
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**

Palladium-rich Plasmonic Nanorattles with Enhanced LSPRs *via* Successive Galvanic Replacement Mediated by Co-reduction

Mariia Ivanchenko<sup>a</sup>, Andrew J. Evangelista<sup>a</sup>, Hao Jing\*<sup>a</sup>

<sup>a</sup>Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, USA



**Fig. S1.** (A) Extinction spectra of Au NRs and Au@Ag nanocuboids colloidal solutions. (B) TEM image of Au NRs. Scale bar corresponds to 100 nm. (C) TEM image of Au@Ag nanocuboids. Scale bar corresponds to 200 nm.

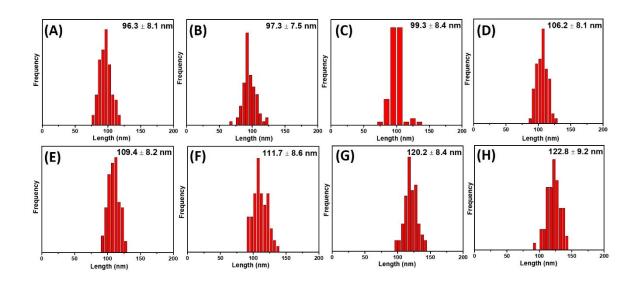
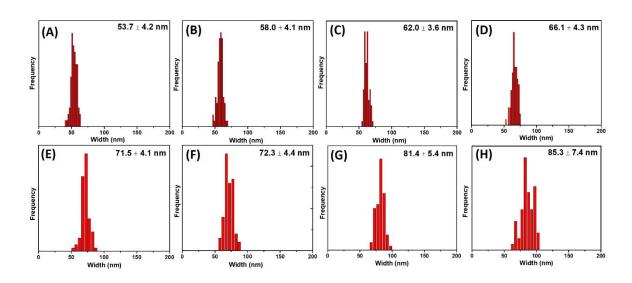




Fig. S2. Length distributions of (A) Au@Ag nanocuboids and (B-H) Au@Ag\_Pd nanorattles obtained using (B) 10  $\mu$ L, (C) 30  $\mu$ L, (D) 50  $\mu$ L, (E) 70  $\mu$ L, (F) 90  $\mu$ L, (G) 150  $\mu$ L, and (H) 200  $\mu$ L of 1 mM H<sub>2</sub>PdCl<sub>4</sub> obtained from analysis of TEM images.



**Fig. S3.** Width distributions of (A) Au@Ag nanocuboids and (B-H) Au@Ag\_Pd nanorattles obtained using (B) 10  $\mu$ L, (C) 30  $\mu$ L, (D) 50  $\mu$ L, (F) 90  $\mu$ L, (G) 150  $\mu$ L, and (H) 200  $\mu$ L of 1 mM H<sub>2</sub>PdCl<sub>4</sub> obtained from analysis of TEM images.

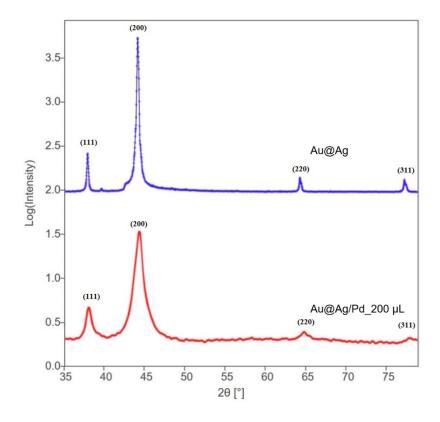



Fig. S4. XRD patterns of Au@Ag nanocuboids and Au@Ag/Pd nanorattles.

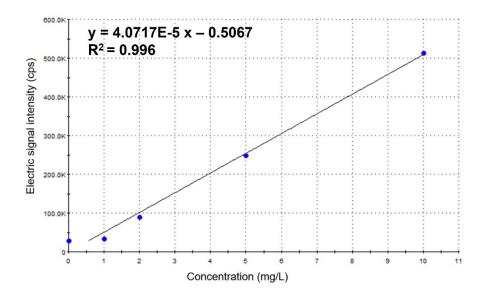



Fig. S5. Five-point calibration curve for ICP-OES measurements of Pd-content.

**Table S1**. The leaching study of Pd active sites in Au@Ag/Pd nanorattles obtained using 200  $\mu$ L of 1 mM H<sub>2</sub>PdCl<sub>4</sub> during 4-NTP to 4-ATP conversion based on ICP-OES results. (standard deviation is 0.40 mg/L)

| Sample          | Concentration of Pd in nanorattles |  |  |
|-----------------|------------------------------------|--|--|
| Before reaction | 21.64 mg/L                         |  |  |
| After reaction  | 19.51 mg/L                         |  |  |

**Table S2**. Comparison of the catalytic performance based on the kinetic constants (*k*) of the multicomponent plasmonic nanomaterials (including Au, Ag and Pd) of various morphologies for the conversion of the 4-NTP to 4-ATP obtained from SERS monitoring.

| Nanostructure                  | k                                      | Pd content       | Ref.      |
|--------------------------------|----------------------------------------|------------------|-----------|
| Au@Ag/Pd nanorattles           | 0.044 s <sup>-1</sup>                  | mole%(Pd) =1.6%  | This work |
|                                | 0.069 s <sup>-1</sup>                  | mole%(Pd) =8.0%  |           |
|                                | 0.088 s <sup>-1</sup>                  | mole%(Pd) =13.6% |           |
|                                | 0.146 s <sup>-1</sup>                  | mole%(Pd) =20.9% |           |
| AuAg:Pd concave nanolayers     | 5.5 × 10 <sup>-3</sup> s <sup>-1</sup> | mole%(Pd) = 4.8% | 1         |
|                                | 1.0 × 10 <sup>-2</sup> s <sup>-1</sup> | mole%(Pd) = 9.6% |           |
| Au@AgPd core/shell nanoflowers | 6.64×10 <sup>-3</sup> s <sup>-1</sup>  | wt%(Pd) = 45.3%  | 2         |

## References

- 1 W. S. Huang, I W. Sun, C. C. Huang. *J. Mater. Chem. A*, 2018, **6**, 13041-13049.
- 2 Y. Lai, L. Dong, R. Liu, S. Lu, Z. He, W. Shan, F. Geng, Y. Cai, J. Liu. Chin. Chem. Lett., 2020, **31**, 9, 2437-2441.