Supporting information

Phase relations, mechanical and electronic properties of nickel

borides, carbides, and nitrides from ab initio calculations

Nursultan E. Sagatov^{1,2}, Aisulu U. Abuova ^{*3}, Dinara N. Sagatova^{1,2}, Pavel N. Gavryushkin^{1,2}, Fatima U. Abuova³, and Konstantin D. Litasov⁴

¹Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russian Federation

²Novosibirsk State University, Novosibirsk 630090, Russian Federation

³L.N. Gumilyov Eurasian National University, Nur-Sultan 010008, Republic of Kazakhstan

⁴ Vereshchagin Institute for High Pressure Physics RAS, Troitsk 108840, Moscow, Russian Federation

 ${}^*{\rm Electronic\ address}: {\tt aisulu-us1980@yandex.ru};\ {\rm Corresponding\ author}$

Compound	Energy above hull (eV/atom)						
	0 GPa	$50~{ m GPa}$	100 GPa	$200~{\rm GPa}$	$300~{ m GPa}$	400 GPa	
Ni ₂₃ B ₆	0.0157	0.0473	0.0525	0.0657	0.0668	0.0679	
Ni_3B	0	0	0.0066	0.0526	0.0578	0.0631	
Ni_7B_3	0.0197	0.0736	0.0775	0.0854	0.0972	0.974	
Ni_2B	0	0	0	0	0	0	
Ni_4B_3	0	0	0.0026	0.0447	0.0448	0.0451	
NiB	0.0053	0	0	0	0	0	
Ni_2B_3	0.1629	0.0933	0.0459	0.0065	0	0	

Table S1: Energies above hull of the considered iron borides.

Table S2: Energies above hull of the considered iron carbides.

Compound	Energy above hull (eV/atom)						
	$0~{ m GPa}$	$50~{ m GPa}$	$100~{ m GPa}$	$200~{ m GPa}$	$300~{ m GPa}$	$400 \mathrm{~GPa}$	
Ni ₃ C	0.0591	0.0082	0	0	0	0	
$\rm Ni_7C_3$	0.7493	0.0492	0.0417	0.0333	0.026	0.0213	

Table S3: Energies above hull of the considered iron nitrides.

Compound	Energy above hull (eV/atom)						
Compound	0 GPa	$50~{ m GPa}$	100 GPa	$200 { m ~GPa}$	$300 { m ~GPa}$	$400 \mathrm{~GPa}$	
Ni ₆ N	0.3856	0.0375	0	0.0751	0.0509	0.053	
Ni_3N	0.0319	0	0.0016	0.0331	0.0199	0	
$\rm Ni_5N_2$	0.3123	0.1525	0.0619	0.0663	0.0466	0.0482	
$\rm Ni_7N_3$	12.2958	0.0796	0	0	0	0	
NiN	13.2809	0.1414	0.0685	0.0331	0.0398	0.0288	
NiN_2	2.6114	0	0	0	0	0	

Figure S1: Crystal structures of predicted nickel borides.

Figure S2: Enthalpy-pressure dependence for the reactions $2NiB + B = Ni_2B_3$ (a), $3Ni + C = Ni_3C$ (b), and $2NiN_2 + 11Ni_3N = 5Ni_7N_3$ (c).

Figure S3: Phonon dispersion curves of predicted nickel borides.

Figure S4: Enthalpy-pressure dependence for metastable phases Ni_7B_3 (a) and Ni_7C_3 (b).

Figure S5: Phonon dispersion curves of Ni₃C-Pnma.

Figure S6: Phonon dispersion curves of predicted nickel nitrides.

Figure S7: Crystal structures of predicted nickel nitrides.

Figure S8: Electronic charge density distribution in infinite (001) layer of B atoms in the Ni_2B_3 structure.

Figure S9: Total DOS of Ni₂B₃-*Immm* (a) and NiN₂- $Pa\bar{3}$ (b) calculated with PBE, GGA+U (U = 2, 4 eV), and HSE06.

Figure S10: Band structures of Ni₂B₃-*Immm* (a) and NiN₂- $Pa\bar{3}$ (b) calculated with PBE, GGA+U (U = 2, 4 eV), and HSE06.