Supporting Information

One-pot synthesis of conjugated triphenylamine macrocycles and their complexation with fullerenes

Yingbo Lu,^{*a*} Shinji Kanehashi,^{*a*} Kazushi Minegishi,^{*a*} Shu-Ping Wang,^{*b*} Jin Cheng,^{*a*} Kenji Ogino^{**a*} and Shijun Li^{**b*}

^{*a*} Guaduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo, Japan

^b College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China.

Email address: kogino@cc.tuat.ac.jp; l_shijun@hznu.edu.cn

Table of contents

1.	NMR and MS spectra	<i>S2</i>
2.	Solubility of COTPAs	<i>S13</i>
3.	UV-vis and fluorescence spectra	<i>S14</i>
4.	Determination of binding stoichiometries	<i>S18</i>
5.	Measurement of binding constants (K_a)	<i>S30</i>
6.	Side view of DFT optimized structures	S42

1. NMR and MS spectra

Fig. S1 ¹H NMR (300 MHz, CDCl₃) spectrum of monomer **1**.

Fig. S2 (a) ¹³C NMR (75 MHz, CDCl₃) spectrum of monomer **1**; and (b) enlarged ¹³C NMR (75 MHz, CDCl₃) spectrum of monomer **1**.

Fig. S5 (a) MALDI-TOF-MS spectrum of **COTPA** [5], and (b) its enlarged spectrum (matrix: *trans*-2-[3-(4-*tert*-butylphenyl)-2-methyl-2-propenylidene]malononitrile).

Fig. S8 (a) MALDI-TOF-MS spectrum of **COTPA** [6], and (b) its enlarged spectrum (matrix: *trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene]malononitrile).

Fig. S10 13 C NMR (126 MHz, CD₂Cl₂) spectrum of COTPA [7].

Fig. S11 (a) MALDI-TOF-MS spectrum of **COTPA [7]**, and (b) its enlarged spectrum (matrix: *trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene]malononitrile).

Fig. S12 ¹H NMR (300 MHz, CDCl₃) spectrum of 4-[(2-ethylhexyl)oxy]nitrobenzene.

Fig S13. ¹H NMR (300 MHz, CDCl₃) spectrum of 4-[(2-ethylhexyl)oxy]aniline.

Fig S14. 1 H NMR (300 MHz, CDCl₃) spectrum of monomer 2.

Fig. S16¹³C NMR (126 MHz, CD₂Cl₂) spectrum of CETPA [6].

0

Fig. S17 (a) MALDI-TOF-MS spectrum of **CETPA [6]**, and (b) its enlarged spectrum (matrix: *trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene]malononitrile).

2. Solubility of COTPAs

	COTPA [5]	COTPA [6]	COTPA [7]	
toluene	Ο	Х	Ο	
chlorobenzene	Ο	Δ	0	
chloroform	0	Ο	0	
X: less than 10 mg/mL Δ: from 10 to 20 mg/mL O: more than 20 mg/mL				

 Table S1. Solubility of COTPAs in toluene, chlorobenzene and chloroform.

3. UV-vis and fluorescence spectra

Fig. S18 (a) UV-vis and (b) fluorescence ($\lambda_{ex} = 300 \text{ nm}$ in toluene, $5 \times 10^{-6} \text{ M}$, 298 K) spectra of **COTPA [5]**, C₆₀ \subset **COTPA [5]**, C₇₀ \subset **COTPA [5]**, PC₆₁BM \subset **COTPA [5]**, C₆₀, C₇₀ and PC₆₁BM.

Fig. S19 (a) UV-vis and (b) fluorescence ($\lambda_{ex} = 300 \text{ nm}$ in toluene, $5 \times 10^{-6} \text{ M}$, 298 K) spectra of **COTPA [6]**, C₆₀ \subset **COTPA [6]**, C₇₀ \subset **COTPA [6]**, PC₆₁BM \subset **COTPA [6]**, C₆₀, C₇₀ and PC₆₁BM.

Fig. S20 (a) UV-vis and (b) fluorescence ($\lambda_{ex} = 300 \text{ nm}$ in toluene, $5 \times 10^{-6} \text{ M}$, 298 K) spectra of **COTPA [7]**, C₆₀ **COTPA [7]**, C₇₀ **COTPA [7]**, PC₆₁BM **COTPA [7]**, C₆₀, C₇₀ and PC₆₁BM.

Fig. S21 (a) UV-vis and (b) fluorescence ($\lambda_{ex} = 300 \text{ nm}$ in toluene, $5 \times 10^{-6} \text{ M}$, 298 K) spectra of **CETPA [6]**, C₆₀ ⊂ **CETPA [6]**, C₇₀ ⊂ **CETPA [6]**, PC₆₁BM ⊂ **CETPA [6]**, C₆₀, C₇₀ and PC₆₁BM.

4. Determination of binding stoichiometries

Fig. S22 (a) Mole ratio plot for the complexation between **COTPA** [5] and C_{60} , indicating a 1:1 stoichiometry; and (b) the enlarged plot of (a).

Fig. S23 (a) Mole ratio plot for the complexation between **COTPA** [6] and C_{60} , indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S24 (a) Mole ratio plot for the complexation between **COTPA** [7] and C_{60} , indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S25 (a) Mole ratio plot for the complexation between **CETPA** [6] and C_{60} , indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S26 (a) Mole ratio plot for the complexation between **COTPA** [5] and C_{70} , indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S27 (a) Mole ratio plot for the complexation between **COTPA** [6] and C_{70} , indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S28 (a) Mole ratio plot for the complexation between **COTPA** [7] and C_{70} , indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S29 (a) Mole ratio plot for the complexation between **CETPA** [6] and C_{70} , indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S30 (a) Mole ratio plot for the complexation between **COTPA** [5] and $PC_{61}BM$, indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S31 (a) Mole ratio plot for the complexation between **COTPA** [6] and $PC_{61}BM$, indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S32 (a) Mole ratio plot for the complexation between **COTPA** [7] and $PC_{61}BM$, indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

Fig. S33 (a) Mole ratio plot for the complexation between **CETPA** [6] and $PC_{61}BM$, indicating a 1:1 stoichiometry, and (b) the enlarged plot of (a).

5. Measurement of binding constants (K_a)

Fig. S34 (a) The fluorescence intensity of **COTPA** [5] $(5 \times 10^{-6} \text{ M}, \lambda_{ex} = 300 \text{ nm})$ upon addition of C₆₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [5] and C₆₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 423 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S35 (a) The fluorescence intensity of **COTPA** [6] (5×10^{-6} M, $\lambda_{ex} = 300$ nm) upon addition of C₆₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [6] and C₆₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 421 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S36 (a) The fluorescence intensity of **COTPA** [7] (5×10^{-6} M, $\lambda_{ex} = 300$ nm) upon addition of C₆₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [7] and C₆₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 420 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S37 (a) The fluorescence intensity of **CETPA** [6] $(5 \times 10^{-6} \text{ M}, \lambda_{ex} = 300 \text{ nm})$ upon addition of C₆₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **CETPA** [6] and C₆₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 427 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S38 (a) The fluorescence intensity of **COTPA** [5] (5×10^{-6} M, $\lambda_{ex} = 300$ nm) upon addition of PC₆₁BM in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [5] and PC₆₁BM in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 423 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S39 (a) The fluorescence intensity of **COTPA** [6] $(5 \times 10^{-6} \text{ M}, \lambda_{ex} = 300 \text{ nm})$ upon addition of PC₆₁BM in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [6] and PC₆₁BM in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 421 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S40 (a) The fluorescence intensity of **COTPA** [7] (5×10^{-6} M, $\lambda_{ex} = 300$ nm) upon addition of PC₆₁BM in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [7] and PC₆₁BM in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 420 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S41 (a) The fluorescence intensity of **CETPA** [6] $(5 \times 10^{-6} \text{ M}, \lambda_{ex} = 300 \text{ nm})$ upon addition of PC₆₁BM in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **CETPA** [6] and PC₆₁BM in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 427 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S42 (a) The fluorescence intensity of **COTPA** [5] $(5 \times 10^{-6} \text{ M}, \lambda_{ex} = 300 \text{ nm})$ upon addition of C₇₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [5] and C₇₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 423 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S43 (a) The fluorescence intensity of **COTPA** [6] $(5 \times 10^{-6} \text{ M}, \lambda_{ex} = 300 \text{ nm})$ upon addition of C₇₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [6] and C₇₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 421 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S44 (a) The fluorescence intensity of **COTPA** [7] (5×10^{-6} M, $\lambda_{ex} = 300$ nm) upon addition of C₇₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **COTPA** [7] and C₇₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 420 nm in 298 K with concentration of [G]₀ and 0, respectively.

Fig. S45 (a) The fluorescence intensity of **CETPA** [6] $(5 \times 10^{-6} \text{ M}, \lambda_{ex} = 300 \text{ nm})$ upon addition of C₇₀ in toluene at 298 K; and (b) relationship between $I_0/(I - I_0)$ and $1/[G]_0$ for the complexation between **CETPA** [6] and C₇₀ in toluene at 298 K, wherein *I* and I_0 are the emission intensity at 427 nm in 298 K with concentration of [G]₀ and 0, respectively.

6. Side view of DFT optimized structures

Fig. S46 The side view of DFT optimized structure of (a) COTPA [5], (b) COTPA [6], and (c) COTPA [7].