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General method and materials 

Unless specifically mentioned, all chemicals are commercially available and were 

used as received. The precursor compounds tricyanomesitylene (TCM) and 

tris[1-(1’-formyl-4,4’-biphenyl)]amine (TFBA) were prepared according to the 

reported literature methods.S1 1H and 13C NMR spectra were taken on a Bruker AV400 

at room temperature. High-resolution mass spectrometry (HR-MS) was performed on 

a Thermo ultimate Q-Exactive in positive mode. 13C cross-polarization/magic angle 

spinning solid-state nuclear magnetic resonance (CP/MAS ssNMR) experiments were 

performed on a Bruker AVANCE III 400 WB spectrometer operating at 100.62 MHz 

for 13C using a double resonance 4 mm MAS NMR probe and a sample spinning rate 

of 6 kHz. The powder X-ray diffraction measurements were taken on a Bruker D8 

diffractometer using Cu-Kα radiation (λ = 1.5418 Å) at room temperature. 

Low-pressure gas sorption measurements were performed by using Quantachrome 

Instruments Autosorb-iQ with the extra-high pure gases. Brunauer-Emmett-Teller 

(BET) surface area and pore size distribution were calculated from the N2 sorption 

isotherms at 77 K based on Non-Local Density Functional Theory (NL-DFT) model 

in the Quantachrome ASiQwin 2.01 software package. UV-vis diffuse reflectance 

spectra (UV-vis DRS) were recorded at room temperature on an Agilent Cary 7000 

Spectrophotometer. Photoluminescence (PL) spectra were obtained with an Edinburgh 

FLS920 spectrophotometer. The infrared spectra were recorded on a Thermo 

Scientific Nicolet iS10 FT-IR spectrometer as KBr pellets. Thermal gravimetric 

analyses (TGA) were performed on a TA-Q50 thermoanalyzer thermogravimetric 

analyzer in nitrogen atmosphere from 45 °C to 800 °C at the rate of 10 °C min-1. 

Ultraviolet photoelectron spectroscopy (UPS) was performed on Thermo Scientific 

Escalab 250Xi. Field-emission scanning electron microscopy (FE-SEM) images were 

obtained on a HITACHI S-8010 instrument operating at 10 kV.  
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Synthesis and Characterizations 

   

Scheme S1. Synthesis of model compound DpTc. 

Model Compound DpTc: TCM (195mg, 1.0 mmol), DPA (1.23g, 4.5 mmol) and 

piperidine (511 mg, 6 mmol) were added into 20 mL anhydrous DMF under the 

protection of nitrogen. The reaction mixture was heated to 150 °C and stirred for 72 

hours under nitrogen atmosphere. After that, the solution was poured into water and 

extracted with dichloromethane, dried over Na2SO4, and concentrated to obtain a 

henna solid. The crude product was purified by column chromatography over a silica 

gel column using petroleum ether-dichloromethane (v/v, 1.2/1) as the eluent to afford 

model compound as a red solid  (356 mg, 0.37 mmol, yield: 37%). 1H NMR (400 

MHz, CDCl3) δ 7.71 (d, J = 16.3 Hz, 3H), 7.49 (d, J = 8.6 Hz, 6H), 7.30 (t, J = 7.8 Hz, 

15H), 7.20 – 7.00 (m, 24H). 13C NMR (101 MHz, CDCl3) δ 150.11, 149.28, 147.05, 

141.97, 129.65, 129.24, 128.40, 125.52, 124.18, 122.09, 118.67, 116.29, 107.56. 

ESI-HRMS: m/z calcd for C69H49N6: 961.4013, found: 961.3977 [M+H]+. 

 

Procedure for the synthesis of TpTc-POP: TCM (98 mg, 0.5 mmol), TFPA (165 mg, 

0.5 mmol) and piperidine (256 mg, 3 mmol) were ultrasonically dissolved in 10 mL of 

DMF in a 20 mL Teflon-lined stainless-steel autoclave. The vessel was tightly sealed 

and heated in an oven of 150 oC for 72 h. After cooling down to RT, the solid was 

collected, washed with anhydrous DMF, acetone and DCM. Then, the solid was 

Soxhlet extracted with THF for 24 h and was dried under vacuum for 12 h at 80 oC to 

give red powder in 92% yield.  
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Procedure for the synthesis of TbTc-POP: TCM (49 mg, 0.25 mmol), TFBA (144 mg, 

0.25 mmol) and piperidine (639 mg, 7.5 mmol) were ultrasonically dissolved in 10 

mL of DMF in a 20 mL Teflon-lined stainless-steel autoclave. The vessel was tightly 

sealed and heated in an oven of 150 oC for 72 h. After cooling down to RT, the solid 

was collected, washed with anhydrous DMF, acetone and DCM. Then, the solid was 

Soxhlet extracted with THF for 24 h and was dried under vacuum for 12 h at 80 oC to 

give red powder in 89% yield. 

 

 

 

Scheme S2. Synthesis of control POP TfTc-POP.  

 

Control POP TfTc-POP: TCM (98 mg, 0.5 mmol), TFPB (195 mg, 0.5 mmol) and 

piperidine (256 mg, 3 mmol) were ultrasonically dissolved in 10 mL of DMF in a 20 

mL Teflon-lined stainless-steel autoclave. The vessel was tightly sealed and heated in 

an oven of 150 oC for 72 h. After cooling down to RT, the solid was collected, washed 

with anhydrous DMF, acetone and DCM. Then, the solid was Soxhlet extracted with 

THF for 24 h and was dried under vacuum for 12 h at 80 oC to give brown powder in 

91% yield. 
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Fig. S4 TGA of TpTc-POP and TbTc-POP under N2 atmosphere with a heating rate of 10 oC/min.  

 
Fig. S5 PL decay spectra of TpTc-POP (a), TbTc-POP (b) and TfTc-POP (c). The traces can be 

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

 

 

W
ei

g
h

t 
(%

)

Temperature (oC)

 TpTc-POP
 TbTc-POP

0 20 40 60 80 100

 

 TpTc-POP
 Fitting curve

Decay time (ns)

C
o

u
n

ts
 (

a
.u

.)

0 20 40 60 80 100

 

 TbTc-POP
 Fitting curve

Decay time (ns)

C
o

u
n

ts
 (

a.
u

.)

0 20 40 60 80 100

 

 TfTc-POP
 Fitting curve

Decay time (ns)

C
o

u
n

ts
 (

a
.u

.)

(a)

(b)

(c)

τ1 = 1.0 ns (60%)
τ2 = 6.7 ns (40%)
τ = 3.2 ns

τ1 = 1.0 ns (63%)
τ2 = 6.3 ns (37%)
τ = 2.9 ns

τ1 = 0.9 ns (69%)
τ2 = 3.6 ns (31%)
τ = 1.7 ns



S7 
 

fitted with two-exponential decays (solid lines) I (t) = A + B1e
 -t/τ1 + B2e

 -t/τ2 , where A is a constant, 

B1 and B2 are pre-exponential factors; τ1 and τ2 are the fitted time constants of the decays. The 

fluorescence lifetime was calculated according to τ = (B1τ1
2+B2τ2

2)/(B1τ1+B2τ2).  

 

 

 

Fig. S6 High-resolution valence band ultraviolet photoelectron spectra (UPS) of TpTc-POP (a), 

TbTc-POP (b) and control TfTc-POP (c).  
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Fig. S7 Recycling of TpTc-POP (a) and TbTc-POP (b) for the photocatalyzed aerobic oxidative 

coupling of benzylamine to imine.  

 

Fig. S8 Nitrogen sorption isotherms for as-synthesized and after-photocatalytic porous 

polymers TpTc-POP (a) and TbTc-POP (b). 

 

Fig. S9 EPR spectra of a mixture of TpTc-POP in CH3CN with TEMP upon light irradiation (a) 

and in the dark (b) as well as DMPO upon light irradiation (c) and in the dark (d). 
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 Table S1 Photocatalytic oxidative coupling of various amines by TbTc-POPa 

Entry Substrate Product Time (h) Yieldb (%)

1 
  

8 95 

2 

  

8 94 

3 

  
8 92 

4 
  

8 99 

5 

  

8.5 95 

6 
 

8 97 

7 
 

8 99 

8 
 

8 95 

9 
  

6 90 

10 
 

10.5 87 

11 
 

16 99 

12 

 
 

10.5 96 

13 
 

10.5 93 

14 
  

10.5 91 

aReaction conditions: benzylamines (0.5 mmol), TpTc-POP (6 mg), CH3CN (1 mL), irradiation with white LEDs 

(3W, ~100 mW cm-2). bDetermined by 1H NMR analysis. 

 

 

 

N



S10 
 

 

Table S2 Comparison of reported various POPs for photocatalyzing oxidative coupling reactions 

of benzylamine. 

System Linkage Crystalline 
SBET 

(m2 g-1) 
Light Source Solvent Time & Yield Ref. 

TpTc-POP -CH=CH-a No 966 white LEDs CH3CN 6 h, 95% 
This 

study
TbTc-POP -CH=CH-a No 538 white LEDs CH3CN 8 h, 95% 

CF-HCP -CH2- No 1217 green LEDs CH3CN 6 h, 91% S2 

Py-BSZ-COF -CH=C(CN)-b Yes 600  520 nm LEDs CH3CN 12 h, 99% S3 

A-CTF-2 acetylene No 24 
300 W xenon 

lamp 
CH3CN 4 h, 98% S4 

PyTz-COF -C=N- Yes 1175 white LEDs CH3CN+H2O 2 h, 90% S5 

Por-sp2c-COF -CH=C(CN)-b Yes 714 red LEDs CH3CN 15 min, 94%c S6 

pTCT triazine No 797 white CFL CH3CN 12 h, 97% S7 

B-BT acetylene No 689 blue LEDs CH3CN 3 h, 74% S8 

B-BO-1,3,5 acetylene No 474 blue LEDs CH3CN 3 h, 48% S9 

CzBDP alkyl No 180 9 W CFL CH3CN 15 h, 75% S10 

aunsubstituted vinylene -CH=CH-, bsubstituted acrylonitrile -CH=C(CN)-, ccooperative photocatalysis with 

TEMPO. 
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Fig. S12 ESI-HRMS spectra of model compound DpTc. 
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Fig. S13 Time dependent 1H NMR spectra of photocatalytic oxidative coupling reaction of 

benzylamine to imine by using different POPs (TpTc-POP, TbTc-POP and TfTc-POP) under the 

irradiation of white-LEDs in an open air atmosphere. 
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Fig. S14 Successive 1H NMR spectra of photocatalytic oxidative coupling reaction of 

benzylamine to imine by recycling POPs (TpTc-POP and TbTc-POP) under the irradiation of 

white-LEDs in an open air atmosphere. 
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