Self-supporting Carbon-rich SiOC Ceramic Electrodes for Lithium-ion Batteries and Aqueous Supercapacitors

Shakir Bin Mujib, François Ribot, Christel Gervais, Gurpreet Singh

Supplementary Information

1. High-resolution TEM and EDX

2 4 Energy (keV) **Figure S1:** High-res TEM and corresponding EDX mappings of the SiOC fibermats. High-res TEM reveals the amorphous structure of the PDC fibermats. EDX elemental analysis show the presence and homogenous distribution of Si, C, and O in the three polymer-derived SiOC fibermats.

2. XPS

Figure S2: XPS spectra of the various samples pyrolyzed at 800 °C.

Figure S3: (a) ¹H-²⁹SiC and (b) ¹H-¹³C 2D NMR spectra of the DTDS electrospinning solution.

Figure S4: ¹³C CP MAS NMR spectrum of pyrolyzed (at ~800 °C) TPTS-derived SiOC ceramic powders indicates the presence of typical "free carbons".

4. LIBs

Figure S5: (a-c) Differential capacity curves of various SiOC electrodes show characteristic regions of reversible reactions between Li and SiOC. (d-f) Rate capability performance of three SiOC electrodes of each type shows consistent performance.

Samples	Current density (mA g ⁻¹)	Cycles	Capacity (mAh g ⁻¹)	Ref.
SiOC/C	50	60	669	1
SiOC/graphene	50	90	582	2
SiOC	74	30	460	3
SiOC/graphene sponge	100	100	701	4
SiOC	36	30	~150	5
Si/SiOC	100	100	800	6
SiOC/C NFs	100	100	707	7
SiOC/N-doped C	200	200	595	8
Si/SiOC/graphie	0.3C	100	637.3	9
3D-GNS/SiOC _f	100	100	775	10
SiOC fibermat	50	50	800	This work
SiOC fibermat	800	250	450	This work

Table S1: Comparison of the electrochemical performance of the polymer-derived SiOC anode with reported SiOC anodes for LIBs

5. Supercapacitors

Figure S6: (a-b) CV profiles of the DDTS- and DTDS-derived SiOC supercapacitor electrodes at various scan rate in 1M H₂SO₄ aqueous electrolyte, (c) comparison of cyclic voltammograms of various electrodes at 100 mV s⁻¹, (d) TPTS-derived SiOC supercapacitor electrodes at a scan rate of 2 mV s⁻¹, (e-f) capacitance retention trend of DTDS- and DDTS-derived SiOC electrodes show ~100% retention over 5000 cycles, (g) equivalent circuit derived for the supercapacitor electrodes.

6. Post-cycle analysis (SEM and TEM)

DTDS-derived SiOC

DDTS-derived SiOC

Figure S7: Microscopy analysis of various SiOC electrodes after 400 cycles in LIBs. (a-c) SEM images and (d-f) TEM images. TEM image of TPTS-SiOC shows the broken fiber structure presumably due to the lithiation/delithiation.

7. BET Surface Area Analysis

Figure S8: Nitrogen adsorption-desorption isotherms for the BET surface area analysis of various SiOC fibers.

Samples	BET surface area (m ² g ⁻¹)	Adsorption avg. pore diameter (Å)
TPTS-derived SiOC	235	18.78
DTDS-derived SiOC	29	42.46
DDTS-derived SiOC	26	39.33

 Table S2: BET analysis results

Reference

1. Li, Y.; Hu, Y.; Lu, Y.; Zhang, S.; Xu, G.; Fu, K.; Li, S.; Chen, C.; Zhou, L.; Xia, X.; Zhang, X., Onedimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries. *Journal of Power Sources* **2014**, *254*, 33-38.

2. Ren, Y.; Yang, B.; Huang, X.; Chu, F.; Qiu, J.; Ding, J., Intercalated SiOC/graphene composites as anode material for li-ion batteries. *Solid State Ionics* **2015**, *278*, 198-202.

3. Kaspar, J.; Graczyk-Zajac, M.; Choudhury, S.; Riedel, R., Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics. *Electrochimica Acta* **2016**, *216*, 196-202.

4. Sang, Z.; Zhao, Z.; Su, D.; Miao, P.; Zhang, F.; Ji, H.; Yan, X., SiOC nanolayer wrapped 3D interconnected graphene sponge as a high-performance anode for lithium ion batteries. *Journal of Materials Chemistry A* **2018**, *6* (19), 9064-9073.

5. Dibandjo, P.; Graczyk-Zajac, M.; Riedel, R.; Pradeep, V. S.; Soraru, G. D., Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. *Journal of the European Ceramic Society* **2012**, *32* (10), 2495-2503.

6. Wu, Z.; Lv, W.; Cheng, X.; Gao, J.; Qian, Z.; Tian, D.; Li, J.; He, W.; Yang, C., A Nanostructured Si/SiOC Composite Anode with Volume-Change-Buffering Microstructure for Lithium-Ion Batteries. *Chemistry – A European Journal* **2019**, *25* (10), 2604-2609.

7. Huang, X.; Christopher, B.; Chai, S.; Xie, X.; Luo, S.; Liang, S.; Pan, A., Cowpea-like N-Doped Silicon Oxycarbide/Carbon Nanofibers as Anodes for High-Performance Lithium-Ion Batteries. *ACS Applied Energy Materials* **2021**, *4* (2), 1677-1686.

8. Ma, M.; Wang, H.; Li, X.; Peng, K.; Xiong, L.; Du, X., Free-standing SiOC/nitrogen-doped carbon fibers with highly capacitive Li storage. *Journal of the European Ceramic Society* **2020**, *40* (15), 5238-5246.

9. WANG Jian-Tao, W. Y., HUANG Bin, YANG Juan-Yu, TAN Ao, LU Shi-Gang, Silicon Supported on Stable Si-O-C Skeleton in High-Performance Lithium-Ion Battery Anode Materials. *Acta Phys. -Chim. Sin.* **2014**, *30* (2), 305-310.

10. Sang, Z.; Yan, X.; Wen, L.; Su, D.; Zhao, Z.; Liu, Y.; Ji, H.; Liang, J.; Dou, S. X., A graphene-modified flexible SiOC ceramic cloth for high-performance lithium storage. *Energy Storage Materials* **2020**, *25*, 876-884.