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S1: Design of the gradient deposition 

 

Figure S1-1. The full view of the suspended-gradient mask. 

 

   

 

 

 

 

 

 

Figure S1-2. (a) The photograph of the suspended gradient mask (white) and the shadow mask 

(with color) attached on the substrate. (b) The illustration of masks. Yellow parts refer to the 

gradient mask, which is suspended and static during the deposition, while blue parts refer to the 

shadow masks attached on the substrate, which rotates around the red dot (the fixed center) 

during the deposition. The unit of length is millimeter. 

a b 
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S2: Calculation of tMo and tMoS2  

 

According to Figure S1-1 and S1-2, the distance from the rotation center (red dot) 

determined the exposure time when applying the gradient mask during the deposition. Assuming 

the deposition rate without the gradient mask (t0, which is measured by the thickness monitor in 

the evaporator) is uniform within a radius of 40 mm, and the distribution of the gradient 

deposition is linear from (0, -13.5) to (0, -31.5) and from 25 % to 0% of t0, the thicknesses of Mo 

precursor (tMo) can be determined by the position (x, y) with following equation: 

𝑡𝑀𝑜(𝑥, 𝑦, 𝑡0) =  𝑡0 × ( 0.4375 −
0.25

18
× √𝑥2 + 𝑦2)    𝑤ℎ𝑒𝑛  13.5 ≤ √𝑥2 + 𝑦2 ≤ 31.5          

(1) 

 

According to the polynomial function obtained from the results TEM images in Figure 2e: 

tMoS2 = 0.22944 tMo
3
 + 0.34549 tMo

2
 + 2.74309 tMo – 0.01078, one can calculate the tMoS2 value at 

any position. Table S2-1, S2-2 show the positions (x, y) of the Raman spots, and the 

corresponding values of tMo and tMoS2. Note that t0 in both tables is 16 nm. 

 

Table S2-1. The positions (x,y) and the thicknesses (tMo and tMoS2) of five TEM samples. 

x (mm) y (mm) tMo (nm) tMoS2 (nm) (measured by TEM) 

-1.5 -15.5 3.54  24.26 

-1.5 -18.5 2.88  15.97 

-1.5 -21.5 2.21  10.51 

-1.5 -24.5 1.55  5.76 

-1.5 -27.5 0.88 N/A 
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Table S2-2. The positions and the thicknesses (tMo and tMoS2) of 19 sites for Raman 

measurement. 

x (mm) y (mm) tMo (nm) tMoS2 (nm) x (mm) y (mm) tMo (nm) tMoS2 (nm) 

0.7935 -13.7 3.95  30.36  0.7935 -21.7 2.17  9.95  

0.7935 -14.5 3.77  27.58  0.7935 -22.5 2.00  8.67  

0.7935 -15.3 3.60  24.98  0.7935 -23.3 1.82  7.50  

0.7935 -16.1 3.42  22.56  0.7935 -24.1 1.64  6.44  

0.7935 -16.9 3.24  20.31  0.7935 -24.9 1.46  5.46  

0.7935 -17.7 3.06  18.22  0.7935 -25.7 1.29  4.58  

0.7935 -18.5 2.89  16.29  0.7935 -26.5 1.11  3.77  

0.7935 -19.3 2.71  14.50  0.7935 -27.3 0.93  3.03  

0.7935 -20.1 2.53  12.85  0.7935 -28.1 0.75  2.35  

0.7935 -20.9 2.35  11.34      
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S3: Analysis procedures of Raman spectra 

 We apply two Lorentzian functions to fit each spectrum by using Origin software. Before 

fitting, we selected the fitting range and removed the baseline by Matlab auto-program. The 

analysis procedures were adapted from the First-Derivative Method in ref [S1]. The steps of the 

analysis include:  

(1) Smooth the Raman spectrum by the Savitzky–Golay filter (Figures S2a and S2b). 

(2) Calculate the 2
nd

 derivative of the spectrum. Estimate the peak width (west) and the peak 

position (Xcest) by the 2
nd

 derivative (Figure S2c). 

(3) Go back to the original spectrum. Select the spectrum in the range of (Xcest – 10 west , Xcest + 

10 west). Eliminate the data outside the selected range. Remove the baseline which is linear and 

drawn from (Xcest – 10 west ) to ( Xcest + 10 west) (Figure S2d). 

(4) Fit the spectrum by Origin (Figure S3). 
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Figure S2. (a) Original spectrum. (b) The spectrum after smoothing. (c) Blue line: 2
nd

 derivative 

of the smoothed spectrum. By comparing the 2
nd

 derivative and the red dash line (y = 0), one can 

estimate the peak width and the peak center. (d) Blue line: the original spectrum. Orange line: 

baseline. Yellow line and purple line: the extracted spectra after baseline removal. 
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Figure S3. Spectrum fitting operated with Origin software. 
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S4: Theoretical simulation of the intensity versus θ 

 According to previous report
23,25

, the total scattering intensity (denoted as 𝐼  in the 

following passages) of a vibrational mode can be calculated by the following equation:  

 

 𝐼 =  ∫ ∫ |�⃑⃑� 𝒊𝒏𝑹𝒙𝒚𝒛�⃑⃑� 𝒔𝒄|
2

Ω
𝑑Ω𝑑𝑉

𝑉
                                             (2) 

 

In Equation 2, �⃑⃑� 𝒔𝒄 and �⃑⃑� 𝒊𝒏 are the vectors describing the electric field of scattering and 

incident light, respectively. 𝑹𝒙𝒚𝒛 is the Raman tensor matrix of the material in terms of the 

Cartesian coordination of substrate. Ω is the solid angle of scattering cone. 𝑉 is the total 

volume. Both Ω and 𝑉 depend on the numerical aperture of the objective lens (NA).  

Equation 2 can be reduced as the following expression
 23, 25

: 

 

𝐼 =  ∫ ∫ |�⃑⃑� 𝒊𝒏𝑹𝒙𝒚𝒛�⃑⃑� 𝒔𝒄|
2

Ω
𝑑Ω𝑑𝑉

𝑉
  

= ( 𝑅𝑥𝑥
2𝐴 + 𝑅𝑥𝑦

2𝐴 + 𝑅𝑥𝑧
2𝐵 )𝐶𝑥 + ( 𝑅𝑦𝑥

2𝐴 + 𝑅𝑦𝑦
2𝐴 + 𝑅𝑦𝑧

2𝐵 )𝐶𝑦  

+( 𝑅𝑧𝑥
2𝐴 + 𝑅𝑧𝑦

2𝐴 + 𝑅𝑧𝑧
2𝐵 )𝐶𝑧                                                 (3) 

 

In Equation 3, Rij ( i = x, y, z ; j = x, y, z ) are the elements of 𝑹𝒙𝒚𝒛 matrix. A and B are 

coefficients related to the microscopes. Cx, Cy, Cz are coefficients proportional to the integrated 

intensities of Ein, x, Ein, y and Ein, z. (A, B) = (8.593, 5.111) for the numerical aperture of the 

objective lens (NA) being 0.9, and (Cx, Cy, Cz) = (13.722, 0.082, 2.192) for an X-polarized 
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incident laser [1]. In the simulation, we utilized (Cx
’
, Cy

’
, Cz

’
) = (Cx + Cy, Cx + Cy, 2Cz) in 

Equation 3 for the coefficients of the non-polarized laser beam. 

The Raman tensor matrix of A1g and E
1

2g of MoS2 are:
  

𝑹𝒙𝒚𝒛 = R1 R2 R3 𝑅𝑥𝑦𝑧 R3
TR2

TR1
T                                         (4) 

Where 

𝑅𝑥𝑦𝑧,𝐴1𝑔
= (

195 0 0
0 195 0
0 0 276

) ;   

𝑅𝑥𝑦𝑧,𝐸2𝑔𝑥
1 = (

125 0 0
0 −125 0
0 0 0

) ; 𝑅𝑥𝑦𝑧,𝐸2𝑔𝑦
1 = (

0 −125 0
−125 0 0

0 0 0
)                      

and  

𝑅1 = (
𝑐1 −𝑠1 0
𝑠1 𝑐1 0
0 0 1

) ;  𝑅2 = (
𝑐2 0 𝑠2

0 1 0
−𝑠2 0 𝑐2

);  𝑅3 = (
𝑐3 −𝑠3 0
𝑠3 𝑐3 0
0 0 1

) 

 (𝑐1, 𝑠1, 𝑐2, 𝑠2, 𝑐3, 𝑠3)   = (cos α , sin α , cos ϑ , sin ϑ , cos γ , sin γ ) 

α, θ and 𝛾 are the Euler angles with α =  0 to 2π and 𝛾 =  0 to 2π for each value of θ. The 

following script is the MATLAB code of this simulation:  

% Raman tensor matrix 

a=195;  

b=276;  

c=125; 

A1g = [a 0 0 ; 0 a 0 ; 0 0 b]; 

E2gx = [c 0 0 ; 0 -c 0 ; 0 0 0]; 

E2gy = [0 -c 0 ; -c 0 0 ; 0 0 0]; 

  

% coefficients for the case of NA = 0.9 (θm = 64.2°) 

A=8.593;   

B=5.111;  

  

% coefficients of an X-polarized laser beam 

CC0=6.82;  
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CC1=0.548; 

CC2=0.082; 

x=2*CC0+CC2; y=CC2; z=4*CC1; 

 

%{ 

transform the coefficients  

to the case of the non-polarized laser beam  

(equally polarized in x and y direction) 

%} 

x = x+y; y =x; z = z*2; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

d = pi/180; % degree 

IA = [0 0]; 

IE1 = [0 0]; 

IE2 = [0 0]; 

for theta = 0:1:90 

    IA(theta+1,1) = theta; 

    IA(theta+1,2) = 0; % set the intensity = 0 

    c2 = cos(theta*d); s2 = sin(theta*d); 

    Rsum = [0 0 0; 0 0 0; 0 0 0]; 

    for alpha = 0:1:359 

        c1 = cos(alpha*d); s1 = sin(alpha*d); 

        for gama=0:1:359 

            c3 = cos(gama*d); s3 = sin(gama*d); 

            R1 = [c1 -s1 0; s1 c1 0; 0 0 1;]; 

            R2 = [c2 0 s2; 0 1 0 ; -s2 0 c2;]; 

            R3 = [c3 -s3 0; s3 c3 0; 0 0 1;]; 

            Rtotal = R1*R2*R3*A1g*transpose(R1*R2*R3); 

            Rsquare = Rtotal.* Rtotal; 

            Rsum = Rsum + Rsquare; 

        end 

    end 

    Rsum = Rsum / (360*360); 

 

    IA(theta+1,2) = (Rsum(1,1)*A + Rsum(1,2)*A + Rsum(1,3)*B)*x... 

        + (Rsum(2,1)*A + Rsum(2,2)*A + Rsum(2,3)*B)*y... 

        + (Rsum(3,1)*A + Rsum(3,2)*A + Rsum(3,3)*B)*z; 

end 

  

for theta = 0:1:90 
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    IE1(theta+1,1) = theta; 

    IE1(theta+1,2) = 0;% set the intensity = 0; 

    c2 = cos(theta*d); s2 = sin(theta*d); 

    Rsum = [0 0 0; 0 0 0; 0 0 0]; 

    for alpha = 0:1:359 

        c1 = cos(alpha*d); s1 = sin(alpha*d); 

        for gama=0:1:359 

            c3 = cos(gama*d); s3 = sin(gama*d); 

            R1 = [c1 -s1 0; s1 c1 0; 0 0 1;]; 

            R2 = [c2 0 s2; 0 1 0 ; -s2 0 c2;]; 

            R3 = [c3 -s3 0; s3 c3 0; 0 0 1;]; 

            Rtotal = R1*R2*R3*E2gx*transpose(R1*R2*R3); 

            Rsquare = Rtotal.* Rtotal; 

            Rsum = Rsum + Rsquare; 

        end 

    end 

    Rsum = Rsum / (360*360); 

    IE1(theta+1,2) = (Rsum(1,1)*A + Rsum(1,2)*A + Rsum(1,3)*B)*x... 

        + (Rsum(2,1)*A + Rsum(2,2)*A + Rsum(2,3)*B)*y... 

        + (Rsum(3,1)*A + Rsum(3,2)*A + Rsum(3,3)*B)*z;  

end 

  

for theta = 0:1:90 

    IE2(theta+1,1) = theta; 

    IE2(theta+1,2) = 0;% set the intensity = 0; 

    c2 = cos(theta*d); s2 = sin(theta*d); 

    Rsum = [0 0 0; 0 0 0; 0 0 0]; 

    for alpha = 0:1:359 

        c1 = cos(alpha*d); s1 = sin(alpha*d); 

        for gama=0:1:359 

            c3 = cos(gama*d); s3 = sin(gama*d); 

            R1 = [c1 -s1 0; s1 c1 0; 0 0 1;]; 

            R2 = [c2 0 s2; 0 1 0 ; -s2 0 c2;]; 

            R3 = [c3 -s3 0; s3 c3 0; 0 0 1;]; 

            Rtotal = R1*R2*R3*E2gy*transpose(R1*R2*R3); 

            Rsquare = Rtotal.* Rtotal; 

            Rsum = Rsum + Rsquare; 

        end 

    end 

    Rsum = Rsum / (360*360); 

    IE2(theta+1,2) = (Rsum(1,1)*A + Rsum(1,2)*A + Rsum(1,3)*B)*x... 
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        + (Rsum(2,1)*A + Rsum(2,2)*A + Rsum(2,3)*B)*y... 

        + (Rsum(3,1)*A + Rsum(3,2)*A + Rsum(3,3)*B)*z;   

end 

IE = IE1+IE2; 

IE(:,1) = IE(:,1) /2; 

Ratio(:,1) = IA(:,1); 

Ratio(:,2) = IA(:,2) ./ IE(:,2); 

  

% plot the figures 

subplot(1,2,1); 

plot ( IA(:,1), IA(:,2), IE(:,1), IE(:,2)); 

axis([0 90 3E6 15E6]); 

xticks(0:10:90); 

yticks(3E6:1E6:15E6); 

legend( 'A_1_g','E^1_2_g','Location','northwest'); 

xlabel('θ degree (°)'); 

ylabel('Intensity (a.u.)'); 

subplot(1,2,2); 

plot ( Ratio(:,1), Ratio(:,2) ); 

axis([0 90 1.2 3.8]); 

xticks(0:10:90); 

yticks(1.2:0.2:3.8); 

xlabel('θ degree (°)'); 

ylabel('Ratio (A_1_g / E^1_2_g )'); 

Ratio 
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