Supporting information for

Synthesis of 9,9-Bis(4-hydroxyphenyl) fluorene Catalyzed by

Bifunctional Ionic Liquid

Jialun Wei^b, Limei Yu^{* a b}, Lei Yan, Wei Bai^b, Xinxin Lu^b and Zhanxian Gao^{a, b}

^a State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China.

^b School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.

*To whom correspondence should be addressed. Email: ochem@dlut.edu.cn

1. Functionalized ILs preparation

The ILs based on 1-methylimidazole, 2-mercapto-1-methylimidazole, pyridine, 2-mercaptopyridine, benzothiazole, 2-mercaptobenzothiazole, 2-mercapto-5-methyl-1,3,4-thiadiazole and 2,5-dimercapto-1,3,4-thiadiazole were synthesized by two-step method.

Scheme S1 The synthetic of functionalized ionic liquids

Table S1 The yield of zwitterions and ionic liquids			
ILs	The yield of zwitterions(%)	The yield of ILs (%)	Total yield(%)
1	91.5	97.8	89.5
2	85.6	98.9	84.7
3	78.2	97.7	76.4
4	89.9	98.9	88.9
5a	73.3	91.3	66.9
5b		98.1	71.9
6a	82.1	97.2	79.8
6b		98.1	80.5
6c		98.5	80.9
6d		92.2	75.7
6e		96.4	79.1
7	65.8	98.3	64.7
8	60.5	97.9	59.2

In the two-step synthesis of ionic liquid, the yields of each step and the total reaction are as follows:

2. ¹H and ¹³C NMR spectra

¹H and ¹³C NMR spectra were recorded on a Bruker Avance II 400 MHz with TMS as an internal standard.

2.1 ¹H and ¹³C NMR spectra of zwitterionic precursors

2.1.1 ¹H and ¹³C NMR spectra of Z1

Figure S2 ¹³C NMR for Z1

2.1.2 ¹H and ¹³C NMR spectra of Z2

Figure S4¹³C NMR for Z2

Figure S6¹³C NMR for Z3

2.1.4 ¹H and ¹³C NMR spectra of Z4

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S8¹³C NMR for Z4

Figure S10 ¹³C NMR for Z5

Figure S12 ¹³C NMR for Z6

2.1.7 ¹H and ¹³C NMR spectra of Z7

Figure S14 ¹³C NMR for Z7

2.1.8 ¹H and ¹³C NMR spectra of Z8

Figure S16¹³C NMR for Z8

2.2 ¹H and ¹³C NMR spectra of ILs

Spectra of (1): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 8.30 (s, 1H), 7.10 (s, 1H), 7.04 (s, 1H), 3.94 (t, 2H), 3.48 (s, 3H), 2.51 (t, 2H), 1.89 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 135.82, 123.54, 121.88, 47.45, 47.02, 35.50, 24.80.

Spectra of (2): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 7.13 (d, 1H), 7.09 (d, 1H), 3.48 (s, 3H), 2.81 (t, 2H), 2.62 (t, 2H), 1.60 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 139.42, 125.03, 120.30, 48.60, 34.76, 33.13, 24.49.

Spectra of (**3**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 8.55 (d, 2H), 8.25 (t, 1H), 7.77 (t, 2H), 4.45 (t, 2H), 2.64 (t, 2H), 2.14 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 145.79, 144.19, 128.28, 59.70, 46.90, 25.95.

Spectra of (4): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 8.35 (d, 1H), 8.19 (t, 1H), 7.79 (d, 1H), 7.53 (t, 1H), 3.29 (t, 2H), 2.90 (t, 2H), 2.01 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 156.10, 145.53, 141.56, 125.56, 122.50, 49.05, 30.25, 23.43.

Spectra of (**5a**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 8.98 (s, 1H), 8.12 (m, 2H), 7.79 (t, 1H), 7.60 (t, 1H), 4.81 (t, 2H), 2.93 (t, 2H), 2.32 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 162.27, 139.95, 131.19, 130.15, 128.97, 124.53, 116.50, 51.32, 47.27, 24.01.

Spectra of (**5b**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 10.31 (s, 1H), 8.26 (d, 1H), 8.22 (d, 1H), 7.89 (t, 1H), 7.79 (t, 1H), 4.96 (t, 2H), 3.00 (t, 2H), 2.95 (t, 2H), 2.58 (t, 2H), 2.47 (m, 2H), 1.95 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 140.00, 131.20, 130.21, 129.04, 124.60, 116.58, 51.32, 49.45, 47.29, 28.38, 24.03, 23.58, 22.53.

Spectra of (**6a**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 6.93 (d, 1H), 6.70 (m, 2H), 6.62 (t, 1H), 2.72 (t, 2H), 2.42 (t, 2H), 1.58 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 176.35, 141.77, 129.03, 128.12, 125.93, 121.69, 115.96, 48.74, 33.24, 23.15.

Spectra of (**6b**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 7.25 (d, 1H), 7.09 (d, 1H), 7.04 (t, 1H), 6.95 (t, 1H), 2.98 (t, 2H), 2.76 (t, 2H), 1.90 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 174.05, 145.10, 130.77, 127.74, 125.66, 121.64, 117.43, 49.15, 32.97, 23.63.

Spectra of (**6c**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 7.20 (d, 1H), 7.11 (d, 2H), 7.00 (d, 1H), 6.95 (t, 1H), 6.88 (t, 1H), 6.64 (d, 2H), 2.93 (t, 2H), 2.64 (t, 2H), 1.82 (m, 2H), 1.74 (s, 3H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 176.17, 142.44,

141.60, 139.28, 129.55, 128.84, 128.29, 126.13, 124.91, 121.93, 116.39, 48.96, 48.67, 33.38, 23.37, 20.20.

Spectra of (**6d**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 7.20 (d, 1H), 7.01 (d, 1H), 6.98 (t, 1H), 6.89 (t, 1H), 2.99 (t, 2H), 2.69 (t, 2H), 1.86 m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 176.10, 142.55, 129.56, 128.21, 126.07, 121.82, 116.39, 48.97, 33.38, 28.12, 23.40.

Spectra of (**6e**): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 7.52 (d, 1H), 7.33 (d, 2H), 7.27 (t, 1H), 7.17 (t, 1H), 3.20(t, 2H), 2.93 (t, 2H), 2.88 (t, 2H), 2.51 (t, 2H), 2.09 (m, 2H), 1.88 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 174.06, 145.90, 131.41, 127.90, 125.86, 121.94, 117.92, 49.45, 49.32, 33.13, 28.37, 23.84, 22.52.

Spectra of (7): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 3.02 (t, 2H), 2.65 (t, 2H), 2.42 (s, 3H), 1.80 (m, 2H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 170.97, 170.36, 48.96, 32.96, 23.53, 14.18.

Spectra of (8): ¹H NMR (400 MHz, D₂O, TMS) δ (ppm): 2.62 (t, 4H), 2.31 (t, 4H), 1.42 (m, 4H). ¹³C NMR (400 MHz, D₂O, TMS) δ (ppm): 168.14, 48.70, 32.83, 23.42.

3. MS spectra of ILs

IR spectra were recorded on a Q-TOF Micro.

MS: calcd for 1, m/z 301.0 (M-H), found 301.1; calcd for 2, m/z 303.0 (M-H), found 303.1; calcd for 3, m/z 298.0 (M-H), found 298.0; calcd for 4, m/z 330.0 (M-H), found 330.0; calcd for 5a, m/z 354.0 (M-H), found 354.0; calcd for 6a, m/z 386.0 (M-H), found 386.0; calcd for 7, m/z 351.0 (M-H), found 351.0; calcd for 8, m/z 490.9 (M-HSO₄-2H), found 491.0.

4. Determination of -SH

The sulfhydryl content of ILs was evaluated by determination of Ellman's method using UV-vis spectrometer with 5-sulfhydryl-2-nitrobenzoic acid as indicator. Figure S25 shows the reaction principle of the Ellman's method. Figure S26 shows the maximum absorbance of unprotonated indicator in UV-vis spectra at 412 nm.

Figure S25 The maximum absorbance of indicator at 412 nm

Figure S26 The maximum absorbance of indicator at 412 nm

5. Determination of conversion and selectivity

As shown in Figure S27, the reaction was analyzed by High Performance Liquid Chromatography (Agilent 1100). The HPLC-system was equipped with a Supersil OSD2 C18 column (250 x 4.6 mm, 5 μ m).

The mobile phase A (methanol) and the mobile phase B (H_2O) was pumped through the column whose temp was maintained at 30°C, with a flow rate 1.0 mL/min. A:B

(60:40, v:v) gradient rises to A:B (100:0, v:v) from 0 minutes to 30 minutes. 9-Fluorenone is detected at 257 nm. BHPF, by-product B and C are detected at 275 nm.

The conversion of 9-fluorenone is calculated as follows:

$$Con. (9-fluorenone) = \frac{n (9-fluorenone)_{I} - n (9-fluorenone)_{T}}{n (9-fluorenone)_{I}} \times 100\%$$

where n (9-fluorenone)_I and n (9-fluorenone)_T are the molar of 9-fluorenone at initial and terminal reaction time. As shown in Figure S27 (b), when 9-fluorenone is converted completely, there is no peak of 9-fluorenone in HPLC spectrum.

Selectivity of product are calculated as follows:

$$Sel.(BHPF) = \frac{n (BHPF)}{n (BHPF) + n (B) + n (C)} \times 100\%$$

where n (BHPH), n (B) and n (C) are the molar of BHPF, B and C.

Figure S27 HPLC spectra of reaction, 257 nm. (a) 9-fluorenone is not completely converted, (b) 9-fluorenone is completely converted.