Supporting information

Enhancing chloramphenicol sensing performance of Cu-MoS₂ nanocomposites-

based electrochemical nanosensors: Roles of phase composition and copper

loading amount

Nguyen Tuan Anh^{a,1,*}, Ngo Xuan Dinh^{a,1}, Tuyet Nhung Pham^a, Le Khanh Vinh^c,

Le Minh Tung^d, Anh-Tuan Le^{a,b,**}

^aPhenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam

^bFaculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam

^cInstitute of Physics at Ho Chi Minh City, Vietnam Academy of Science and Technology (VAST),

Ho Chi Minh 70000, Vietnam

^dDepartment of Physics, Tien Giang University, My Tho city, Tien Giang Province, Vietnam

Content

S1. Supplemental Experiments

S2. Supplemental Results

S1. Supplemental Experiments

Preparation of Cu-based nanomaterials, Cu, CuO, Cu₂O, and Cu-MoS₂ nanocomposites

In all the experiments, two pure identical copper plates were used as the anode and cathode electrodes and were fixed parallel to each other at a constant distance of 40 mm. Before the experiments, the surface of both electrodes was polished with emery papers and immersed in HCl (10 wt%) solution for 5 min, and finally washed with distilled water to remove the remained HCl. In a 250 mL glass beaker, two electrodes were put into the electrolyte consisted sodium citrate

 $(C_6H_5Na_3O_7 \bullet 2H_2O)$ and L-ascorbic acid $(C_6H_8O_6)$. Finally, a direct current (DC) voltage source was supplied to the electrodes at room temperature and under magnetic stirring. The parameters of each experiment for fabrication of different phase compositions of the Cu-based nanomaterials (NMs) as listened in Table 1.

Type of	Parameters			
Cu-based NMs	Sodium citrate (g L ⁻¹)	Ascorbic acid (g L ⁻¹)	Reaction time (minutes)	Electrolysis voltage (V)
CuO	0.5	0.5	60	12
Cu ₂ O	0.75	1	60	12
Cu	0.75	2	90	15

Table S1 Synthesis conditions of copper-based nanomaterials with tunable phase composition.

The Cu-MoS₂ nanocomposites were prepared by the same method for fabricated Cu-GO nanocomposites according to our previous report with a slight modification. Before the electrolysis process, 10 mL of MoS₂ nanosheets suspension with a concentration of 2 mg mL⁻¹ was added into a 250 mL electrolyte solution containing C₆H₅Na₃O₇•2H₂O (0.75 g L⁻¹) and C₆H₈O₆(2 g L⁻¹). The reaction time and applied voltage in this process were fixed at 90 minutes and 15 V, respectively. In this experiment, after the first 30 min, 3 mL of the obtained product was withdrawn and UV-vis spectral analysis was recorded at every 15-min interval, *i.e.*, at 30, 45, 60, 75, and 90 min.

S2. Supplemental Results

Fig. S1 UV-Vis adsorption spectra of Cu-NPs (black line), MoS₂ nanosheets (blue line), and Cu-MoS₂ nanocomposites (red line).

Fig. S2 Raman spectra of Cu-NPs, Cu₂O-NPs, and CuO-NPs.

Fig. S3 SEM images of Cu-based NMs and Cu-MoS $_2$ nanocomposites.

Table S2 Peak current intensity and their calculated electroactive surface area (EASA) according to the Randles–Sevcik equation for various modified electrodes.

Modified Electrodes	I _{pc} (µA)	EASA (cm ²)
CuO-NPs	110.8	0.329
Cu-NPs	121.9	0.362
Cu ₂ O-NPs	126.2	0.375
Cu-MoS ₂ -30	116.3	0.346
Cu-MoS ₂ -45	119.6	0.356
Cu-MoS ₂ -60	122.5	0.364
Cu-MoS ₂ -75	135.7	0.404
Cu-MoS ₂ -90	117.9	0.351

Fig. S4 Fitted and experimental Nyquist plots of impedance spectra. The red line is calculated results from model fitting, and the black line are experimental data. The inset is the Randles equivalent circuit of the electrochemical cell used in the present work.

Fig. S5 CV response recorded of 50 μ M CAP in 0.1 M PBS (pH 7.2) on Cu₂O-NPs/SPE (a), Cu-NPs/SPE (b), and Cu-MoS₂-75/SPE (c) with various scan rates from 10 to 60 mV s⁻¹. Insert shows the corresponding calibration plots of peak current response *vs.* scan rate (d, e, f) with error bars.

Fig. S6 DPV curves of Cu₂O-NPs/SPE (a), Cu-NPs/SPE (b), and Cu-MoS₂-75/SPE (c) in 50 μ M CAP at various pH values, corresponding to the plots of peak current and peak potential *vs.* pH value (d, e, f) with error bars. Scan rate of 6 mV s⁻¹.

Fig. S7 Effect of modifier amount on CAP reduction of Cu₂O-NPs/SPE, Cu-NPs/SPE, and Cu-MoS₂-75/SPE.

Fig. S8 Interference investigation of the Cu₂O-NPs, Cu-NPs, and Cu-MoS₂-75 modified electrodes in 0.1 M PBS (pH 5) containing 50 μ M CAP with 10-fold concentration of interference substances.

Fig. S9 Repeatability of the modified electrodes in 40 μ M CAP.

Fig. S10 Long-term stability of the modified electrodes in 50 μ M CAP.