFP_6 feature: -597295171: [*][c](:[*]):[c](:[cH]:[*])N=[*]
- 11. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 12. Unknown ECFP_6 feature: 2085698692: [*]C(=N[c](:[*]):[*])[*]
- 13. Unknown ECFP_6 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 14. Unknown ECFP_6 feature: 1945129186: [*]N([*])C(=O)C(=[*])[*]
- 15. Unknown ECFP_6 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 16. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 17. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 18. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 19. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 20. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 21. Unknown ECFP_6 feature: 1335108269: [*]N[c](:[cH]:[*]):[c]([*]):[*]

- 22. Unknown ECFP_6 feature: -179073144: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]
- 23. Unknown ECFP_6 feature: 2019062761: [*]:[c](:[*])O
- 24. Unknown ECFP_6 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 25. Unknown ECFP_6 feature: 2104376220: [*][N+](=O)[*]
- 26. Unknown ECFP_6 feature: -659271057: [*][N+](=[*])[O-]

/Smiles 59650422	Feature Structure Contribution	Score 0.129
59650422	[*]C[*]	0.129
	I [*]C[*]	
	11-11	
	[*]N[*]	0.092
99970318	[*]C(=O)[*]	0.077
op Features fo	or negative contribution	1
	Feature Structure	Score
	99970318 Top Features for /Smiles	99970318 [*]C(=0)[*] Top Features for negative contribution

FCFP_6	991735244	[*]:[cH]:[cH]:1	-0.134
ECFP_6	1564392544	[*]:[cH]:[cH]:1	-0.133
ECFP_6	2106656448	[*]C(=O)[*]	-0.110

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475
Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: 0.271

Unit: g/kg_body_weight

Mahalanobis Distance: 34.979

Mahalanobis Distance p-value: 1.35e-033

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	GLIPIZIDE	GLYBURIDE	C.I. ACID ORANGE 10	
Structure		HN O	HO MAN OH	
Actual Endpoint (-log C)	3.94991	4.21661	3.435	
Predicted Endpoint (-log C)	3.95594	4.21035	3.28295	
Distance	0.631	0.736	0.788	
Reference	NDA-17583	UPJ-26452	NTP REPORT # 211	

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 3. Unknown ECFP_6 feature: -597295171: [*][c](:[c*]):[c](:[cH]:[*])N=[*]
- 4. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 5. Unknown ECFP_6 feature: 2085698692: [*]C(=N[c](:[*]):[*])[*]
- 6. Unknown ECFP_6 feature: 1483289300: [*]\N=C(\C)/C(=[*])[*]
- 7. Unknown ECFP_6 feature: 1945129186: [*]N([*])C(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: -661097313: [*]CN(C(=[*])[*])[c](:[*]):[*]
- 9. Unknown ECFP_6 feature: 1635339976: [*]NNC(=[*])[*]
- 10. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 11. Unknown ECFP_6 feature: 2019062761: [*]:[c](:[*])O
- 12. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 13. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 14. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]

Feature Contribution					
Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					
			-		

ECFP_6	1559650422	[*]C[*]	0.129
FCFP_6	3	[*]N[*]	0.092
ECFP_6	2099970318	[*]C(=O)[*]	0.077
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1337040050	[*]C(=[*])[c](:[cH]:[*]):[c]([*]):[*]	-0.158
FCFP_6	991735244	[*]:[c]1:[*]:[cH]:[cH]:1	-0.134

ECFP_6	1564392544		-0.133
		[*]:[c]1:[*]:[cH]:[cH]:[cH]:[cH]:1	

F H N H N O HN

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.005

Unit: g/kg_body_weight

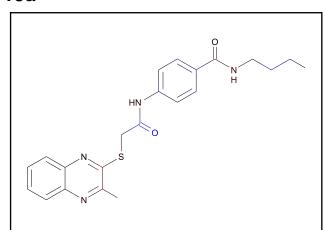
Mahalanobis Distance: 29.988

Mahalanobis Distance p-value: 1.21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	GLYBURIDE	D & C RED 9	SODIUM ACIFLUORFEN		
Structure	HIN IN TO SERVICE AND ADDRESS OF THE PARTY O	HO SALAN NAME OF THE PARTY OF T	F Human OH		
Actual Endpoint (-log C)	4.21661	3.87715	4.16036		
Predicted Endpoint (-log C)	4.21035	3.6546	4.65915		
Distance	0.636	0.722	0.736		
Reference	UPJ-26452	NTP REPORT # 225	EPA COVER SHEET 0192;891101;(1)		


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: 1413420509: [*]C(=[*])[c](:[cH]:[*]):n:[*]
- 4. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 5. Unknown ECFP_6 feature: -677309799: [*][c](:[*]):n:[cH]:[*]
- 6. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1338334141: [*]C(=[*])NC
- 8. Unknown ECFP_6 feature: 1305253718: [*]:[c](:[*])O[c](:[*]):[*]
 9. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 10. Unknown ECFP_6 feature: -649580166: [*]NC(=O)N[*]
- 11. Unknown ECFP_6 feature: 1336678434: [*][c](:[cH]:[*])C([*])([*])[*]
- 12. Unknown ECFP_6 feature: -1952889961: [*]:[c](:[*])C(F)(F)F
- 13. Unknown ECFP_6 feature: 226796801: [*]C([*])([*])F
- 14. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 15. Unknown ECFP_6 feature: 864287155: [*]NC

Feature Contribution					
Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					

ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c	0.106
FCFP_6	32	H]:[*]	0.101
FCFP_6	3	[*]CI	0.092
	Top Features f	or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	[*]=O	-0.102
ECFP_6	-1236483485	[*]C(=[*])N[c](:[*]): [*]	-0.075

FCFP_6	203677720	-	-0.071
		FCI NH, NH	
		۵.۵	
		н У Т	
		[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	
]).[Gr1].[]	

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.132

Unit: g/kg_body_weight

Mahalanobis Distance: 11.557

Mahalanobis Distance p-value: 8.5e-008

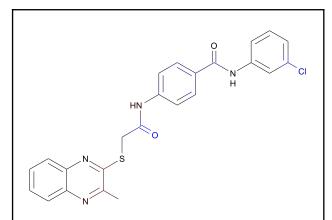
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	SALICYLAZOSULFAPYRI DINE				
Structure	HN HOH	OH NH	HO O NH2		
Actual Endpoint (-log C)	3.375	2.77703	4.04236		
Predicted Endpoint (-log C)	2.80292	2.80195	2.8614		
Distance	0.750	0.754	0.769		
Reference	NCI/NTP TR-457	NCI/NTP TR-222	NCI/NTP TR-356		

Model Applicability

- 1. OPS PC8 out of range. Value: 4.0355. Training min, max, SD, explained variance: -3.8548, 3.9137, 1.331, 0.0400.
- 2. OPS PC9 out of range. Value: 3.781. Training min, max, SD, explained variance: -2.8548, 3.3954, 1.263, 0.0360.
- 3. OPS PC14 out of range. Value: 3.5834. Training min, max, SD, explained variance: -2.0656, 3.3808, 1.011, 0.0231.


	Top features	for positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	-885550502	[*]CNC(=[*])[*]	0.115

FCFP_2	1036089772	[*]CS[c](:[*]):[*]	0.075
FCFP_2	3	(*)N[*)	0.074
		gative contribution	
Fingerprint		Feature Structure	Score
FCFP_2	-1272798659	[*]CCC[*]	-0.111
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.083

F

┖

ᆮ

C₂₄H₁₉CIN₄O₂S

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 0.123

Unit: g/kg_body_weight

Mahalanobis Distance: 11.191

Mahalanobis Distance p-value: 4e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	C.I.PIGMENT RED 3	SALICYLAZOSULFAPYRI DINE	C.I.PIGMENT RED 23		
Structure	HO M	HN SO OH OH	OH HN AND		
Actual Endpoint (-log C)	2.65635	3.375	2.30052		
Predicted Endpoint (-log C)	2.97957	2.80292	3.55333		
Distance	0.791	0.809	0.844		
Reference	NCI/NTP TR-407	NCI/NTP TR-457	NCI/NTP TR-411		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top features	for positive contribution	1		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	1036089772	[*]CS[c](:[*]):[*]	0.075		

FCFP_2	3	NN NH OCI	0.074
FCFP_2	136120670	NNHOCI NNHOCI	0.064
		[*]:[c](:[*])C	
Fingerprint FCFP_2	Bit/Smiles 71476542	Feature Structure	Score -0.134
		[*]:[c](:[*])CI	
FCFP_2	1872154524	ONHOCI NHOCI [*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.083

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6 Donors: 3

Model Prediction

Prediction: 0.333

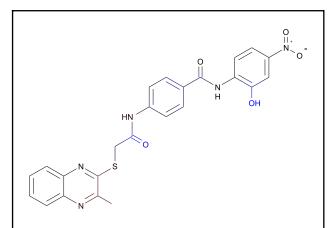
Unit: g/kg_body_weight

Mahalanobis Distance: 10.846

Mahalanobis Distance p-value: 1.65e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	SALICYLAZOSULFAPYRI DINE	C.I.PIGMENT RED 23	FUROSEMIDE		
Structure	N HN HOH	O H O H	HO O NH ₂		
Actual Endpoint (-log C)	3.375	2.30052	4.04236		
Predicted Endpoint (-log C)	2.80292	3.55333	2.8614		
Distance	0.582	0.670	0.818		
Reference	NCI/NTP TR-457	NCI/NTP TR-411	NCI/NTP TR-356		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution					
	Top features	for positive contribution	ı		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	1036089772	[*]CS[c](:[*]):[*]	0.075		

FCFP_2	3	(*]N[*]	0.074
FCFP_2	136120670	[*]:[c](:[*])C	0.064
		gative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	7	[*]O	-0.214
FCFP_2	-549108873	[*]:[c](:[*])O	-0.127
FCFP_2	1872154524	[*]:[c](:[*])O OND NOTICE [*]C(=O)[*]	-0.105

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8
Donors: 3

Model Prediction

Prediction: 0.244

Unit: g/kg_body_weight

Mahalanobis Distance: 11.389

Mahalanobis Distance p-value: 1.74e-007

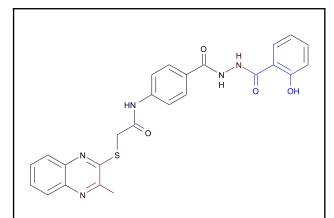
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	C.I.PIGMENT RED 23	SALICYLAZOSULFAPYRI DINE	FUROSEMIDE	
Structure	O H O H O H O H O H O H O H O H O H O H	HN N N N N N N N N N N N N N N N N N N	HO O NH2	
Actual Endpoint (-log C)	2.30052	3.375	4.04236	
Predicted Endpoint (-log C)	3.55333	2.80292	2.8614	
Distance	0.513	0.620	0.962	
Reference	NCI/NTP TR-411	NCI/NTP TR-457	NCI/NTP TR-356	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 8: [*][N+](=[*])[*]
- 3. Unknown FCFP_2 feature: 5: [*][O-]
- 4. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 5. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 6. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 7. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

FCFP_2	1036089772	0.075
FCFP_2	3	0.074 (*]N[*]
FCFP_2	136120670	0.064 [*]:[c](:[*])C
		or negative contribution
Fingerprint	Bit/Smiles	Feature Structure Score
FCFP_2	7	-0.214 [*]O
FCFP_2	-549108873	-0.127 -0.127 -0.127

FCFP_2	1872154524	NH N	-0.105
		C N S S S S S S S S S S S S S S S S S S	
		[*]C(=O)[*]	

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: 0.364

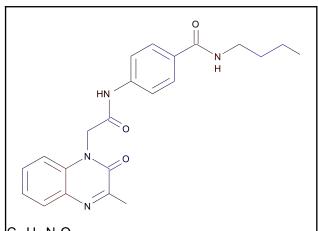
Unit: g/kg_body_weight

Mahalanobis Distance: 11.452

Mahalanobis Distance p-value: 1.33e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Name	SALICYLAZOSULFAPYRI DINE		
Structure	HN HN HN HOH	OH OH	HO O NH2 O S O O S O
Actual Endpoint (-log C)	3.375	2.30052	4.04236
Predicted Endpoint (-log C)	2.80292	3.55333	2.8614
Distance	0.599	0.657	0.880
Reference	NCI/NTP TR-457	NCI/NTP TR-411	NCI/NTP TR-356

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]

Feature Contribution					
	Top features	for positive contribution	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	1036089772	[*]CS[c](:[*]):[*]	0.075		

FCFP_2	3	(*]N[*]	0.074
FCFP_2		(*]:[c](:[*])C	0.064
	Top Features for ne		
• •	Bit/Smiles	Feature Structure	Score
FCFP_2	7		-0.214
FCFP_2	-549108873	[*]:[c](:[*])O	-0.127
FCFP_2	1872154524	[*]C(=O)[*]	-0.105

 $C_{22}H_{24}N_4O_3$

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7 Acceptors: 4

Donors: 2

Model Prediction

Prediction: 0.097

Unit: g/kg_body_weight

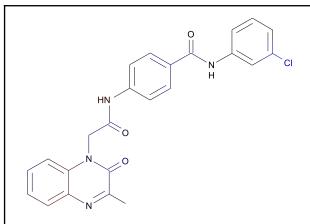
Mahalanobis Distance: 11.056

Mahalanobis Distance p-value: 7e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	TOLBUTAMIDE	DISPERSE YELLOW 3	ACETOHEXAMIDE
Structure	H H N N H	OH NH	NH O S S
Actual Endpoint (-log C)	2.3985	2.77703	2.55683
Predicted Endpoint (-log C)	3.32272	2.80195	3.62413
Distance	0.596	0.607	0.609
Reference	NCI/NTP TR-031	NCI/NTP TR-222	NCI/NTP TR-050


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. OPS PC9 out of range. Value: 3.6764. Training min, max, SD, explained variance: -2.8548, 3.3954, 1.263, 0.0360.

Feature Contribution			
Top features for positive contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	-885550502	[*]CNC(=[*])[*]	0.115

	332760439	[*]N[*]	0.074
	Ton Foothware for me	[*][c](:[*])N=[*]	
Fingerprint	Top Features for ne Bit/Smiles		Score
FCFP_2	-1272798659	[*]CCC[*]	-0.111
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.083

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4 Donors: 2

Model Prediction

Prediction: 0.096

Unit: g/kg_body_weight

Mahalanobis Distance: 10.657

Mahalanobis Distance p-value: 3.54e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	CHLORBENZILATE	DISPERSE YELLOW 3	OXAZEPAM
Structure	OH CI	OH NH	CI NOH
Actual Endpoint (-log C)	3.38252	2.77703	3.05262
Predicted Endpoint (-log C)	3.27894	2.80195	3.13073
Distance	0.650	0.661	0.680
Reference	NCI/NTP TR-75	NCI/NTP TR-222	NCI/NTP TR-468

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution			
Top features for positive contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	3	(*)N[*]	0.074

FCFP_2	332760439	[*][c](:[*]))V=[*]	0.061
FCFP_2	565998553	[*]N([*])C(=O)C(=[*]) [*]	0.008
		gative contribution	
			Score
FCFP_2	71476542	**************************************	-0.134
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.083

$C_{24}H_{20}N_4O_4$

Molecular Weight: 428.44

ALogP: 2.218 Rotatable Bonds: 5

Acceptors: 5 Donors: 3

Model Prediction

Prediction: 0.259

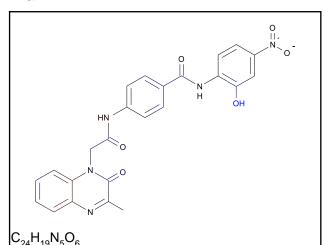
Unit: g/kg_body_weight

Mahalanobis Distance: 10.670

Mahalanobis Distance p-value: 3.35e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Name	DISPERSE YELLOW 3	SALICYLAZOSULFAPYRI DINE	FUROSEMIDE
Structure	OH NH	HN OOH	HO O NH2
Actual Endpoint (-log C)	2.77703	3.375	4.04236
Predicted Endpoint (-log C)	2.80195	2.80292	2.8614
Distance	0.639	0.657	0.683
Reference	NCI/NTP TR-222	NCI/NTP TR-457	NCI/NTP TR-356

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

Feature Contribution				
	Top features for positive contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	3	[*]N[*]	0.074	

FCFP_2	332760439	[*][c](:[*])N=[*]	0.061
FCFP_2	565998553	[*]N([*])C(=O)C(=[*]) [*]	0.008
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	7	[*]O	-0.214
FCFP_2	-549108873	[*]:[c](:[*])O	-0.127
FCFP_2	1872154524	[*]:[c](:[*])O	-0.105
		[*]C(=O)[*]	

Molecular Weight: 473.43756

ALogP: 2.113
Rotatable Bonds: 6

Acceptors: 7
Donors: 3

Model Prediction

Prediction: 0.191

Unit: g/kg_body_weight

Mahalanobis Distance: 11.201

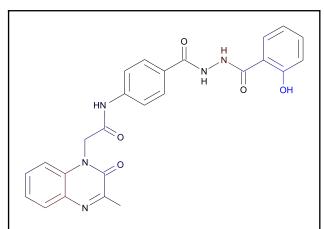
Mahalanobis Distance p-value: 3.84e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	SALICYLAZOSULFAPYRI DINE	C.I.PIGMENT RED 23	FUROSEMIDE
Structure	HN HOH	OH OH	HO O NH2 NH2 O S
Actual Endpoint (-log C)	3.375	2.30052	4.04236
Predicted Endpoint (-log C)	2.80292	3.55333	2.8614
Distance	0.525	0.720	0.755
Reference	NCI/NTP TR-457	NCI/NTP TR-411	NCI/NTP TR-356

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 8: [*][N+](=[*])[*]
- 3. Unknown FCFP_2 feature: 5: [*][O-]
- 4. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 5. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 6. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 7. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

FCFP_2	3	[*]N[*]	0.074
FCFP_2	332760439	[*][c](:[c](:[cH]:[*])N=[*]	0.061
FCFP_2	565998553	[*]N([*])C(=O)C(=[*]) [*]	0.008
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	7	[*]O	-0.214
FCFP_2	-549108873	[*]O	-0.127

FCFP_2	1872154524	NH OH	-0.105
		[*]C(=O)[*]	

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6 Donors: 4

Model Prediction

Prediction: 0.284

Unit: g/kg_body_weight

Mahalanobis Distance: 11.529

Mahalanobis Distance p-value: 9.57e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	SALICYLAZOSULFAPYRI DINE	FUROSEMIDE	QUERCETIN		
Structure	HN HN HOH	HO O NH ₂	HO to OH OH		
Actual Endpoint (-log C)	3.375	4.04236	2.2016		
Predicted Endpoint (-log C)	2.80292	2.8614	2.27782		
Distance	0.613	0.720	0.798		
Reference	NCI/NTP TR-457	NCI/NTP TR-356	NCI/NTP TR-409		

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_2	3	[*]N[*]	0.074			
	•					

FCFP_2 FCFP_2	332760439 565998553	[*][c](:[*]):[c](:[cH]:[*])N=[*]	0.061
	Top Features t	[']N(['])C(=0)C(=[']) ['] for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	7	[*]O	-0.214
FCFP_2	-549108873	[*]:[c](:[*])O	-0.127
FCFP_2	1872154524	[*]C(=O)[*]	-0.105

F F C O HZ

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: 0.089

Unit: g/kg_body_weight

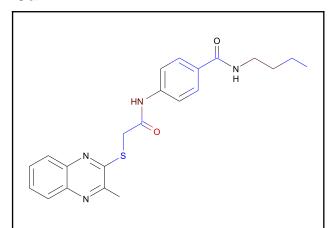
Mahalanobis Distance: 12.441

Mahalanobis Distance p-value: 1.76e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	FUROSEMIDE	PHENOLPHTHALEIN	DISPERSE YELLOW 3		
Structure	HO O NH2	НО	TI N N N N N N N N N N N N N N N N N N N		
Actual Endpoint (-log C)	4.04236	2.20184	2.77703		
Predicted Endpoint (-log C)	2.8614	2.8857	2.80195		
Distance	0.741	0.780	0.799		
Reference	NCI/NTP TR-356	NCI/NTP TR-465	NCI/NTP TR-222		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_2	-885550502	[*]CNC(=[*])[*]	0.115			

3	F CI NH NH	0.074
	[*]N[*]	
332760439		0.061
	[*][c](:[*]):[c](:[cH]:[*])N=[*]	
	Feature Structure	Score -0.134
71470042	FE CO	-0.134
	[*]:[c](:[*])Cl	
1872154524	[*]C(=O)[*]	-0.105
203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.083
	332760439 Top Features for ne Bit/Smiles 71476542 1872154524	[*]N[*]

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 0.250

Unit: g/kg_body_weight

Mahalanobis Distance: 10.534

Mahalanobis Distance p-value: 1.04e-006

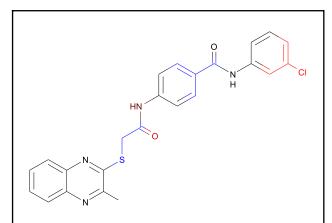
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK
Structure	OH HOO	H ₂ N OI S N H	OH OH NH ON NH
Actual Endpoint (-log C)	6.28396	2.82494	2.54455
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702
Distance	0.778	0.888	0.997
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336

Model Applicability

- 1. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 2. Unknown FCFP_2 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]


	Top features	for positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1	[*]=O	0.511

	3	(*)N[*]	0.104
FCFP_2	-1272798659	[*]CCC[*]	0.070
	Top Features for ne		
		Feature Structure	Score
FCFP_2	136597326	> > > > > > > > > > > > > > > > > > >	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406
FCFP_2	1872154524	*]):[cH]:[^] ONH [*]C(=O)[*]	-0.307

F

┖

ᆮ

C₂₄H₁₉CIN₄O₂S

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.003

Unit: g/kg_body_weight

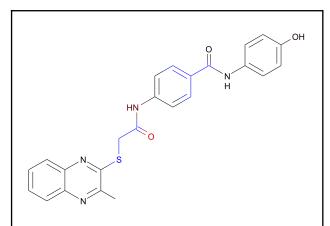
Mahalanobis Distance: 10.761

Mahalanobis Distance p-value: 5.01e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK
Structure	THE PART OF THE PA	H ₂ N O I S N H	OH OH OH NAME NH
Actual Endpoint (-log C)	6.28396	2.82494	2.54455
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702
Distance	0.951	1.080	1.290
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. Molecular_Weight out of range. Value: 462.95. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 4. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5338. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -2.8709. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]

Fingerprint Bit/Smiles Feature Structure Score FCFP_2 32 0.526

FCFP_2	1	**************************************	0.511
FCFP_2	367998008	[*]:[cH]:[c](CI):[cH] :[*]	0.413
	Top Features for ne	gative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406
FCFP_2	1872154524	NAS NHOCI	-0.307
FCFP_2	0	[*]C(=O)[*]	-0.290

 $C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6
Donors: 3

Model Prediction

Prediction: 0.014

Unit: g/kg_body_weight

Mahalanobis Distance: 12.626

Mahalanobis Distance p-value: 1.14e-009

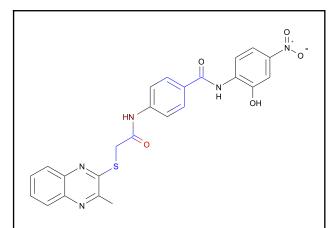
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK
Structure	O OH OHO	H ₂ N OI N H	OH OH NH OH NNH
Actual Endpoint (-log C)	6.28396	2.82494	2.54455
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702
Distance	0.873	1.073	1.239
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.


- Molecular_Weight out of range. Value: 444.51. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 4. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC1 out of range. Value: 8.7573. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 4. Unknown FCFP_2 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score FCFP_2 1 0.511

FCFP_2	3	OH NH NH NH NH NH NH NH NH NH NH NH NH NH	0.104
FCFP_2	7	[*]O	0.014
	Top Features for ne		
Fingerprint			Score
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406
FCFP_2	1872154524	[*]C(=O)[*]	-0.307
FCFP_2	0	[*]C(=O)[*]	-0.290

F

┖

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731 Rotatable Bonds: 7

Acceptors: 8
Donors: 3

Model Prediction

Prediction: 0.004

Unit: g/kg_body_weight

Mahalanobis Distance: 12.287

Mahalanobis Distance p-value: 3.45e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

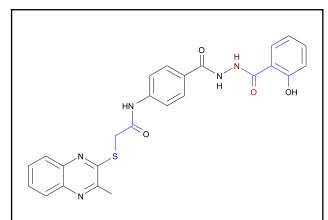
Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	THE PART OF THE PA	H ₂ N O N H	OH OH OH OH OH OH OH OH OH OH	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	1.098	1.356	1.399	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- Molecular_Weight out of range. Value: 489.5. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 4. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. Molecular_PolarSASA out of range. Value: 265.99. Training min, max, mean, SD: 0, 223.97, 50.816, 55.15.
- 5. Molecular_PolarSurfaceArea out of range. Value: 175.33. Training min, max, mean, SD: 0, 138.03, 28.978, 32.1.
- 6. OPS PC1 out of range. Value: 10.108. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 7. Unknown FCFP_2 feature: 8: [*][N+](=[*])[*]
- 8. Unknown FCFP_2 feature: 5: [*][O-]
- 9. Unknown FCFP_2 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]
- 10. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 11. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 12. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 13. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Contribution


Top features for positive contribution

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1	[*]=O	0.511
FCFP_2	3	[*]N[*]	0.104
FCFP_2	7	NHOH OH	0.014
	Top Features	for negative contributio	n
Cingornrint	Dit/Smiles	Eggturg Strugturg	Coore

Top Features for negative contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406		

FCFP_2	1872154524	NHOH [*]C(=0)[*]	-0.307
FCFP_2	0	[*]C[*]	-0.290

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: 0.012

Unit: g/kg_body_weight

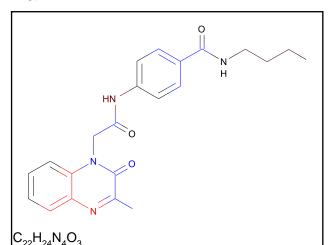
Mahalanobis Distance: 12.599

Mahalanobis Distance p-value: 1.24e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	OH HOO	H ₂ N O N N H	OH OH NA NA OH NA OH OH NA OH OH OH OH OH OH OH OH OH OH	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	1.016	1.276	1.366	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	


Model Applicability

- Molecular_Weight out of range. Value: 487.53. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Donors out of range. Value: 4. Training min, max, mean, SD: 0, 3, 0.4375, 0.8311.
- 3. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 4. Num_AromaticRings out of range. Value: 4. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 5. Molecular_PolarSASA out of range. Value: 234.94. Training min, max, mean, SD: 0, 223.97, 50.816, 55.15.
- 6. Molecular_PolarSurfaceArea out of range. Value: 158.61. Training min, max, mean, SD: 0, 138.03, 28.978, 32.1.
- 7. OPS PC1 out of range. Value: 9.9011. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 8. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]
- 9. Unknown FCFP_2 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]

ution						
Top features for positive contribution						
Fingerprint Bit/Smiles Feature Structure Score						
	Top features	Top features for positive contribution	Top features for positive contribution			

FCFP_2	1	[*]=O	0.511
FCFP_2	3	(*]N[*]	0.104
FCFP_2	7	(*)O	0.014
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406
FCFP_2	1872154524	[*]C(=O)[*]	-0.307

FCFP_2	0		-0.290
		NAME OF THE STATE	
		[*]C[*]	

Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7

Acceptors: 4 Donors: 2

Model Prediction

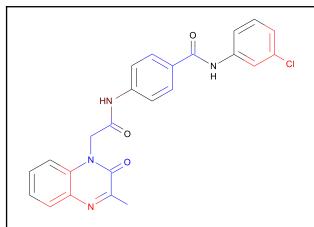
Prediction: 0.611

Unit: g/kg_body_weight
Mahalanobis Distance: 9.374

Mahalanobis Distance p-value: 3.95e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	PENICILLIN VK	PROBENECID	OCHRATOXIN	
Structure	OH OH NH OH NH	OH O S O	OH OHOO	
Actual Endpoint (-log C)	2.54455	2.85333	6.28396	
Predicted Endpoint (-log C)	3.9702	2.4258	5.12358	
Distance	0.760	0.763	0.768	
Reference	NCI/NTP TR-336	NCI/NTP TR-395	NCI/NTP TR-358	

Model Applicability

- 1. OPS PC6 out of range. Value: -2.8056. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 2. Unknown FCFP_2 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]

Feature Contribution Top features for positive contribution					
332760439	[*][c](:[*])N=[*]	0.672			
	Top features Bit/Smiles	Top features for positive contributio Bit/Smiles Feature Structure 332760439	Top features for positive contribution Bit/Smiles Feature Structure Score 332760439 0.672		

FCFP_2	3	[*]=O	0.511
		(*)N[*)	
Fingerprint		egative contribution Feature Structure	Score
FCFP_2	136597326	[*]CC	-0.489
	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N([*])C(=O)C(=[*]) [*]	-0.348

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5

Acceptors: 4 Donors: 2

Model Prediction

Prediction: 0.022

Unit: g/kg_body_weight

Mahalanobis Distance: 9.375

Mahalanobis Distance p-value: 3.94e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	H H NM	H ₂ N O I S N H	OH OH N N N N N N N N O	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	0.777	0.899	1.005	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

- 1. Molecular_Weight out of range. Value: 446.89. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC10 out of range. Value: 3.2414. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 4. Unknown FCFP_2 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]

Feature Cont	Feature Contribution					
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_2	332760439	[*][c](:[*]))N=[*]	0.672			

FCFP_2	32	[*]CI	0.526
FCFP_2	1	[*]=O	0.511
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	[*]CC	-0.489
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N([*])C(=0)C(=[*]) [*]	-0.348

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

Molecular Weight: 428.44

ALogP: 2.218 Rotatable Bonds: 5

Acceptors: 5
Donors: 3

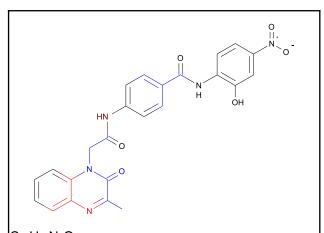
Model Prediction

Prediction: 0.104 Unit: g/kg_body_weight Mahalanobis Distance: 9.317

Mahalanobis Distance p-value: 4.69e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	H H NM	H ₂ N O I S N H	OH OH OH NA NA NA NA NA NA NA NA NA NA NA NA NA	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	0.627	0.864	0.916	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

- 1. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- OPS PC1 out of range. Value: 8.6203. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 3. OPS PC10 out of range. Value: 2.4631. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 4. Unknown FCFP_2 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]

Feature Contribution Top features for positive contribution				
FCFP_2	332760439	[*][c](:[*])N=[*]	0.672	

FCFP_2 FCFP_2	3	[*]=O	0.511
	Top Features for ne	[*]N[*]	
Fingerprint			Score
FCFP_2	136597326	[*]CC	-0.489
	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N([*])C(=0)C(=[*]) [*]	-0.348

 $C_{24}H_{19}N_5O_6$

Molecular Weight: 473.43756

ALogP: 2.113
Rotatable Bonds: 6

Acceptors: 7
Donors: 3

Model Prediction

Prediction: 0.032

Unit: g/kg_body_weight

Mahalanobis Distance: 9.408

Mahalanobis Distance p-value: 3.56e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

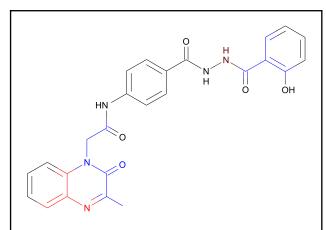
Structural Similar Compounds			
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH HO	OH OH NN NN NN NN NN NN NN NN NN NN NN NN NN	H ₂ N O N N H
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.795	1.036	1.122
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- Molecular_Weight out of range. Value: 473.44. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 7. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. Molecular_PolarSASA out of range. Value: 240.14. Training min, max, mean, SD: 0, 223.97, 50.816. 55.15.
- 5. Molecular_PolarSurfaceArea out of range. Value: 156.91. Training min, max, mean, SD: 0, 138.03, 28.978, 32.1.
- 6. OPS PC1 out of range. Value: 9.9705. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 7. Unknown FCFP_2 feature: 8: [*][N+](=[*])[*]
- 8. Unknown FCFP_2 feature: 5: [*][O-]
- 9. Unknown FCFP_2 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]
- 10. Unknown FCFP_2 feature: -828984032: [*][N+](=[*])[c](:c:[*]):c:[*]
- 11. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 12. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 13. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Contribution


Top features for positive contribution

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	332760439	[*][c](:[*]):[c](:[cH]:[*])N=[*]	0.672
FCFP_2	1	[*]=O	0.511
FCFP_2	3	[*]N[*]	0.104
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326	NHOH OH	-0.489

[*]CC

FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*])	-0.406
FCFP_2	565998553	["]N(["])C(=O)C(=["]) ["]	-0.348

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: 0.093

Unit: g/kg_body_weight

Mahalanobis Distance: 10.392

Mahalanobis Distance p-value: 1.64e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	OCHRATOXIN	PENICILLIN VK	AMPICILLIN TRIHYDRATE
Structure	O OH OHO	OH OH OH NH OH NH	OH N N N N N N N N N N N N N N N N N N N
Actual Endpoint (-log C)	6.28396	2.54455	2.36724
Predicted Endpoint (-log C)	5.12358	3.9702	2.27651
Distance	0.767	1.047	1.082
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-318

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. Molecular_Weight out of range. Value: 471.46. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Donors out of range. Value: 4. Training min, max, mean, SD: 0, 3, 0.4375, 0.8311.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. Molecular_PolarSurfaceArea out of range. Value: 140.19. Training min, max, mean, SD: 0, 138.03, 28.978, 32.1.
- 5. OPS PC1 out of range. Value: 9.764. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 6. Unknown FCFP_2 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]
- 7. Unknown FCFP_2 feature: -885461129: [*]NNC(=[*])[*]

Top features for positive contribution				
Fingerprint Bit/Smiles Feature Structure Score				
		-	-	

FCFP_2	332760439	NA N	0.672
		[*][c](:[*])):[c](:[cH]:[*])N=[*]	
FCFP_2	1	NH OH	0.511
		[*]=O	
FCFP_2	3	NHNH OH	0.104
		[*]N[*]	
	Top Features for ne	egative contribution	
Fingerprint			Score
FCFP_2	136597326	NH O OH	-0.489
		[*]CC	
FCFP_2	203677720	NANH OH	-0.406
		[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	

FCFP_2	565998553	[*]N([*])C(=0)C(=[*]) [*]	-0.348

Sorafenib

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

F H H
a o
N
HN

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.001

Unit: g/kg_body_weight

Mahalanobis Distance: 12.193

Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	OH OH	H ₂ N O S N H	OH N N N N N N N N N N N N N	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	0.758	0.997	1.159	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. Molecular_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: 1499521844: [*]NC(=O)N[*]
- 6. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F
- 7. Unknown FCFP_2 feature: 136686699: [*]NC

Top features for positive contribution						
Fingerprint Bit/Smiles Feature Structure Score						

FCFP_2	332760439	F NH, NH	0.672
		N N N N N N N N N N N N N N N N N N N	
		[*][c](:[*]):[c](:[cH]:[*])N=[*]	
FCFP_2	32	F NH, NH	0.526
		[*]Cl	
FCFP_2	1	F NH NH	0.511
		[*]=O	
	Top Features for no	egative contribution	
Fingerprint	Bit/Smiles		Score
FCFP_2	203677720	EF NH, NH	-0.406
		ਸੋ [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	
FCFP_2	1872154524	E NH NH	-0.307
		[*]C(=O)[*]	

FCFP_2	0	FF NH NH	-0.290
		н [*]C[*]	

 $C_{22}H_{24}N_4O_2S$

Molecular Weight: 408.51656

ALogP: 3.83

Rotatable Bonds: 8

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 12.496

Unit: g/kg_body_weight

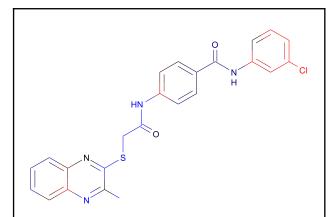
Mahalanobis Distance: 21.154

Mahalanobis Distance p-value: 6.56e-013

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	ACEMETACIN	CARBAMIC ACID; [1-[(5- CYANOPENTYL)CARBAM OYL]BENZIMIDAZOL-2- YL]-; METHYL ESTER	bis-OXATIN ACETATE		
Structure	HO O O O O O O O O O O O O O O O O O O	Z I I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	OM N		
Actual Endpoint (-log C)	4.235	2.12	1.717		
Predicted Endpoint (-log C)	3.39415	1.78415	2.40947		
Distance	0.614	0.643	0.647		
Reference	ARZNAD 30;1398;80	85ARAE 4;118;76/77	NIIRDN 6;609;82		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[c](:[*]):[*]
- 5. Unknown FCFP_6 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
ECFP_6	642810091	[*][c](:[*]):[*]	0.281		

ECFP_6	-1897341097	(*]N[*]	0.216
ECFP_6	1444581947	[*]C(=[*])[c]H]:[cH]:[cH]:[1]	0.163
		egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	497523368	[*]CNC(=[*])[*]	-0.301
ECFP_6	655739385	(*]:n:[*]	-0.239
FCFP_6	566058135	[*]CC(=O)N[*]	-0.216

C₂₄H₁₉CIN₄O₂S

Molecular Weight: 462.95126

ALogP: 4.743 Rotatable Bonds: 6

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 4.969

Unit: g/kg_body_weight

Mahalanobis Distance: 20.014

Mahalanobis Distance p-value: 5.71e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	ACEMETACIN	BENZENESULFONIC ACID; 2;2'-(4;4'- BIPHENYLYLENEDIVINYL ENE)DI-; DISODIUM SALT (Na STRIPPED)	bis-OXATIN ACETATE	
Structure	HO	OH O	T T T T T T T T T T T T T T T T T T T	
Actual Endpoint (-log C)	4.235	1.968	1.717	
Predicted Endpoint (-log C)	3.39415	1.72109	2.40947	
Distance	0.698	0.716	0.742	
Reference	ARZNAD 30;1398;80	MVCRB3 2;193;73	NIIRDN 6;609;82	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[c](:[*]):[*]
- 5. Unknown FCFP_6 feature: -1410049896: [*]S[c](:n:[*]):[c]((*)):[*]
- 6. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	642810091	NHO _{CI}	0.281
		NN S NH CI	
		[*][c](:[*]):[*]	
ECFP_6	-1897341097	NN S NH CI	0.216
		[*]N[*]	
ECFP_6	577592657	CNS NHOCI	0.194
		[*][c]1:[*]:[cH]:[cH]	
		:[c](CI):[cH]:1	
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-817402818	NNH CI	-0.263
		[*]CI	
ECFP_6	655739385	NHOCI	-0.239
		NN NHOCI	
		[*]:n:[*]	

FCFP_6	566058135	S NH ^Q CI	-0.216
		[*]CC(=O)N[*]	

 $|C_{24}H_{20}N_4O_3S$

Molecular Weight: 444.5056

ALogP: 3.836 Rotatable Bonds: 6

Acceptors: 6
Donors: 3

Model Prediction

Prediction: 5.932

Unit: g/kg_body_weight

Mahalanobis Distance: 20.758

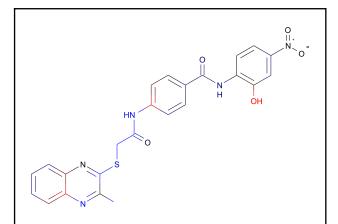
Mahalanobis Distance p-value: 1.85e-011

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	BENZENESULFONIC ACID; 2;2'-(4;4'- BIPHENYLYLENEDIVINYL ENE)DI-; DISODIUM SALT (Na STRIPPED)	OCHRATOXIN A	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	
Structure		OH OHO	OH OH OH OH OH OH	
Actual Endpoint (-log C)	1.968	4.305	1.771	
Predicted Endpoint (-log C)	1.72109	3.03558	2.1122	
Distance	0.748	0.825	0.829	
Reference	MVCRB3 2;193;73	FCTXAV 6;479;68	28ZPAK -;245;72	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[c](:[*]):[*]
- 5. Unknown FCFP_6 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]
- 6. Unknown FCFP_6 feature: 74595001: [*]:[cH]:[c](O):[cH]:[*]
- 7. Unknown FCFP_6 feature: -549108873: [*]:[c](:[*])O

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	[*]N[*]	0.216
ECFP_6	1444581947	[*]C(=[*])[c]1:[cH]:[*]:[c]([*]):[cH]:]	0.163
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	655739385	[*]:n:[*]	-0.239
FCFP_6	566058135	[*]CC(=O)N[*]	-0.216

FCFP_6	946589555	-0.204	
		[*][c]1:[*]:[cH]:[c](O):[cH]:[cH]:1	

 $C_{24}H_{19}N_5O_5S$

Molecular Weight: 489.50316

ALogP: 3.731
Rotatable Bonds: 7
Acceptors: 8

Donors: 3

Model Prediction

Prediction: 6.811

Unit: g/kg_body_weight

Mahalanobis Distance: 23.298

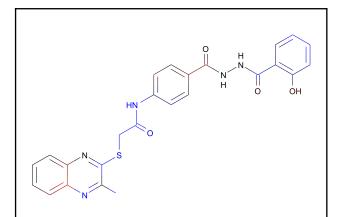
Mahalanobis Distance p-value: 3.53e-022

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	2;7-NAPHTHALENE DISULFONIC ACID; 4- AMINO-5-HYDROXY-; p- TOLUENE SULFONATE ESTER	AZOSEMIDE	BENZENESULFONIC ACID; 2;2'-(4;4'- BIPHENYLYLENEDIVINYL ENE)DI-; DISODIUM SALT (Na STRIPPED)	
Structure	NH 2	N = N // N HN :: N N = N N = N N = N N = N N = N N = N N = N N = N N = N	OH OH	
Actual Endpoint (-log C)	1.615	2.163	1.968	
Predicted Endpoint (-log C)	1.79606	2.21052	1.72109	
Distance	0.840	0.847	0.865	
Reference	85JCAE -;1063;86	IYKEDH 18;666;87	MVCRB3 2;193;73	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP_2 feature: 781519895: [*][O-]
- 4. Unknown ECFP_2 feature: -179073144: [*][N+](=[*])[c](:c:[*]):c:[*]
 5. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 6. Unknown ECFP_2 feature: 2104376220: [*][N+](=O)[*]
- 7. Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-]
- 8. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 9. Unknown FCFP_6 feature: 8: [*][N+](=[*])[*]
- 10. Unknown FCFP_6 feature: 5: [*][O-]
- 11. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 12. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[c](:[*]):[*]
- 13. Unknown FCFP_6 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]
- 14. Unknown FCFP_6 feature: 74595001: [*]:[cH]:[c](O):[cH]:[*]
- 15. Unknown FCFP_6 feature: -828984032: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]
- 16. Unknown FCFP_6 feature: -549108873: [*]:[c](:[*])O
 17. Unknown FCFP 6 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 18. Unknown FCFP_6 feature: 1872392852: [*][N+](=O)[*]

19. Unknown FCFP_6 feature: 260476081: [*][N+](=[*])[O-]

Feature Contr	ibution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
ECFP_6	642810091	[*][c](:[*]):[*]	0.281			
ECFP_6	-1897341097	(*]N[*]	0.216			
ECFP_6	1444581947	[*]C(=[*])[c]1:[cH]:[*]:[c]([*]):[cH]:[cH]:1	0.163			
	Top Features	for negative contribution	1			
Fingerprint	Bit/Smiles	Feature Structure	Score			
ECFP_6	655739385	[*]:n:[*]	-0.239			

FCFP_6	566058135	[*]CC(=O)N[*]	-0.216
ECFP_6	734603939	[*]C	-0.201

 $C_{25}H_{21}N_5O_4S$

Molecular Weight: 487.53034

ALogP: 3.093 Rotatable Bonds: 7

Acceptors: 7
Donors: 4

Model Prediction

Prediction: 4.703

Unit: g/kg_body_weight

Mahalanobis Distance: 23.110

Mahalanobis Distance p-value: 2.84e-021

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	AZOSEMIDE	FEBANTEL	
Structure	OH OH 2	N=N // HN N HN N Nn NH 2 O S O	T N H	
Actual Endpoint (-log C)	1.771	2.163	1.624	
Predicted Endpoint (-log C)	2.1122	2.21052	2.37098	
Distance	0.800	0.818	0.890	
Reference	28ZPAK -;245;72	IYKEDH 18;666;87	ARZNAD 28;2193;78	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: -885461129: [*]NNC(=[*])[*]
- 4. Unknown FCFP_6 feature: 74595001: [*]:[cH]:[c](O):[cH]:[*]
- 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: -549108873: [*]:[c](:[*])O
- 7. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[c](:[*]):[*]
- 8. Unknown FCFP_6 feature: -1410049896: [*]S[c](:n:[*]):[c]([*]):[*]

Bit/Smiles	Feature Structure	Score
		<u> </u>

ECFP_6	642810091	NAME OF THE STATE	0.281
		[*][c](:[*]):[*]	
ECFP_6	-1897341097	CNNS OH	0.216
ECFP_6	1444581947	[*]N[*]	0.163
	Too Foot one]:1	
Fingerprint	Bit/Smiles	for negative contribution Feature Structure	Score
ECFP_6	655739385	NN S NH O OH	-0.239
FCFP_6	566058135	[*]:n:[*]	-0.216
. 55		[*]CC(=O)N[*]	

FCFP_6	946589555	-0.204	
		NO OH	
		[*][c]1:[*]:[cH]:[c](O):[cH]:[cH]:1	

C₂₂H₂₄N₄O₃ Molecular Weight: 392.45096

ALogP: 2.212 Rotatable Bonds: 7

Acceptors: 4 Donors: 2

Model Prediction

Prediction: 18.136
Unit: g/kg_body_weight

Mahalanobis Distance: 23.642

Mahalanobis Distance p-value: 7.05e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	CLEBOPRIDE; MALATE SALT (MALATE STRIPPED)	HYCANTHONE	BEZAFIBRATE			
Structure	NH 2 Classification of the control o	NH N	H N OH			
Actual Endpoint (-log C)	2.168	2.561	1.946			
Predicted Endpoint (-log C)	2.89926	2.91901	2.54395			
Distance	0.534	0.547	0.553			
Reference	OYYAA2 25;803;83	EJBLAB 1;181;74	ARZNAD 30;2023;80			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
 Unknown FCFP_6 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]

Fingerprint	Score		
ECFP_6	642810091	NH NH NH	0.281
		[*][c](:[*]):[*]	

ECFP_6	-1897341097	[*]N[*]	0.216
ECFP_6	1444581947	[*]C(=[*])[c]1:[cH]:[*]:[c]([*]):[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	0.163
		r negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
ECFP_6	497523368	[*]CNC(=[*])[*]	-0.301
ECFP_6	655739385	[*]CNC(=[*])[*]	-0.239

 $C_{24}H_{19}CIN_4O_3$

Molecular Weight: 446.88566

ALogP: 3.125 Rotatable Bonds: 5 Acceptors: 4

Donors: 2

Model Prediction

Prediction: 7.450

Unit: g/kg_body_weight

Mahalanobis Distance: 22.536

Mahalanobis Distance p-value: 1.29e-018

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	1-BENZENESULFONYL- 5;5- DIPHENYLHYDANTOIN		bis-OXATIN ACETATE			
Structure	O = S N NH	T N N N N N N N N N N N N N N N N N N N	ON H			
Actual Endpoint (-log C)	2.363	2.088	1.717			
Predicted Endpoint (-log C)	2.34793	2.69288	2.40947			
Distance	0.620	0.630	0.636			
Reference	ARZNAD 20;1579;70	YRTMA6 9;11;78	NIIRDN 6;609;82			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
 Unknown FCFP_6 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
ECFP_6	642810091	[*][c](:[*]):[*]	0.281		

ECFP_6	-1897341097	*NH***********************************	0.216
ECFP_6	577592657	[*][c](CI):[cH]:1	0.194
		negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	NH CI	-0.352
ECFP_6	-817402818	NH CI	-0.263
ECFP_6	655739385	[*]CI	-0.239

ON H H N O

Molecular Weight: 428.44

ALogP: 2.218 Rotatable Bonds: 5

Acceptors: 5 Donors: 3

Model Prediction

Prediction: 7.868

Unit: g/kg_body_weight

Mahalanobis Distance: 22.461

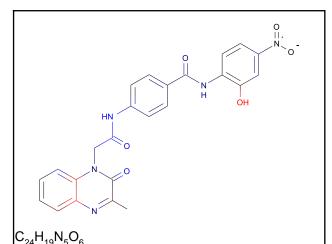
Mahalanobis Distance p-value: 2.77e-018

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN A	PIRETANIDE	SULFAQUINOXALINE	
Structure	OH HOO	O OH NH 2 NS O	H ₂ N S O N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	4.305	1.811	2.341	
Predicted Endpoint (-log C)	3.03558	1.83976	2.42674	
Distance	0.639	0.714	0.725	
Reference	FCTXAV 6:479:68	DRFUD4 2:393:77	MahWM# 16NOV82	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]
- 5. Unknown FCFP_6 feature: 74595001: [*]:[cH]:[c](O):[cH]:[*]
- 6. Unknown FCFP_6 feature: -549108873: [*]:[c](:[*])O

atures for positi Feat		Saara
Feat	ure Structure	Coore
	aro otraotaro	Score
[*.	NH OH	0.281
	[*	[*][c](:[*]):[*]

ECFP_6	-1897341097	(*]N[*]	0.216
ECFP_6	1444581947	[*]C(=[*])[c]1:[cH]:[*]:[c]([*]):[cH]:[cH	0.163
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
ECFP_6	655739385	(*]:n:[*]	-0.239
FCFP_6	566058135	[*]CC(=O)N[*]	-0.216
		[]00(-0)([]	

lΕ

Molecular Weight: 473.43756

ALogP: 2.113 Rotatable Bonds: 6

Acceptors: 7 Donors: 3

Model Prediction

Prediction: 5.470

Unit: g/kg_body_weight

Mahalanobis Distance: 26.984

Mahalanobis Distance p-value: 4.2e-043

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	AZOSEMIDE	FEBANTEL	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	
Structure	N = N HN N N N N N N N N N N N N	H N H	OH OH 2	
Actual Endpoint (-log C)	2.163	1.624	1.771	
Predicted Endpoint (-log C)	2.21052	2.37098	2.1122	
Distance	0.650	0.730	0.732	
Reference	IYKEDH 18;666;87	ARZNAD 28;2193;78	28ZPAK -;245;72	

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found in the training set.

- All properties and OPS components are within expected ranges. 1.
- 2. Unknown ECFP 2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP 2 feature: 781519895: [*][O-]
- Unknown ECFP 2 feature: -179073144: [*][N+](=[*])[c](:c:[*]):c:[*] 4.
- 5. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 6. Unknown ECFP 2 feature: 2104376220: [*][N+](=O)[*]
- Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-] 7.
- Unknown FCFP_6 feature: 16: [*][c](:[*]):[*] 8. 9. Unknown FCFP_6 feature: 8: [*][N+](=[*])[*]
- 10. Unknown FCFP 6 feature: 5: [*][O-]
- Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*] 11.
- 12. Unknown FCFP_6 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]
- Unknown FCFP 6 feature: 74595001: [*]:[cH]:[c](O):[cH]:[*] 13.
- Unknown FCFP 6 feature: -828984032: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*] 14.
- Unknown FCFP 6 feature: -549108873: [*]:[c](:[*])O 15.
- Unknown FCFP_6 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-] 16.
- Unknown FCFP_6 feature: 1872392852: [*][N+](=O)[*] 17.
- 18 Unknown FCFP 6 feature: 260476081: [*][N+](=[*])[O-]

	Top features	for positive contributior	1
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	642810091	NO NHOH	0.281
		[*][c](:[*]):[*]	
ECFP_6	-1897341097	NH OH	0.216
		[*]N[*]	
ECFP_6	1444581947	[*]C(=M))[c]1:[cH]:[*]:[c]([*]):[cH]:[cH	0.163
	Top Features	for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	NA ONTH	-0.352
		[*]C(=O)[*]	

ECFP_6	655739385	[*]:n:[*]	-0.239
FCFP_6	566058135	[*]CC(=O)N[*]	-0.216

 $C_{25}H_{21}N_5O_5$

Molecular Weight: 471.46474

ALogP: 1.475 Rotatable Bonds: 6

Acceptors: 6
Donors: 4

Model Prediction

Prediction: 5.956

Unit: g/kg_body_weight

Mahalanobis Distance: 24.187

Mahalanobis Distance p-value: 1.11e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	ANTHRAQUINONE; 1;5- DIAMINO-4;8- DIHYDROXY-3-(p- METHOXYPHENYL)-	AZOSEMIDE	OCHRATOXIN A
Structure	OH OH 2	N=N // \\ HN \\ NH \\ NH \\ O \\ S \\ O \\ O \\ S \\ O \\ O \\ O	OH HO
Actual Endpoint (-log C)	1.771	2.163	4.305
Predicted Endpoint (-log C)	2.1122	2.21052	3.03558
Distance	0.707	0.730	0.748
Reference	28ZPAK -;245;72	IYKEDH 18;666;87	FCTXAV 6;479;68

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: 580453787: [*]C(=N[c](:[*]):[*])[*]
- 5. Unknown FCFP_6 feature: -885461129: [*]NNC(=[*])[*]
- 6. Unknown FCFP_6 feature: 74595001: [*]:[cH]:[c](O):[cH]:[*]
- 7. Unknown FCFP_6 feature: -549108873: [*]:[c](:[*])O

	Top features for positive contribution					
Fingerprint	Fingerprint Bit/Smiles Feature Structure Score					

ECFP_6	642810091		0.281
ECFP_6	-1897341097	[*][c](:[*]):[*]	0.216
ECFP_6	1444581947	[*]N[*] [*]C(=[*])[c]1:[cH]:[*]:[c]([*]):[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	0.163
	Top Features	for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
ECFP_6	655739385	[*]:n:[*]	-0.239

FCFP_6	566058135	NH OH	-0.216
		[*]CC(=O)N[*]	

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

C₂₁H₁₆CIF₃N₄O₃

Acceptors: 4 Donors: 3

Model Prediction

Prediction: 0.823

Unit: g/kg_body_weight

Mahalanobis Distance: 21.029

Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FLUBENDAZOLE	PHOSPHORAMIDOTHIOIC ACID; ACETIMIDOYL-; O;O-bis-(p- CHLOROPHENYL)ESTER	BEZAFIBRATE	
Structure	N H N N N N N N N N N N N N N N N N N N	CI NH	H N OH	
Actual Endpoint (-log C)	2.088	5.006	1.946	
Predicted Endpoint (-log C)	2.69288	3.23989	2.54395	
Distance	0.697	0.703	0.721	
Reference	YRTMA6 9;11;78	FMCHA2 -;C149;89	ARZNAD 30;2023;80	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]4. Unknown FCFP 6 feature: 1747237384: [*][c](:[*]):n:[c](:[*]):[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 6. Unknown FCFP_6 feature: 136686699: [*]NC

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		

FCFP_6	71953198	[*]C([*])([*])F	0.392
ECFP_6	-1046436026	EF CI NH, NH OO OO OO NH H	0.349
ECFP_6	642810091	[*][c](:[*]):[*]	0.281
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	226796801	[*]C([*])([*])F	-0.320
ECFP_6	-817402818	FF CI NH NH OO ON NH H	-0.263

ECFP_6	-176455838	_F	-0.257
		CI ON ON O	
		\$	
		 [*]O[c](:[cH]:[*]):[c	
		H]:[*]	