Supporting information to

Garnet to hydrogarnet: Effect of post synthesis treatment on cation substituted LLZO solid electrolyte and its effect on Li ion conductivity

Charlotte Fritsch^a, Tatiana Zinkevich^{a,b}, Sylvio Indris^a, Martin Etter^c, Volodymyr Baran^{c,d}, Thomas Bergfeldt^e, Michael Knapp^a, Helmut Ehrenberg^a, Anna-Lena Hansen^{*a}

Table 1: Substituting and substituted cations for aliovalent substitution in LLZO: Ionic radii^[1] and coordination in binary oxides, cn = coordination number.

lon	Radii / Å		Coordination in binary oxide
	Tetrahedral (IV), based on halides	Octahedral (VI), based on halides	
Li⁺	0.59	0.76	-
Al ³⁺	0.39 (V : 0.48)	0.535	corundum: octahedral ^[2]
Fe ³⁺	0.49	Low spin: 0.55 High spin: 0.645	octahedral
Ga ³⁺	0.47	0.62	octahedral
Zr ⁴⁺	0.59	0.72	25°C: Baddeleyite, cn=7 >1100°C cn=8 ^[2]
Nb⁵+	0.48	0.64	NbO: Nb₀-Clusters ^[2] Nb₂O₅: distorted octahedra ^[3]
Ta⁵+	-	0.64	Ta ₂ O ₅ cn=7 ^[4] / cn=6 distorted octahedra ^[5]
W ⁶⁺	0.42	0.6	Octahedral in WO ₃ ^[2]
La ³⁺	VI: 1.032 XII: 1.36		Octahedral with one additional oxygen, cn= 7 ^[6]

Figure S1: Rietveld co-refinement against, top: X-ray diffraction pattern (Mo K_{a1}) and bottom: Neutron diffraction pattern (λ = 1.5482 Å) of commercial Alsubstituted LLZO.

Figure S2: Rietveld co-refinement against, top: X-ray diffraction pattern (Mo K_{a1}) and bottom: Neutron diffraction pattern (λ = 1.5482 Å) of commercial Tasubstituted LLZO

Figure S3: Raman spectra of Al-, Nb-, Ta- and W-substituted LLZO, LiOH, LiOH*H₂O, and Li₂CO₃.

Table S2: Results of	of the ICP-OES	analysis, n.a.:	not analyzed.
----------------------	----------------	-----------------	---------------

Atom	0/	Al-LLZ	AI-LLZO		Nb-LLZO		Ta-LLZO		W-LLZO	
	%	Mean	±	Mean	±	Mean	±	Mean	±	
Li	(wt-%)	4.39	0.09	4.76	0.10	4.26	0.09	5.14	0.11	
C	(wt-%)	0.956	0.083	1.30	0.11	2.52	0.22	0.620	0.054	
0	(wt-%)	27.9	2.2	28.6	2.3	27.0	2.1	22.9	1.8	
Al	(wt-%)	0.632	0.016	n.a.	-	n.a.	-	n.a.	-	
Zr	(wt-%)	19.5	0.4	12.7	0.3	12.8	0.3	15.7	0.3	
Nb	(wt-%)	n.a.	-	5.78	0.01	n.a.	-	n.a.	-	
La	(wt-%)	45.6	-	42.3	-	39.3	-	43.4	-	
Та	(wt-%)	n.a.	-	n.a.	-	8.70	0.01	n.a.	-	
W	(wt-%)	n.a.	-	n.a.	-	n.a.	-	6.79	0.23	
Sum	(wt-%)	98.98		95.44		94.58		94.55		
Li	(Atom-%)	21.5		23.0		22.1		27.5		
С	(Atom-%)	-		-		-		-		
0	(Atom-%)	59.3		60.0		60.9		53.1		
AI	(Atom-%)	0.796		-		-		-		
Zr	(Atom-%)	7.27		4.67		5.06		6.39		
Nb	(Atom-%)	-		2.09		-		-		

La	(Atom-%)	11.2	10.2	10.2	11.6
Та	(Atom-%)	-	-	1.73	-
w	(Atom-%)	-	-	-	1.37
Sum	(Atom-%)	100.00	100.00	100.00	100.00

Table S3: Results of the Rietveld refinement of synthesized Al-, Nb- Ta-, and W-substituted LLZO.

Substituent:	Crystal structure	Lattice	Cell volume	Structural
Stoichiometry		parameter a	/ Å ³	strain
		/ Å		[d <i>d/d</i> *10 ⁻⁴]
AI: $Li_{6.1}AI_{0.3}La_3Zr_2O_{12}$	Garnet	13.002	2198.040	20.87
Nb: Li _{6.5} La ₃ Zr _{1.5} Nb _{0.5} O ₁₂	Garnet	12.959	2176.422	30.61
$Li_{6.625}La_{3}Zr_{1.625}Ta_{0.375}O_{12}$	Hydrogarnet	13.007	2200.520	31.16
W: Li _{6.4} La ₃ Zr _{1.7} W _{0.3} O ₁₂	Garnet	12.926	2159.894	18.08

Figure S4: Rietveld refinement based on diffraction patterns (Mo $K_{\alpha 1}$) of synthesized Al-, Nb-, Ta-, and W-substituted LLZO.

Figure S5: Left: ⁷Li MAS NMR spectrum of Li₂CO₃ and right: ⁶Li MAS NMR spectrum of dried and anhydrous LiOH.

Figure S6: normalized (by max) pair distribution function of pristine, ball milled and sintered W-LLZO. Note that the lowered intensity of PDF peaks at higher r in the pristine PDF is due to a higher dampening factor (Qdamp).

Figure S7: Real space Rietveld refinement based on PDFs of pristine and sintered W-substituted LLZO.

Summaries of real space Rietveld small box fits using PDFgui:

PDF Fit Summary pristine W-LLZO

```
PDF REFINEMENT
 Using PDFFIT version : 1.1
    _____
PHASE 1 : 20200305_cf_w-llzo_mse
Scale factor
               : 0.411362 (0.01)
 Particle diameter : not applied
 Step cutoff
               : not applied
Quad. corr. factor : 0
Lin. corr. factor : 1.68761
Low r sigma ratio : 1
R cutoff [A]
               :0
Lattice parameters :12.9587 (0.0017) 12.9587 (0.0017) 12.9587 (0.0017)
     & angles :90
                          90
                                     90
DATA SET : 1 (string)
                              _____
Data range in r [A] : 1.19 -> 50
                                   Step dr : 0.01
Calculated range
                : 1.19 -> 51.3906
Refinement r range : 1.19 -> 50
                                    Data pts : 0 -> 4881
Reduced chi squared : 0.0227414
```

Rw - value : 0.154591 Experimental settings : Radiation : X-Rays Termination at Qmax : 27.11 A**-1 DQ dampening Qdamp : 0.0468316 (0.0011) A**-1 DQ broadening Qbroad : not applied Scale factor :1 Selected phases and atoms for this data set : Phase 1 : Atoms (i) : LA ZR W LI O Atoms (j): LA ZR W LI O Relative phase content in terms of atoms unit cells mass Phase 1:1 1 1 -----PARAMETER INFORMATION : _____ Number of constraints : 1110 Number of refined parameters : 10 Number of fixed parameters : 1 Refinement parameters : 1:12.9587 (0.0017) 2:0.411362 (0.01) 3:1.68761 6:0.0468316 (0.0011) 14:0.0108977 (0.00064) 15:0.00918106 (0.00076) 16:0.0170382 (0.018) 17:0.0408885 (0.0076) 21:0.0999987 (0.0016) 22:0.202442 (0.0022) 23:0.280528 (0.0023) _____ **REFINEMENT INFORMATION:** _____ Number of iterations : 5 Reduced chi squared : 0.0227414 Rw - value : 0.154591 Correlations greater than 0.8 : *** none ***

PDF Fit Summary ball milled W-LLZO

_____ PDF REFINEMENT Using PDFFIT version : 1.1 PHASE 1 : 220_W_LLZO _____ : 0.400113 (0.011) Scale factor Particle diameter : not applied Step cutoff : not applied Quad. corr. factor : 0 Lin. corr. factor : 1.68 Low r sigma ratio : 1 R cutoff [A] : 0 Lattice parameters :13.0381 (0.0024) 13.0381 (0.0024) 13.0381 (0.0024) 90 & angles :90 90 DATA SET : 1 (string) -----Data range in r [A] : 1.19 -> 40 Step dr : 0.01 Calculated range : 1.19 -> 41.5425 Refinement r range : 1.19 -> 40 Data pts : 0 -> 3881 Reduced chi squared : 0.030492 Rw - value : 0.189065 Experimental settings : Radiation : X-Rays Termination at Qmax : 24.44 A**-1 DQ dampening Qdamp : 0.02 A**-1 DQ broadening Qbroad : not applied Scale factor :1 Selected phases and atoms for this data set : Phase 1 : Atoms (i) : LA ZR W LI O Atoms (j) : LA ZR W LI O Relative phase content in terms of unit cells atoms mass Phase 1:1 1 1

PARAMETER INFORMATION :

Number of constraints : 1253 Number of refined parameters : 17 Number of fixed parameters : 1

Refinement parameters :

1:13.0381 (0.0024)	2:0.400113 (0.011)	3:1.68
15:0.013892 (0.0021)	16:3.19792 (1.8) 1	.7:0.0443428 (0.011)
21:0.131876 (0.0007)	261:0.0104125 (0.00038	3) 1781:0.112816 (0.0043)
1782:0.188424 (0.0054)	1783:0.280637 (0.004	8) 2261:0.953836 (0.005)
2262:0.344739 (0.0031)	2263:0.978239 (0.0054	4) 2274:0.0132193 (0.0036)
2275:0.0233563 (0.0039) 2276:0.0109719 (0.00)3) 2279:0.00776589 (0.002)

REFINEMENT INFORMATION:

Number of iterations : 5 Reduced chi squared : 0.030492 Rw - value : 0.189065

Correlations greater than 0.8 :

*** none ***

PDF Fit Summary of sintered W-LLZO

PDF REFINEMENT

Using PDFFIT version : 1.1

PHASE 1 : UNNAMED

Scale factor: 0.492705 (0.0085)Particle diameter: not appliedStep cutoff: not appliedQuad. corr. factor: 0Lin. corr. factor: 1.31527Low r sigma ratio: 1R cutoff [A]: 0Lattice parameters:12.9311 (0.00083)12.9311 (0.00083)12.9311 (0.00083)

90 90 & angles :90 -----DATA SET : 1 (string) -----Data range in r [A] : 1.19 -> 50 Step dr : 0.01 Calculated range : 1.19 -> 51.5559 Refinement r range : 1.19 -> 50 Data pts : 0 -> 4881 Reduced chi squared : 0.0234903 Rw - value : 0.103677 Experimental settings : Radiation : X-Rays Termination at Qmax : 24.23 A**-1 DQ dampening Qdamp : 0.0298057 (0.00064) A**-1 DQ broadening Qbroad : not applied Scale factor :1 Selected phases and atoms for this data set : Phase 1 : Atoms (i) : LA ZR W LI O Atoms (j) : LA ZR W LI O Relative phase content in terms of unit cells atoms mass Phase 1 :1 1 1 PARAMETER INFORMATION : Number of constraints : 1110 Number of refined parameters : 10 Number of fixed parameters : 1 Refinement parameters : 1:12.9311 (0.00083) 2:0.492705 (0.0085) 3:1.31527 6:0.0298057 (0.00064) 14:0.00997342 (0.00032) 15:0.00867781 (0.00042) 16:0.0252504 (0.015) 17:0.0368109 (0.0047) 21:0.102233 (0.0015) 22:0.20137 (0.0017) 23:0.27939 (0.0016) _____ **REFINEMENT INFORMATION:** _____ Number of iterations : 6 Reduced chi squared : 0.0234903

Rw - value : 0.103677

Correlations greater than 0.8 :

*** none ***

Comparison of crystal structures of the same symmetry *Ia*-3*d* (No. 230)

Structure #1 pristine W-LLZO

230								
12.9	12.95870 12.95870 12.95870 90.00000 90.00000 90.00000							
5								
La	1	24c	0.125000	0.000000	0.250000			
Zr	1	16a	0.000000	0.000000	0.00000			
Li	1	24d	0.375000	0.000000	0.250000			
Li	2	96h	0.431000	0.144000	0.172000			
0	1	96h	0.100000	0.202440	0.280530			

Structure #2 sintered W-LLZO

230

12.93110 12.93110 12.93110 90.00000 90.00000 90.00000

5

La	1	24c	0.125000	0.00000	0.250000
Zr	1	16a	0.00000	0.00000	0.000000
Li	1	24d	0.375000	0.00000	0.250000
Li	2	96h	0.431000	0.144000	0.172000
0	1	96h	0.102230	0.201370	0.279390

Description of Structure #2 in the most similar configuration to Structure #1

230								
12.93	12.931100 12.931100 12.931100 90.000000 90.000000 90.000000							
5								
La	1	24c	0.125000	0.000000	0.250000			
Zr	1	16a	0.00000	0.00000	0.00000			
Li	1	24d	0.375000	0.00000	0.250000			
Li	2	96h	0.431000	0.144000	0.172000			
0	1	96h	0.102230	0.201370	0.279390			

Transformation matrix (P, p): a,b,c ; 0,0,0

Matrix form:

(1	0	0	0
(P, p) =	0	1	0	0
	0	0	1	0/

Atom pairings and distances

	Atom Mappings								
	WP	Atom	Coordinates in S ₁	Atom	Coordinates in S ₂				
24c	(1/8,0,1/4)	La1	(0.125000,0.000000,0.250000)	La1	(0.125000,0.000000,0.250000)				
16a	(0,0,0)	Zr1	(0.000000,0.000000,0.000000)	Zr1	(0.000000,0.000000,0.000000)				
24d	(3/8,0,1/4)	Li1	(0.375000,0.000000,0.250000)	Li1	(0.375000,0.000000,0.250000)				
96h	(x,y,z)	Li2	(0.431000,0.144000,0.172000)	Li2	(0.431000,0.144000,0.172000)				
96h	(x,y,z)	01	(0.100000,0.202440,0.280530)	01	(0.102230,0.201370,0.279390)				

WP		Atom	Atomic Displacements				
		Atom	ux	uy	uz	u	
24c	(1/8,0,1/4)	La1	0.0000	0.0000	0.0000	0.0000	
16a	(0,0,0)	Zr1	0.0000	0.0000	0.0000	0.0000	

24d	(3/8,0,1/4)	Li1	0.0000	0.0000	0.0000	0.0000
96h	(x,y,z)	Li2	0.0000	0.0000	0.0000	0.0000
96h	(x,y,z)	01	0.0022	-0.0011	-0.0011	0.0353

NOTE: u_x , u_y and u_z are given in relative units. |u| is the absolute distance given in Å

Evaluation of the structure similarity

S	d _{max.} (Å)	dav. (Å)	Δ
0.0012	0.0353	0.0132	0.001

- Lattice and atomic position criteria:
 - The <u>degree of lattice distortion (S)</u> is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3). For the given two structures, the **degree of lattice distortion (S)** is **0.0012**.
 - $\circ~$ The maximum distance (d_{max}.) shows the maximal displacement between the atomic positions of the paired atoms. The **maximum distance** (d_{max}.) in this case is: 0.0353 Å
- The arithmetic mean (d_{av}) of the distance. In this case, the arithmetic mean (d_{av}) is 0.0132 Å
- The measure of similarity (Δ) (Bergerhoff *et al.*, 1998) is a function of the differences in atomic positions (weighted by the multiplicities of the sites) and the ratios of the corresponding lattice parameters of the structures. The **measure of similarity** (Δ) calculated for this case is **0.001**.

Comparison of crystal structures of the same symmetry *I*-43*d* (No. 220)

Structure #1 hydrogarnet W-LLZO (r = 50 Å)

```
220
13.03710 13.03710 13.03710 90.00000 90.00000 8
```

La	1	24d	0.131560	0.00000	0.250000
Zr	1	16c	0.010540	0.010540	0.010540
Li	1	12a	0.375000	0.00000	0.250000
Li	2	12b	0.875000	0.000000	0.250000
Li	3	48e	0.396390	0.195550	0.083330
Li	4	48e	0.945550	0.646390	0.166670
0	1	48e	0.108650	0.198960	0.285820
0	2	48e	0.444910	0.849510	0.479940

Structure #2 hydrogarnet W-LLZO (r = 6.5 Å)

220							
13.04	560	13.04560	13.04560	90.00000	90.00000	90.0000	0
8							
La	1	24d	0.131	800	0.00000)	0.250000
Zr	1	16c	0.010	700	0.010700)	0.010700
Li	1	12a	0.375	000	0.00000)	0.250000
Li	2	12b	0.875	000	0.00000)	0.250000
Li	3	48e	0.396	390	0.195550)	0.083330
Li	4	48e	0.945	550	0.646390)	0.166670
0	1	48e	0.114	210	0.189550)	0.271240
0	2	48e	0.455	580	0.850640)	0.473200

Description of Structure #2 in the most similar configuration to Structure #1

220						
13.045	5600	13.045600	13.045600	90.000000	90.000000	90.000000
8						
La	1	24d	0.131800	0.0	00000	0.250000
Zr	1	16c	0.010700	0.0	010700	0.010700

Li	1	12a	0.375000	0.000000	0.250000
Li	2	12b	0.875000	0.000000	0.250000
Li	3	48e	0.396390	0.195550	0.083330
Li	4	48e	0.945550	0.646390	0.166670
0	1	48e	0.114210	0.189550	0.271240
0	2	48e	0.455580	0.850640	0.473200

Transformation matrix (**P**, p): **a,b,c** ; 0,0,0 Matrix form:

 $(\mathbf{P}, \mathbf{p}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Atom pairings and distances

	Atom Mappings									
	WP	Atom	Coordinates in S ₁	Atom	Coordinates in S ₂					
24d	(x,0,1/4)	La1	(0.131560,0.000000,0.250000)	La1	(0.131800,0.000000,0.250000)					
16c	(x,x,x)	Zr1	(0.010540,0.010540,0.010540)	Zr1	(0.010700,0.010700,0.010700)					
12a	(3/8,0,1/4)	Li1	(0.375000,0.000000,0.250000)	Li1	(0.375000,0.000000,0.250000)					
12b	(7/8,0,1/4)	Li2	(0.875000,0.000000,0.250000)	Li2	(0.875000,0.000000,0.250000)					
48e	(x,y,z)	Li3	(0.396390,0.195550,0.083330)	Li3	(0.396390,0.195550,0.083330)					
48e	(x,y,z)	Li4	(0.945550,0.646390,0.166670)	Li4	(0.945550,0.646390,0.166670)					
48e	(x,y,z)	01	(0.108650, 0.198960, 0.285820)	01	(0.114210,0.189550,0.271240)					
48e	(x,y,z)	O2	(0.444910,0.849510,0.479940)	O2	(0.455580,0.850640,0.473200)					

	WP		Atom	Atomic Displacements				
			Atom	ux	uy	uz	u	
	24d	(x,0,1/4)	La1	0.0002	0.0000	0.0000	0.0031	
	16c	(x,x,x)	Zr1	0.0002	0.0002	0.0002	0.0036	
	12a	(3/8,0,1/4)	Li1	0.0000	0.0000	0.0000	0.0000	
	12b	(7/8,0,1/4)	Li2	0.0000	0.0000	0.0000	0.0000	

48e	(x,y,z)	Li3	0.0000	0.0000	0.0000	0.0000
48e	(x,y,z)	Li4	0.0000	0.0000	0.0000	0.0000
48e	(x,y,z)	01	0.0056	-0.0094	-0.0146	0.2376
48e	(x,y,z)	O2	0.0107	0.0011	-0.0067	0.1652

NOTE: u_x , u_y and u_z are given in relative units. |u| is the absolute distance given in Å

Evaluation of the structure similarity

S	d _{max.} (Å)	dav. (Å)	Δ
0.0004	0.2376	0.0760	0.008

- Lattice and atomic position criteria:
 - The <u>degree of lattice distortion (S)</u> is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3). For the given two structures, the **degree of lattice distortion (S)** is **0.0004**.
 - The maximum distance $(d_{max.})$ shows the maximal displacement between the atomic positions of the paired atoms. The **maximum distance** $(d_{max.})$ in this case is: 0.2376 Å
- The <u>arithmetic mean (d_{av}) </u> of the distance. In this case, the **arithmetic mean (d_{av})** is **0.0760** Å
- The <u>measure of similarity (Δ)</u> (Bergerhoff *et al.*, 1998) is a function of the differences in atomic positions (weighted by the multiplicities of the sites) and the ratios of the corresponding lattice parameters of the structures. The **measure of similarity** (Δ) calculated for this case is **0.008**.

Comparison of crystal structures of the different symmetries Ia-3d (No. 230) [= pristine W-LLZO) *I*-43d (No. 220) [= ball milled W-LLZO, r= 50 Å)

Atom pairings and distances (W was omitted in calculation, because problems with calculations occurred)

Atom Mappings

	WP	Atom	Coordinates in S ₁	Atom	Coordinates in S2
24d	(x,0,1/4)	La1	(0.125000,0.000000,0.250000)	La1	(0.131560,0.000000,0.250000)
16c	(x,x,x)	Zr1	(0.000000,0.000000,0.000000)	Zr1	(0.010540,0.010540,0.010540)
12a	(3/8,0,1/4)	Li1	(0.375000,0.000000,0.250000)	Li1	(0.375000,0.000000,0.250000)
12b	(7/8,0,1/4)	Li12	(0.875000,0.000000,0.250000)	Li2	(0.875000,0.000000,0.250000)
48e	(x,y,z)	Li2	(0.431000,0.144000,0.172000)	Li3	(0.396390,0.195550,0.083330)
48e	(x,y,z)	Li22	(0.894000,0.681000,0.078000)	Li4	(0.945550,0.646390,0.166670)
48e	(x,y,z)	01	(0.100000,0.202440,0.280530)	01	(0.108650,0.198960,0.285820)
48e	(x,y,z)	012	(0.452440,0.850000,0.469470)	O2	(0.444910,0.849510,0.479940)

WP		Atom	Atomic Displacements				
		Atom	ux	uy	uz	u	
24d	(x,0,1/4)	La1	-0.0066	0.0000	0.0000	0.0855	
16c	(x,x,x)	Zr1	-0.0105	-0.0105	-0.0105	0.2380	
12a	(3/8,0,1/4)	Li1	0.0000	0.0000	0.0000	0.0000	
12b	(7/8,0,1/4)	Li12	0.0000	0.0000	0.0000	0.0000	
48e	(x,y,z)	Li2	0.0346	-0.0515	0.0887	1.4112	
48e	(x,y,z)	Li22	-0.0515	0.0346	-0.0887	1.4112	
48e	(x,y,z)	01	-0.0086	0.0035	-0.0053	0.1398	
48e	(x,y,z)	012	0.0075	0.0005	-0.0105	0.1683	

NOTE: u_x , u_y and u_z are given in relative units. |u| is the absolute distance given in Å

Evaluation of the Global Distortion

S	d _{max.} (Å)	d av. (Å)	Δ
0.0035	1.4112	0.6099	0.066

- Lattice and atomic position criteria:
 - The <u>degree of lattice distortion (S)</u> is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3). For the given two structures, the **degree of lattice distortion (S)** is **0.0035**.
 - $\circ \quad \text{The } \underline{\text{maximum distance } (d_{max.})} \text{ shows the maximal displacement between the atomic positions of the paired atoms. The$ **maximum distance** $(d_max.) in this case is:$ **1.4112**Å

- The <u>average distance (d_{av}) </u> is defined as the average over the primitive unit cell of the distances between the atomic positions of the paired atoms. For this case the **average distance** (d_{av}) is calculated as **0.6099** Å.
- The measure of compatibility (Δ) (Bergerhoff *et al.*, 1998) is a function of the differences in atomic positions (weighted by the multiplicities of the sites) and the ratios of the corresponding lattice parameters of the structures (the comparison being between the transformed high symmetry structure into the low symmetry structure's setting and the reference low symmetry structure). The measure of compatibility (Δ) calculated for this case is 0.066.

Electrochemical impedance spectra of commercial LLZO

Figure S8: Nyquist Plot of impedance spectroscopy measurement of a sintered Nb-LLZO Pellet, a) Zoom, b) Arrhenius approach, dashed line shows a fit according to **Fehler! Verweisquelle konnte nicht gefunden werden.**.

Figure S9: Nyquist Plot of impedance spectroscopy measurement of a sintered Ta-LLZO Pellet, a) Zoom, b) Arrhenius approach, dashed line shows a fit according to **Fehler! Verweisquelle konnte nicht gefunden werden.**.

Figure S10: Nyquist Plot of impedance spectroscopy measurement of a sintered W-LLZO pellet, Inset: Arrhenius approach, dashed line shows a fit according to Fehler! Verweisquelle konnte nicht gefunden werden.

References

- [1] R. D. Shannon, Acta Crystallogr. Sect. A **1976**, *32*, 751–767.
- [2] E. Riedel, C. Janiak, *Anorganische Chemie*, DE GRUYTER, Berlin, München, Boston, **2015**.
- [3] B. M. Gatehouse, A. D. Wadsley, *Acta Crystallogr.* **1964**, *17*, 1545–1554.
- [4] N. C. Stephenson, R. S. Roth, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. **1971**, 27, 1037–1044.
- [5] A. Demont, C. Prestipino, O. Hernandez, E. Elkaïm, S. Paofai, N. Naumov, B. Fontaine, R. Gautier, S. Cordier, *Chem. A Eur. J.* **2013**, *19*, 12711–12719.
- [6] A. F. Wells, *Structural Inorganic Chemistry*, Oxford [Oxfordshire] Clarendon Press, **1984**.