Electronic Supplementary Information (ESI) for

Vinylene-bridged donor-acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light

Bang Wu,^a Xinyue Jiang,^a Yang Liu,^a Qiu-Yan Li,^{*a} Xinsheng Zhao^b and Xiao-Jun Wang^{*a}

 ^aJiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
^bSchool of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China.

E-mail: xjwang@jsnu.edu.cn; qyli@jsnu.edu.cn

General method and materials

Unless specifically mentioned, all chemicals are commercially available and were used as received. The precursor compounds tricyanomesitylene (TCM) and tris[1-(1'-formyl-4,4'-biphenyl)]amine (TFBA) were prepared according to the reported literature methods.^{S1 1}H and ¹³C NMR spectra were taken on a Bruker AV400 at room temperature. High-resolution mass spectrometry (HR-MS) was performed on a Thermo ultimate Q-Exactive in positive mode. ¹³C cross-polarization/magic angle spinning solid-state nuclear magnetic resonance (CP/MAS ssNMR) experiments were performed on a Bruker AVANCE III 400 WB spectrometer operating at 100.62 MHz for ¹³C using a double resonance 4 mm MAS NMR probe and a sample spinning rate of 6 kHz. The powder X-ray diffraction measurements were taken on a Bruker D8 diffractometer using Cu- K_{α} radiation ($\lambda = 1.5418$ Å) at room temperature. Low-pressure gas sorption measurements were performed by using Quantachrome Instruments Autosorb-iQ with the extra-high pure gases. Brunauer-Emmett-Teller (BET) surface area and pore size distribution were calculated from the N₂ sorption isotherms at 77 K based on Non-Local Density Functional Theory (NL-DFT) model in the Quantachrome ASiQwin 2.01 software package. UV-vis diffuse reflectance spectra (UV-vis DRS) were recorded at room temperature on an Agilent Cary 7000 Spectrophotometer. Photoluminescence (PL) spectra were obtained with an Edinburgh FLS920 spectrophotometer. The infrared spectra were recorded on a Thermo Scientific Nicolet iS10 FT-IR spectrometer as KBr pellets. Thermal gravimetric analyses (TGA) were performed on a TA-Q50 thermoanalyzer thermogravimetric analyzer in nitrogen atmosphere from 45 °C to 800 °C at the rate of 10 °C min⁻¹. Ultraviolet photoelectron spectroscopy (UPS) was performed on Thermo Scientific Escalab 250Xi. Field-emission scanning electron microscopy (FE-SEM) images were obtained on a HITACHI S-8010 instrument operating at 10 kV.

Synthesis and Characterizations

Scheme S1. Synthesis of model compound DpTc.

Model Compound **DpTc**: TCM (195mg, 1.0 mmol), DPA (1.23g, 4.5 mmol) and piperidine (511 mg, 6 mmol) were added into 20 mL anhydrous DMF under the protection of nitrogen. The reaction mixture was heated to 150 °C and stirred for 72 hours under nitrogen atmosphere. After that, the solution was poured into water and extracted with dichloromethane, dried over Na₂SO₄, and concentrated to obtain a henna solid. The crude product was purified by column chromatography over a silica gel column using petroleum ether-dichloromethane (v/v, 1.2/1) as the eluent to afford model compound as a red solid (356 mg, 0.37 mmol, yield: 37%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 16.3 Hz, 3H), 7.49 (d, *J* = 8.6 Hz, 6H), 7.30 (t, *J* = 7.8 Hz, 15H), 7.20 – 7.00 (m, 24H). ¹³C NMR (101 MHz, CDCl₃) δ 150.11, 149.28, 147.05, 141.97, 129.65, 129.24, 128.40, 125.52, 124.18, 122.09, 118.67, 116.29, 107.56. ESI-HRMS: *m/z* calcd for C₆₉H₄₉N₆: 961.4013, found: 961.3977 [M+H]⁺.

Procedure for the synthesis of **TpTc-POP**: TCM (98 mg, 0.5 mmol), TFPA (165 mg, 0.5 mmol) and piperidine (256 mg, 3 mmol) were ultrasonically dissolved in 10 mL of DMF in a 20 mL Teflon-lined stainless-steel autoclave. The vessel was tightly sealed and heated in an oven of 150 °C for 72 h. After cooling down to RT, the solid was collected, washed with anhydrous DMF, acetone and DCM. Then, the solid was Soxhlet extracted with THF for 24 h and was dried under vacuum for 12 h at 80 °C to give red powder in 92% yield.

Procedure for the synthesis of **TbTc-POP**: TCM (49 mg, 0.25 mmol), TFBA (144 mg, 0.25 mmol) and piperidine (639 mg, 7.5 mmol) were ultrasonically dissolved in 10 mL of DMF in a 20 mL Teflon-lined stainless-steel autoclave. The vessel was tightly sealed and heated in an oven of 150 °C for 72 h. After cooling down to RT, the solid was collected, washed with anhydrous DMF, acetone and DCM. Then, the solid was Soxhlet extracted with THF for 24 h and was dried under vacuum for 12 h at 80 °C to give red powder in 89% yield.

Scheme S2. Synthesis of control POP TfTc-POP.

Control POP **TfTc-POP**: TCM (98 mg, 0.5 mmol), TFPB (195 mg, 0.5 mmol) and piperidine (256 mg, 3 mmol) were ultrasonically dissolved in 10 mL of DMF in a 20 mL Teflon-lined stainless-steel autoclave. The vessel was tightly sealed and heated in an oven of 150 °C for 72 h. After cooling down to RT, the solid was collected, washed with anhydrous DMF, acetone and DCM. Then, the solid was Soxhlet extracted with THF for 24 h and was dried under vacuum for 12 h at 80 °C to give brown powder in 91% yield.

Fig. S1 The FT-IR comparison of TpTc-POP (a), TbTc-POP (b) and their corresponding monomers as well as model compound DpTc.

Fig. S2 SEM images of TpTc-POP (a) and TbTc-POP (b).

Fig. S3 PXRD patterns of TpTc-POP and TbTc-POP.

Fig. S4 TGA of TpTc-POP and TbTc-POP under N_2 atmosphere with a heating rate of 10 °C/min.

Fig. S5 PL decay spectra of TpTc-POP (a), TbTc-POP (b) and TfTc-POP (c). The traces can be

fitted with two-exponential decays (solid lines) $I(t) = A + B_1 e^{-t/\tau 1} + B_2 e^{-t/\tau 2}$, where A is a constant, B_1 and B_2 are pre-exponential factors; τ_1 and τ_2 are the fitted time constants of the decays. The fluorescence lifetime was calculated according to $\tau = (B_1 \tau_1^2 + B_2 \tau_2^2)/(B_1 \tau_1 + B_2 \tau_2)$.

Fig. S6 High-resolution valence band ultraviolet photoelectron spectra (UPS) of TpTc-POP (a), TbTc-POP (b) and control TfTc-POP (c).

Fig. S7 Recycling of TpTc-POP (a) and TbTc-POP (b) for the photocatalyzed aerobic oxidative coupling of benzylamine to imine.

Fig. S8 Nitrogen sorption isotherms for as-synthesized and after-photocatalytic porous

polymers TpTc-POP (a) and TbTc-POP (b).

Fig. S9 EPR spectra of a mixture of TpTc-POP in CH₃CN with TEMP upon light irradiation (a) and in the dark (b) as well as DMPO upon light irradiation (c) and in the dark (d).

Entry	Substrate	Product	Time (h)	$\operatorname{Yield}^{b}(\%)$
1	NH ₂		8	95
2	NH ₂		8	94
3	NH ₂	N. C	8	92
4	NH ₂	N°C	8	99
5	NH ₂		8.5	95
6	MeO NH ₂	Meo	8	97
7	F NH ₂	F F	8	99
8			8	95
9	Br NH ₂	Br	6	90
10	F ₃ C NH ₂	F ₃ C	10.5	87
11	NC NH ₂	NC	16	99
12	NH ₂		10.5	96
13	NH ₂		10.5	93
14		⟨ S N S	10.5	91

Table S1 Photocatalytic oxidative coupling of various amines by TbTc-POP^a

^{*a*}Reaction conditions: benzylamines (0.5 mmol), TpTc-POP (6 mg), CH₃CN (1 mL), irradiation with white LEDs $(3W, \sim 100 \text{ mW cm}^{-2})$. ^{*b*}Determined by ¹H NMR analysis.

System	Linkage	Crystalline	S_{BET} (m ² g ⁻¹)	Light Source	Solvent	Time & Yield	Ref.	
ТрТс-РОР	-CH=CH- ^{<i>a</i>}	No	966	white LEDs	CH ₃ CN	6 h, 95%	This	
TbTc-POP	-CH=CH- ^{<i>a</i>}	No	538	white LEDs	CH ₃ CN	8 h, 95%	study	
CF-HCP	-CH ₂ -	No	1217	green LEDs	CH ₃ CN	6 h, 91%	S2	
Py-BSZ-COF	-CH=C(CN)- ^b	Yes	600	520 nm LEDs	CH ₃ CN	12 h, 99%	S 3	
A-CTF-2	acetylene	No	24	300 W xenon lamp	CH ₃ CN	4 h, 98%	S4	
PyTz-COF	-C=N-	Yes	1175	white LEDs	CH ₃ CN+H ₂ O	2 h, 90%	S5	
Por-sp ² c-COF	-CH=C(CN)- ^b	Yes	714	red LEDs	CH ₃ CN	15 min, 94% ^c	S6	
pTCT	triazine	No	797	white CFL	CH ₃ CN	12 h, 97%	S7	
B-BT	acetylene	No	689	blue LEDs	CH ₃ CN	3 h, 74%	S 8	
B-BO-1,3,5	acetylene	No	474	blue LEDs	CH ₃ CN	3 h, 48%	S9	
CzBDP	alkyl	No	180	9 W CFL	CH ₃ CN	15 h, 75%	S10	

Table S2 Comparison of reported various POPs for photocatalyzing oxidative coupling reactions

of benzylamine.

^{*a*}unsubstituted vinylene -CH=CH-, ^{*b*}substituted acrylonitrile -CH=C(CN)-, ^{*c*}cooperative photocatalysis with

TEMPO.

Fig. S11 13 C NMR of model compound **DpTc** (101 MHz, CDCl₃).

Fig. S12 ESI-HRMS spectra of model compound DpTc.

Fig. S13 Time dependent ¹H NMR spectra of photocatalytic oxidative coupling reaction of benzylamine to imine by using different POPs (TpTc-POP, TbTc-POP and TfTc-POP) under the irradiation of white-LEDs in an open air atmosphere.

Fig. S14 Successive ¹H NMR spectra of photocatalytic oxidative coupling reaction of benzylamine to imine by recycling POPs (TpTc-POP and TbTc-POP) under the irradiation of white-LEDs in an open air atmosphere.

Fig. S15 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (Entry 1, Table 1).

Fig. S16 ¹H NMR of the reaction mixture (Entry 2, Table 1).

Fig. S17 ¹H NMR of the reaction mixture (Entry 3, Table 1).

Fig. S19 ¹H NMR of the reaction mixture (Entry 5, Table 1).

Fig. S20 ¹H NMR of the reaction mixture (Entry 6, Table 1).

Fig. S22 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 1, Table 2) and TbTc-POP (bottom, Entry 1, Table S1).

Fig. S23 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 2, Table 2) and TbTc-POP (bottom, Entry 2, Table S1).

Fig. S24 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 3, Table 2) and TbTc-POP (bottom, Entry 3, Table S1).

Fig. S25 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 4, Table 2) and TbTc-POP (bottom, Entry 4, Table S1).

Fig. S26 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 5, Table 2) and TbTc-POP (bottom, Entry 5, Table S1).

Fig. S27 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 6, Table 2) and TbTc-POP (bottom, Entry 6, Table S1).

Fig. S28 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 7, Table 2) and TbTc-POP (bottom, Entry 7, Table S1).

Fig. S29 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 8, Table 2) and TbTc-POP (bottom, Entry 8, Table S1).

Fig. S30 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 9, Table 2) and TbTc-POP (bottom, Entry 9, Table S1).

Fig. S31 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 10, Table 2) and TbTc-POP (bottom, Entry 10, Table S1).

Fig. S32 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 11, Table 2) and TbTc-POP (bottom, Entry 11, Table S1).

Fig. S33 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 12, Table 2) and TbTc-POP (bottom, Entry 12, Table S1).

Fig. S34 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 13, Table 2) and TbTc-POP (bottom, Entry 13, Table S1).

Fig. S35 ¹H NMR of the reaction mixture after photocatalysis by TpTc-POP (upper, Entry 14, Table 2) and TbTc-POP (bottom, Entry 14, Table S1).

References

- S1 (a) S. Bi, Z.-A. Lan, S. Paasch, W. Zhang, Y. He, C. Zhang, F. Liu, D. Wu, X. Zhuang, E. Brunner, X. Wang and F. Zhang, *Adv. Funct. Mater.*, 2017, 27, 1703146; (b) B. Jędrzejewska, M. Gordel, J. Szeremeta, P. Krawczyk and M. Samoć, *J. Org. Chem.*, 2015, 80, 9641-9651.
- S2 Y. Zhi, K. Li, H. Xia, M. Xue, Y. Mu and X. Liu, J. Mater. Chem. A, 2017, 5, 8697-8704.
- S3 S. Li, L. Li, Y. Li, L. Dai, C. Liu, Y. Liu, J. Li, J. Lv, P. Li and B. Wang, ACS Catal., 2020, 10, 8717-8726.
- S4 X. Lan, X. Liu, Y. Zhang, Q. Li, J. Wang, Q. Zhang and G. Bai, ACS Catal., 2021, 11, 7429-7441.
- S5 W. Li, X. Huang, T. Zeng, Y. A. Liu, W. Hu, H. Yang, Y.-B. Zhang and K. Wen, *Angew. Chem. Int. Ed.*, 2021, 60, 1869-1874.
- S6 J.-L. Shi, R. Chen, H. Hao, C. Wang and X. Lang, Angew. Chem. Int. Ed., 2020, 59, 9088-9093.
- S7 J. Luo, J. Lu and J. Zhang, J. Mater. Chem. A, 2018, 6, 15154-15161.
- S8 Z. J. Wang, K. Garth, S. Ghasimi, K. Landfester and K. A. I. Zhang, ChemSusChem, 2015, 8, 3459-3464.
- S9 Z. J. Wang, S. Ghasimi, K. Landfester and K. A. I. Zhang, Adv. Mater., 2015, 27, 6265-6270.
- S10 S. Bandyopadhyay, S. Kundu, A. Giri and A. Patra, Chem. Commun., 2018, 54, 9123-9126.